2019高考数学二轮复习专题四解析几何第12讲椭圆冲刺提分作业

合集下载

2019年高考数学艺术生百日冲刺专题12椭圆测试题 含答案解析

2019年高考数学艺术生百日冲刺专题12椭圆测试题 含答案解析

专题12椭圆测试题【高频考点】本知识涉及椭圆的定义,标准方程以及简单的几何性质的应用,直线与椭圆的位置关系。

【考情分析】本阶段是高考考查重点内容之一,涉及客观题和解答题,客观题主要考查椭圆方程的求解,椭圆的几何性质等,难度中等,在解答题中多以椭圆为载体,考查直线与椭圆的位置关系,定值定点,以及最值问题,常常以探索性问题形式出现,难度较大。

【重点推荐】基础卷第11题,数学文化题,第22题考察与不等式的交汇,考察综合解决问题的能力。

一.选择题1.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1] C.(0,1)D.(﹣1,0)【答案】C【解析】:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.2.设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【答案】:C【解析】椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.3.设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,|PF1|+|PF2|=10,则椭圆的短轴长为()A.6 B.8 C.9 D.10【答案】:A【解析】设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,可得c=4,|PF1|+|PF2|=10,可得a=5,则椭圆的短轴长为:2b=2=6.故选:A.4.(2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2 B.C.4 D.【答案】:C【解析】如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.5若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为()A.1 B.2 C.D.4【答案】:A6.(2018•齐齐哈尔二模)已知椭圆+=1(a>b>0)的离心率为,短轴长大于2,则该椭圆的长轴长的取值范围是()A.(2,+∞)B.(4,+∞)C.(2,4)D.(4,8)【答案】:B【解析】根据题意,椭圆+=1(a>b>0)的离心率为,即e==,则c=a,又由椭圆短轴长大于2,即2b>2,则b>1,则有a2﹣c2=b2>1,即>1,解可得a>2,则该椭圆的长轴长2a>4,即该椭圆的长轴长的范围为(4,+∞);故选:B.7.(2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)【答案】:C【解析】∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k ≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB ∈(1,2),则△AFB周长的取值范围是(6,8).故选:C.15.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为.【答案】:【解析】由圆的方程可知,圆心C(﹣1,0),半径等于5,设点M的坐标为(x,y ),∵AQ的垂直平分线交CQ于M,∴|MA|=|MQ|.又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.依据椭圆的定义可得,点M的轨迹是以 A、C 为焦点的椭圆,且2a=5,c=1,∴b=,故椭圆方程为+=1,即+=1.故答案为:16(2018•西宁二模)已知椭圆C:=1,F1,F2是该椭圆的左右焦点,点A(4,1),P是椭圆上的一个动点,当△APF1的周长取最大值时,△APF1的面积为.【答案】:【解析】:如图所示,由椭圆C=1可得a=5,右焦点F2(4,0).|F1F2|=8∵|PF1|+|PF2|=2a=10,∴|PF1|+|PA|=10﹣|PF2|+|PA|≤10+|AF2|.△APF1的周长取最大值时,三点P、A、F2共线,且点P在第四象限,此时F1F2⊥AP,|PF2|==,△APF1的面积S=|F1F2|×|PA|=.故答案为:.三.解答题17.已知椭圆的离心率为22,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.【解析】:(1)由题意,得解得22,2.ab⎧=⎪⎨=⎪⎩∴椭圆C的方程为22184x y+=.…………5分(2)设点A、B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由消y得,3x2+4mx+2m2-8=0,Δ=96-8m2>0,∴-23<m<23.…………8分.∵点M(x0,y0)在圆x2+y2=1上,,355m∴=±.……10分18.(2018•广陵区校级四模)已知椭圆C:(a>b>0)的左焦点为F,上顶点为A,直线AF与直线x+y﹣3垂直,垂足为B,且点A是线段BF的中点.(1)求椭圆C的方程;(2)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线x=4交于点Q,且=9,求点P的坐标.