马尔可夫链预测..
马尔可夫链预测分析

XXX人力资源供给情况的马尔可夫链预测分析
一、调查成员:XXXXX
二、调查对象:XXX
三、调查方法:访谈法
四、调查目的:1、了解小公司的岗位设置
2、运用马尔可夫链预测分析人力资源供给
五、调查时间:2014年6月6日
六、前期工作
我们小组进行采访的对象是学校创业园的“XXX”,我们需要了解“XXX”的员工变动情况,因此,我们采用访谈的方法,对其内部员工的流动和供给以及外部的供给的数据进行收集,以便进行马尔科夫矩阵的人员预测。
我们通过采访了解到以下情况:
2012年,店长一名,营业员两名,共三人;
2013年,店长离职,其中一名营业员升职为店长,新招一名营销总监和一名营业员,共4人。
2012年人员情况:
2013年人员情况:
2014年XXX人力资源供给情况预测分析
我们根据上述数据预测2014年“XXX”将有一名店长离职,一名营业员顶替店长职位,还需要招聘一名营业员,营销总监的人数不变,共4人。
因为XXX是成立两年的小公司,所以岗位设置简单,业务量少。
随着发展会慢慢壮大。
七、总结与建议
我们在进行马尔科夫预测时,由于组织成立规模小,人员数据太小,马尔科夫的预测比较难以精确,所以我们有以下建议以供参考:
1.人员预测应该根据组织的发展规划需要进行预测,例如营销总监的岗位就是由于业务的需求而设立,在下一年的人员预测要充分考虑新增岗位和删减岗位的可能。
2.店长的岗位是每年都由营业员顶替,所以要有意识的培养营业员,甄选合适的人员顶替。
3.营业员每年都需要从外部招聘,所以要保证人员的供给到位和及时。
空间马尔可夫链测算-概述说明以及解释

空间马尔可夫链测算-概述说明以及解释1.引言1.1 概述在空间马尔可夫链的研究中,该模型主要用于描述和分析具有空间特征的随机过程。
与传统的马尔可夫链不同的是,空间马尔可夫链不仅考虑了状态的转移概率,还考虑了状态间的空间依赖关系。
通过将马尔可夫链的状态扩展为空间上的节点,我们可以更好地模拟和分析各种现实世界中的随机过程。
本文将详细介绍空间马尔可夫链的概念和测算方法。
在第二章中,我们将首先给出空间马尔可夫链的定义和基本概念,包括状态空间、状态转移概率和初始概率分布等。
然后,我们将介绍一些经典的空间马尔可夫链模型,如格点模型和连续空间模型,并对它们的特点进行讨论。
在第三章中,我们将重点介绍空间马尔可夫链的测算方法。
这些方法包括参数估计、马尔可夫链融合和模拟仿真等。
我们将详细介绍每种方法的原理和步骤,并给出相应的数学公式和算法。
此外,我们还将讨论测算结果的解释和应用,以及可能存在的限制和改进空间。
总之,本文旨在为读者提供一个全面的关于空间马尔可夫链测算的指南。
通过对该模型的深入理解和应用,我们可以更好地分析和预测各种具有空间特征的随机过程,为实际问题的解决提供科学依据和决策支持。
在未来的研究中,我们也将继续探索空间马尔可夫链的新理论和方法,以适应不断变化的科学和工程需求。
文章结构部分的内容应该是对整篇文章的结构和各个部分的内容进行介绍和说明。
以下是对文章结构部分的内容的一个可能的编写:1.2 文章结构本文共分为引言、正文和结论三个部分。
每个部分的主要内容如下:引言部分:引言部分包括了概述、文章结构和目的三个小节。
概述部分会对空间马尔可夫链测算的主题进行简要介绍,指出该主题的重要性和研究意义。
文章结构部分则会明确说明整篇文章的结构安排和各个部分的主要内容。
目的部分则会明确表达本文的研究目的和所要解决的问题。
正文部分:正文部分分为空间马尔可夫链的概念和空间马尔可夫链的测算方法两个小节。
空间马尔可夫链的概念部分会系统介绍空间马尔可夫链的基本概念、特点和相关理论背景,为后续的测算方法提供理论基础。
马尔可夫预测方法

1
③ 例题:在例1中,设终极状态的状态概率为 [ 1 , 2 , 3 ] 则
0 . 2000 [ 1 , 2 , 3 ] [ 1 , 2 , 3 ] 0 . 5385 0 . 3636 0 . 4667 0 . 1538 0 . 4545 0 . 3333 0 . 3077 0 . 1818
马尔可夫预测方法
对事件的全面预测,不仅要能够指出事件发生的各
种可能结果,而且还必须给出每一种结果出现的概率。