【分析】(1)由直线AF与直线x+y﹣3垂直,可得:=1,则直线AF的方程为:y=x+c.与椭圆方程联立可得B(,),于是﹣c=0,解得c,即可得出椭圆方程.(2)设P(x0,y0),则直线MP的方程为y=(x+2),可得Q.9==2(x0+2)+,由点P在椭圆上可得:=2﹣,代入解出即可得出.(2)设P(x0,y0),则直线MP的方程为y=(x+2),∴Q.∴9==2(x0+2)+,………7分由点P在椭圆上可得:=2﹣,代入可得:9=2(x0+2)+,化为:+x0﹣2=0,解得x0=1或﹣2.(舍),∴P.…………12分19.(2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.(1)求椭圆C的标准方程;(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.【分析】(1)根据题意,将两点的坐标代入椭圆的方程有,解可得、的值,即可得椭圆的方程;(2)设直线l1:y=k1x﹣1,与直线y=x联立方程有,可得E的坐标,设直线l2:,同理可得F的坐标,又由OE=OF,所以,解可得k的值,即可得答案.【解析】:(1)根据题意,椭圆C:(a>b>0)经过点,,则有,解得,…………3分所以椭圆C的标准方程为;…………5分(2)由题意知A(0,﹣1),直线l1,l2的斜率存在且不为零,设直线l1:y=k1x﹣1,与直线y=x联立方程有,得,设直线l2:,同理,…………7分因为OE=OF,所以,①,无实数解;②,,,解得,综上可得,直线l1的斜率为.……12分20(2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.(1)求椭圆C的方程;(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.【分析】(1)根据椭圆的定义及椭圆的性质,即可求得a和b的值,即可求得椭圆方程;(2)设直线AB的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得k2=,即可求得|OA|2+|OB|2=5为定值.【解析】:(1)由题意,F1(﹣,0),F2(,0),根据椭圆定义|PF1|+|PF2|=2a,所以2a=+=4,所以a2=4,b2=a2﹣c2=1椭圆C的方程;…………5分(2)设直线AB:y=kx+m,(km≠0),A(x1,y1),B(x2,y2),由,消去y得(1+4k2)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(1+4k2)(4m2﹣4)>0,x1+x2=﹣,x1x2=,因为k1k2=k2,所以•=k2,即km(x1+x2)+m2=0(m≠0),解得k2=,…………8分|OA|2+|OB|2=x12+x22+y12+y22=[(x1+x2)2﹣2x1x2]+2=5,所以|OA|2+|OB|2=5为定值.…………12分21.(2018•南充模拟)已知椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.(1)求椭圆C的方程;(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.【分析】(1)由椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)设l的方程为y=x+m,再与椭圆方程联立,将∠AOB为钝角,转化为<0,且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围.【解析】:(1)∵椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.∴,解得a=2,b=,c=,…………3分∴椭圆C的方程为=1.………………5分(2)由直线l平行于OM,得直线l的斜率k=k OM=,又l在y轴上的截距为m,∴l的方程为y=12x m.由,得x2+2mx+2m2﹣4=0.…………8分又直线l与椭圆交于A、B两个不同点,△=(2m)2﹣4(2m2﹣4)>0,于是﹣2<m<2.∠AOB为钝角等价于<0,且m≠0,设A(x1,y1),B(x2,y2),则=x1x2+y1y2==,由韦达定理x1+x2=﹣2m,x1x2=2m2﹣4,代入上式,化简整理得m2<2,即,故所求范围是(﹣)∪(0,).…………12分22.(2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线MN过定点.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得c、b的值,由椭圆的几何性质计算可得a的值,即可得椭圆的标准方程;(Ⅱ)设直线MN的方程为y=kx+m,与椭圆的方程联立,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),由根与系数的关系分析直线AM、AN的斜率,进而分析可得k1+k2==0,解可得m的值,由直线的斜截式方程即可得答案.(Ⅱ)证明:设直线MN的方程为y=kx+m.由,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),则,.直线AM的斜率=;直线AN的斜率=.k1+k2===.…………8分由∠MAN的平分线在y轴上,得k1+k2=0.即=0,又因为|AM|≠|AN|,所以k≠0,所以m=1.因此,直线MN过定点(0,1).……12分。

高考数学(理)二轮高分冲刺专题九:解析几何(5)椭圆

高考数学(理)二轮高分冲刺专题九:解析几何(5)椭圆
∴ ,
∴ 是直角三角形,即 ,
设 ,则 ,
∴ ,
故选A.
7答案及解析:
答案:D
解析:
8答案及解析:
答案:A
解析:
∵ 的周长为 ,
∵ 的周长 ,
∴ ,
∴ ,
∵离心率为 ,
∴ , ,
∴ ,
∴椭圆C的方程为 .
故选A.
9答案及解析:
答案:C
解析:由 可知点M的轨迹是以点A为圆心,1为半径的圆,过点P作该圆的切线PM,则 , ,得 ,所以要使 取得最小值,需使 取得最小值,而 的最小值为 ,此时点P为椭圆右顶点,且 ,故选C.
所以 ,
所以 ,所以内切圆半径 ,
因此 内切圆面积的最大值是 .
14答案及解析:
答案:
解析:因为直线 斜率之积为2,所以 的斜率为 ,由已知 , ,所以把 换成 ,可得点 ,则直线 的斜率为 .
15答案及解析:
答案:(1).由椭圆定义,可知点M的轨迹是以 、 为焦点,以 为长轴长的椭圆.
由 , ,得 .故曲线 的方程为 .
(1).求动点M轨迹C的方程;
(2).设 ,过点 作直线l,交椭圆C不同于N的 , 两点,直线 、 的斜率分别为 、 ,问 是否为定值?若是的求出这个值。
答案以及解析
1答案及解析:
答案:B
解析:
2答案及解析:
答案:D
解析:
3答案及解析:
答案:D
解析:
4答案及解析:
答案:C
解析:由两点间的距离公式可得 , , ,
么 斜率的取值范围是()
A. B. C. D.
11、如图,设椭圆 的左、右焦点分别为 ,点D在椭圆上, , , 的面积为 ,则椭圆的标准方程为_______________.

《解析几何》第12讲 椭圆几何性质(3)

《解析几何》第12讲 椭圆几何性质(3)

SABC
1 F1 F2 y A yB 2
A
F1
A
F1
F2
F2
B
B
x y 例题3.已知点A(0,-2), 椭圆E: 2 2 =1 a b
2
2
3 的离心率为 , F是椭圆E的右焦点 , 2 2 3 直线AF的斜率为 , O为坐标原点. 3 (Ⅰ) 求E的方程;
(Ⅱ) 设过点A的动直线l与E相交于P,Q两点, 当△OPQ的面积最大时,求 l 的方程.
例题2. 已知 F1 , F2 分别是椭圆5x2+9y2=45的左、
右焦点.
(1) 过点F2且斜率为1的直线与椭圆交于A,B两点,
求|AB|的值.
(2) 求△F1 AB的面积.
(3) 判断点M(1,1)与椭圆的位置关系 , 并求以M为
中点椭圆的弦所在的直线方程.
小结一【弦长公式】
设斜率为k直线 l与椭圆交于A( x1 , y1) ,B( x2, y2 ),
则 |AB|=
1 k | x1 x2 |
2
1 k (x1 x2 ) 4 x1 x2
2 2
1 1 2 y1 y2 k 1 2 1 2 (y1 y2 ) 4 y1 y2 k
小结二【面积问题】
“整体法” “分割法”
SABC
1 d AB 2
从前有棵树,
叫高数,
树上挂了很多人.
模 糊 技 模 术 糊 数 学
第12讲 椭圆几何性质(3)
问题1:直线与圆的位置关系有哪几种?
怎么判断它们之间的位置关系?
几何法: d>r 代数法:∆<0
d=r ∆=0
d<r ቤተ መጻሕፍቲ ባይዱ>0