马尔可夫(Markov)预测法,就是一种预测事件 发生的概率的方法。它是基于马尔可夫链,根据事件 的目前状况预测其将来各个时刻(或时期)变动状况 的一种预测方法。马尔可夫预测法是对地理事件进行
xi 1
这样的向量α称为平衡向量,或终极向量。这就是 说,标准概率矩阵一定存在平衡向量。
P
使得:
(3.7.4)
• 状态转移概率矩阵的计算。 计算状态转移概率矩阵P,就是求从每个状态转移到其 它任何一个状态的状态转移概率 。
几 个 基 本 概
念
ij 为了求出每一个,一般采用频率近似概率的思想进行 计算。 • 例题1: 考虑某地区农业收成变化的三个状态,即“丰收”、 “平收”和“欠收”。记E1为“丰收”状态,E2为“平收” 状态,E3为“欠收”状态。表3.7.1给出了该地区1960~ 1999年期间农业收成的状态变化情况。试计算该地区农业 收成变化的状态转移概率矩阵。
状态转移概率。在事件的发展变化过程中,从某一种状
几 个 基 本 概
念
态出发,下一时刻转移到其它状态的可能性,称为状态转 移概率。由状态Ei转为状态Ej的状态转移概率 P(E i E j ) 是
P ( E i E j ) P ( E j / E i ) Pij
马尔可夫链在天气预测中的应用

马尔可夫链在天气预测中的应用马尔可夫链在天气预测中的应用一、引言天气对人类生活有着重要影响,了解未来的天气情况可以帮助人们做出相应的决策。
由于天气受到多种因素的影响,其变化具有一定的不确定性,因此天气预测一直是一项具有挑战性的任务。
随着计算机科学的发展,马尔可夫链成为了一种在天气预测中广泛应用的工具。
本文将介绍马尔可夫链的基本原理,并探讨其在天气预测中的应用。
二、马尔可夫链的基本原理马尔可夫链是一种数学模型,用于描述一系列随机事件的过程。
它满足所谓的马尔可夫性质,即当前事件的发生只与前一事件的状态有关,与更早的事件无关。
马尔可夫链有两个基本概念:状态和转移概率。
1. 状态状态是指描述系统在某一时刻所处的具体情况。
在天气预测中,状态可以表示为某一天的天气情况,例如晴天、阴天、雨天等。
2. 转移概率转移概率表示在当前状态下,系统转移到下一个状态的概率。
在天气预测中,转移概率可以表示为从某一天的天气情况到下一天天气情况的概率,例如从晴天转为阴天的概率。
利用马尔可夫链的概念,我们可以建立天气状态之间的转移模型,从而进行天气预测。
三、马尔可夫链在天气预测中的应用马尔可夫链在天气预测中的主要应用是基于历史数据进行未来的天气情况预测。
具体地说,我们可以通过统计过去一段时间内的天气情况,建立马尔可夫链模型,从而预测未来的天气情况。
1. 数据处理在进行天气预测之前,首先需要收集和处理大量的历史天气数据。
这些数据可以包括每天的天气情况、温度、湿度等信息。
通过对数据的分析和处理,我们可以得到天气状态之间的转移概率,即从当前状态转移到下一状态的概率。
2. 模型建立建立马尔可夫链模型涉及到两个方面的问题:状态的选择和转移概率的估计。
状态的选择是指确定天气的几种可能状态。
在天气预测中,状态可以根据具体需求而定,例如可以将天气分为晴天、阴天、雨天三种状态。
转移概率的估计是根据历史数据对转移概率进行估计。
通过统计每个状态转移到下一状态的频率,我们可以得到转移概率的估计值。
基于马尔可夫链的网络预测模型研究

基于马尔可夫链的网络预测模型研究随着网络技术的不断发展,网络已经成为我们生活中不可或缺的一部分。
人们通过网络进行了众多的交流和交易,但是我们如何能够利用网络数据来预测未来的趋势呢?基于马尔可夫链的网络预测模型应运而生。
这篇文章将会介绍关于基于马尔可夫链的网络预测模型这一话题的相关研究进展和方法。
一、马尔可夫链的概念马尔可夫链是一类随机过程,其性质在许多领域都有应用。
马尔可夫链的定义是:一个状态集合和从一个状态到另一个状态的转移概率集合,其中状态集合不需要是有限的。
在一个给出的状态下,转移概率是从其它状态到该状态的概率。
而在某个状态下,下一步转移到的状态只与当前状态有关,与以前的状态无关。
二、基于马尔可夫链的网络预测模型基于马尔可夫链的网络预测模型是将网络的历史数据作为状态转移的输入,预测网络的未来趋势。
首先,我们需要从网络数据中提取出马尔可夫链所需的状态转移概率矩阵。
这个矩阵的每一个元素表示了在当前状态下,下一个状态的转移概率。
如果我们已经得到了状态转移矩阵,那么就可以预测未来的网络趋势了。