高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题

高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题

高考数学二轮复习考点知识讲解与练习第40讲 二元一次不等式(组)与简单的线性规划问题考点知识:1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域111222112+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 3.线性规划的有关概念线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.判定二元一次不等式表示的区域(1)若B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方.(2)若B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )答案(1)×(2)√(3)√(4)×解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b.2.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案 B解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B.3.已知x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y +1的最大值、最小值分别是( )A .3,-3B .2,-4C .4,-2D .4,-4 答案 C解析 不等式组所表示的平面区域如图所示.其中A (-1,-1),B (2,-1), C ⎝ ⎛⎭⎪⎫12,12, 画直线l 0:y =-2x ,平移l 0过B 时,z max =4,平移l 0过点A 时, z min =-2.4.(2022·浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0, 则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞) 答案 B解析 画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).5.(2022·汉中质检)不等式组⎩⎨⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________. 答案14解析 画出可行域如图中阴影部分(含边界)所示,通过上图,可以发现不等式组表示的平面区域以点A ⎝ ⎛⎭⎪⎫32,12,B (1,0)和C (2,0)为顶点的三角形区域(含边界),因此S △ABC =12×(2-1)×12=14.6.(2021·成都诊断)已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值为________. 答案 -1解析 先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.考点一 二元一次不等式(组)表示的平面区域1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 答案 B解析 根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 2.在平面直角坐标系xOy 中,不等式组⎩⎨⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4 答案 B解析 不等式组对应的平面区域如图,即对应的区域为正方形ABCD ,其中A (0,1),D (1,0),边长AD =2,则正方形的面积S =2×2=2.3.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是()A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1] C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞答案 D解析作出不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分表示).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3),故0<a ≤1或a ≥43.感悟升华 平面区域的形状问题主要有两种题型:(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状; (2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论. 考点二 求目标函数的最值角度1 求线性目标函数的最值【例1】(2021·郑州模拟)设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x -2y +3≥0,x -y ≥0,则目标函数z=2x -y 的最小值为( )A .-1B .0C .1D .3 答案 C解析 由约束条件可得可行域如图阴影部分(含边界)所示,将z =2x -y 变为y =2x -z ,当z 取最小值时,y =2x -z 在y 轴截距最大,由y =2x 图象平移可知,当y =2x -z 过点A 时,在y 轴截距最大,由⎩⎨⎧y =x ,y =x得A (1,1),∴z min =2×1-1=1,故选C.角度2 求非线性目标函数的最值【例2】(1)已知实数x ,y 满足⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1,则z =y x +2的取值范围是________.(2)(2022·景德镇模拟改编)若变量x ,y 满足约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为________. 