如果想要更加准确的预测,我们可以使用一些基于马尔可夫链的预测算法,例如:最大熵马尔可夫模型。
三、最大熵马尔可夫模型的应用最大熵马尔可夫模型是基于马尔可夫链的预测模型中被广泛使用的一种方法。
这种方法主要应用于自然语言处理、文本分类、机器翻译等领域。
最大熵模型是一种概率模型,它能够通过最大化熵的方法来找到一个最优的模型。
最大熵马尔可夫模型中,每一个状态之间的转移都有一个权重,而这个权重在模型训练过程中是动态调整的。
在预测时,我们可以根据当前的状态来计算下一个状态的转移概率。
这个概率值越大,说明该状态的出现概率越高,因此我们就可以将其作为最终预测结果。
四、基于马尔可夫链的网络预测模型的局限性尽管基于马尔可夫链的预测模型已经在很多领域有了成功的应用,但是它们仍然存在一些局限性。
首先,由于马尔可夫链只考虑了当前状态的下一个状态,因此它并不能应对一些复杂的网络结构和动态变化趋势。
马尔可夫预测法

马尔可夫预测法马尔可夫预测法是一种基于马尔可夫过程的预测方法。
马尔可夫过程是在给定当前状态下,下一个状态的概率只与当前状态有关的随机过程。
其本质是利用概率论中的马尔可夫性质,通过已知状态的条件概率预测未来的状态。
马尔可夫预测法广泛应用于各种领域中的预测问题。
马尔可夫预测法的基本思想是利用过去的信息预测未来的状态。
在马尔可夫模型中,当前状态只与前一状态有关,与更早的历史状态无关,这种性质称为“无记忆性”。
因此,在预测未来状态时,只需知道当前状态及其概率分布即可,而无需考虑过去的状态。
这种方法不仅大大降低了计算复杂度,而且在实际应用中也具有很高的准确性。
马尔可夫预测法的应用范围非常广泛,例如天气预报、股票价格预测、自然语言处理、机器翻译等。
其中,天气预报是一个典型的马尔可夫过程应用。
在天气预报中,当前的天气状态只与前一天的天气状态有关,而与更早的天气状态无关。
因此,可以利用马尔可夫预测法预测未来的天气状态。
马尔可夫预测法的实现方法有很多,其中比较常见的是利用马尔可夫链进行预测。
马尔可夫链是一种随机过程,其状态空间是有限的。
在马尔可夫链中,当前状态的转移概率只与前一状态有关。
因此,在利用马尔可夫链进行预测时,只需知道当前状态及其转移矩阵即可。
根据转移矩阵,可以预测未来的状态概率分布。
马尔可夫预测法的优点是计算简单,预测准确性高。
但其缺点也比较明显,即需要满足无记忆性的假设,而实际应用中,往往存在着各种各样的因素影响状态的转移。
因此,在实际应用中,需要对马尔可夫预测法进行适当的修正,以提高预测准确性。
马尔可夫预测法是一种基于马尔可夫过程的预测方法,具有计算简单、预测准确性高等优点。
其在天气预报、股票价格预测、自然语言处理、机器翻译等领域中得到了广泛应用。
在实际应用中,需要充分考虑各种因素的影响,对马尔可夫预测法进行适当的修正,以提高预测准确性。
马尔可夫预测算法

马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。
方法由来马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。
针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。
基础理论在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。
因此,变化过程可用时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。
这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。
在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。
这就要研究无限多个,即一族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:⎪⎪⎭⎫⎝⎛⋅⋅⋅=⋅⋅⋅==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由一种状态到另一种状态的变化。
设客观事物有N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。
基于马尔可夫链的资产质量预测建模研究

( hn etro d s a scryeoo c sac f J B in 0 04, hn ) C iacne frn ut l eu t cnmi r erho U, e i 10 4 C ia i i r i se B jg
AB TRACT:W i h v S t te f e—c tg r o n q a i ls i c t n me h d rn i o t xc n r f c t e dsr ui n h i ae o y la u l y ca sf ai t o ,ta s in ma r a e e t h it b t t i o t i l i o a d t e t n fr t n o a k a s t. T e t n i o t x o a k a s t q a i a e u a l e iw a d ma e n h r so mai f b n se s h r s i n ma r f b n se s u l y c n r g lr r ve n k a o a t i t y
ta ksfr te e ou in o a se sq aiy. Be a eo h o i u t n tbii ft eba k a s t uaiy,f r — r c h v l to fb nk a s t u lt o c us ft e c ntn iy a d sa lt o h n s esq lt y o e c si d lo he a s t aiy ba e n M a k v c i a e s r nd c l ua e t o bii it b to f a tng mo e ft se squ lt s d o r o han c n m a u e a ac lt he prba lt d sr u in o y i ba k a s t uaiy i h uur . Usn heta st n marx a d te fr c sig mo lo h se sq al yba e n n s es q lt n t e f t e i g t r n ii ti n h oe a tn de ft e a s t u i s d o o t M a k v wi xp s he d v ain a d t e m oa s d rn l s i i g l a n ls i he r o l e o e t e ito n h rlr k u g ca sf n o ns a d ca sf t m it v c tg re l i i y y n o f e a e o is, i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率向量
概率矩阵 由概率向量作为行向量所构 成的方阵称为概率矩阵。
0.7 0.3 A 0.5 0.5
12
概率矩阵的性质:如果A、B 皆是概率矩阵,则AB也是 m 概率矩阵;如果A是概率矩阵,则A的任意次幂 A (m 1)也 是概率矩阵。
13
概率矩阵的性质:如果A、B 皆是概率矩阵,则AB也是 m 概率矩阵;如果A是概率矩阵,则A的任意次幂 A (m 1)也 是概率矩阵。 一步状态转移概率矩阵 p11 p12 L p p22 L 21 P L L L pN 1 pN 2 L
24
2. 稳态分布 问题:对于系统的状态P(m),当 m 趋于无穷时, 是否存在极限?
若存在,设其极限为 ,
m
lim P(m) lim (p1 (m),p2 (m),...,pN (m))
m
( 1 , 2 ,..., N )
m
lim p j m j
16
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
全概率公式
17
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
全概率公式
P ( k ) P ( k 1) P
P
k
P , k 1
k
P —— 一步状态转移概率矩阵
P( k ) —— k 步状态转移概率矩阵
25
2. 稳态分布 问题:对于系统的状态P(m),当 m 趋于无穷时, 是否存在极限?
若存在,设其极限为
m m
,
lim P(m) lim (p1 (m),p2 (m),...,pN (m)) ( 1 , 2 ,..., N )
lim p j m j
lim p j m lim pi 0 p m
18
三、平稳分布与稳态分布
19
三、平稳分布与稳态分布
1. 平稳分布
20
三、平稳分布与稳态分布
1. 平稳分布 如 X x1 , x2 ,L , xN 为一状态概率向量,P为状态转移 概率矩阵。若 XP X 则称 X 为马尔可夫链的一个平稳分布。
21
三、平稳分布与稳态分布
1. 平稳分布 如 X x1 , x2 ,L , xN 为一状态概率向量,P为状态转移 概率矩阵。若 XP X 则称 X 为马尔可夫链的一个平稳分布。 若随机过程某时刻的状态概率向量为平稳分布,则称 过程处于平衡状态。 一旦过程处于平衡状态,则过程经过一步或多步状态 转移之后,其状态概率分布保持不变,即,过程一旦处于 平衡状态后将永远处于平衡状态。
当系统由一种状态变为另一种状态时,称为状态转移。
6
二、状态转移概率矩阵
当系统由一种状态变为另一种状态时ห้องสมุดไป่ตู้称为状态转移。 定义2 一步状态转移概率
(1) pij pij P{X n1 j X n i}
N
pij 0,
p
j 1
ij
1
若由X n i转移到X n1 j的概率pij与n无关,则称该马尔 可夫链是齐次的。
7
几个概念:
8
几个概念:
概率向量:对于任意的行向量(或列 向量),如果其每个元素均非负且总和等于1, 则称该向量为概率向量。
9
几个概念:
概率向量:对于任意的行向量(或列 向量),如果其每个元素均非负且总和等于1, 则称该向量为概率向量。
u (0.4,0.25,0.25,0.1)
10
几个概念:
22
2. 稳态分布 问题:对于系统的状态P(m),当 m 趋于无穷时, 是否存在极限?
23
2. 稳态分布 问题:对于系统的状态P(m),当 m 趋于无穷时, 是否存在极限?
若存在,设其极限为 ,
m
lim P(m) lim (p1 (m),p2 (m),...,pN (m))
m
( 1 , 2 ,..., N )
p ( k )11 (k ) p 21 L (k ) p N1 p ( k )12 p ( k ) 22 L L L L p ( k )1N (k ) p 2N L (k ) p NN
15
P
(k )
p(k ) N 2 L
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
p1 N p2 N L pNN
假设: pij 与n无关 (齐次性)
14
k步状态转移概率
pij P
k
P X n k j X n i, pij
k
k
, k 1 N N
称 pij k 为k步状态转移概率, P k 为k步状态转移概率矩阵,
概率向量:对于任意的行向量(或列 向量),如果其每个元素均非负且总和等于1, 则称该向量为概率向量。
u (0.4,0.25,0.25,0.1)
概率向量
11
几个概念:
概率向量:对于任意的行向量(或列 向量),如果其每个元素均非负且总和等于1, 则称该向量为概率向量。
u (0.4,0.25,0.25,0.1)
马尔可夫预测
马尔可夫链的基本原理 马尔可夫预测方法及应用
1
1.
马尔可夫链的基本概念
一、马尔可夫链 马尔可夫过程指满足无后效性的随机过程
2
1.
马尔可夫链的基本概念
一、马尔可夫链 马尔可夫过程指满足无后效性的随机过程 定义1 若非负随机序列{X(tn),n∈N}满足条件
则称随机序列{X(tn)}为马尔科夫链,简称马氏链。
i 1 N (m) ij (m) pi 0 lim pij i 1 m
26
m
N
m
定义 对于概率向量 1, 2 ,..., N ,如 对任意的 i, j S ,均有
m ( m) lim pij j
3
1.
马尔可夫链的基本概念
一、马尔可夫链 马尔可夫过程指满足无后效性的随机过程 定义1 若非负随机序列{X(tn),n∈N}满足条件
则称随机序列{X(tn)}为马尔科夫链,简称马氏链。
无后效性指“将来”取什么值只与“现在”的取值有关,
而与“过去”取什么值无关。
4
二、状态转移概率矩阵
5
二、状态转移概率矩阵