答案 (1)⎣⎢⎡⎦⎥⎤23,76 (2)45解析 (1)作出不等式组⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1表示的平面区域如图中阴影部分所示,这是一个三角形区域(包含边界),三角形的三个顶点的坐标分别为B (1,2),C⎝ ⎛⎭⎪⎫1,72,D (2,3),y x +2的几何意义是可行域内任一点(x ,y )与点P (-2,0)连线的斜率,连接PB ,PC ,由于直线PB 的斜率为23,直线PC 的斜率为76,由图可知z =yx +2的取值范围是⎣⎢⎡⎦⎥⎤23,76. (2)画出约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0表示的可行域,如图中阴影部分所示.设z =(x -1)2+y 2,则其几何意义是区域内的点到定点(1,0)的距离的平方,由图知点(1,0)到直线2x -y =0的距离最小,点(1,0)到直线2x -y =0的距离d =|2×1-0|22+(-1)2=25,则z min =d 2=45,所以(x -1)2+y 2的最小值为45.角度3 求参数值或取值范围【例3】(2021·太原调研)已知实数x ,y 满足⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8 答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2.感悟升华 线性规划两类问题的解决方法(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有: ①截距型:例如z =ax +by ;②距离型:形如z =(x -a )2+(y -b )2;③斜率型:形如z =y -b x -a. (2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.【训练1】(1)(2021·昆明质检)设x ,y 满足约束条件⎩⎨⎧x -y -2≤0,2x -y +3≥0,x +y ≤0,则y +4x +6的取值范围是( )A.⎣⎢⎡⎦⎥⎤-13,1 B .[-3,1] C .(-∞,-3)∪(1,+∞) D .⎣⎢⎡⎦⎥⎤-37,1(2)若x ,y 满足条件⎩⎨⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0,当且仅当x =y =3时,z =ax +y 取最大值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-23,35 B .⎝ ⎛⎭⎪⎫-∞,-35∪⎝ ⎛⎭⎪⎫23,+∞C.⎝ ⎛⎭⎪⎫-35,23 D .⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫35,+∞答案 (1)B (2)C解析 (1)画出不等式组表示的平面区域如图阴影部分(含边界)所示,目标函数z =y +4x +6表示可行域内的点与点P (-6,-4)连线的斜率,数形结合可知目标函数在点A(-1,1)处取得最大值为1+4-1+6=1,目标函数在点B(-5,-7)处取得最小值为-7+4-5+6=-3,故目标函数的取值范围是[-3,1].故选B.(2)不等式组对应的平面区域如图,由图可知,当目标函数的斜率满足-23<-a<35,即-35<a<23时,z=ax+y仅在x=y=3时取得最大值,故选C.考点三实际生活中的线性规划问题【例4】(2022·安庆联考)某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植莴笋和西红柿的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价莴笋5吨1万元0.5万元西红柿 4.5吨0.5万元0.4万元________万元.答案43解析设莴笋和西红柿的种植面积分别为x,y亩,一年的种植总利润为z万元.由题意可得⎩⎨⎧x +y ≤30,x +0.5y ≤25,x ≥0,y ≥0,z =0.5×5x +0.4×4.5y -(x +0.5y )=1.5x +1.3y , 作出不等式组表示的可行域,如图阴影部分(含边界)所示,当直线z =1.5x +1.3y 经过点A 时,z 取得最大值, 又⎩⎨⎧x +y =30,x +0.5y =25,解得x =20,y =10,即A (20,10),代入z =1.5x +1.3y 可得z =43. 感悟升华 1.解线性规划应用题的步骤.(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件,写出目标函数,转化成线性规划问题.【训练2】 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A .31 200元 B .36 000元 C .36 800元 D .38 400元 答案 C解析 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为⎩⎨⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y . 画出可行域如图中阴影部分所示,可知目标函数过点N 时,取得最小值, 由⎩⎨⎧y -x =7,36x +60y =900,解得⎩⎨⎧x =5,y =12,故N (5,12),故z min =1 600×5+2 400×12=36 800(元).“隐性”的线性规划问题数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,用数学语言予以表征.近几年的高考及模拟考试中常出现一类隐性线性规划问题,即通过数量与数量的关系,抽象出线性规划问题,有时以解析几何、函数、数列为背景综合考查.【典例】 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,则mn 的最大值为( )A .16B .18C .25D .812答案 B解析 f ′(x )=(m -2)x +n -8.由已知得:对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以f ′⎝ ⎛⎭⎪⎫12≤0,f ′(2)≤0,所以⎩⎨⎧m ≥0,n ≥0,m +2n ≤18,2m +n ≤12.画出可行域,如图,令mn =t ,则当n =0时,t =0;当n ≠0时,m =t n.由线性规划的相关知识,只有当直线2m +n =12与曲线m =t n相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-12,6-12n =t n,解得n =6,t =18.所以(mn )max =18.素养升华 1.本例以函数为载体隐蔽“约束条件”,有效实现了知识模块的交汇,本例要求从题设中抓住本质条件,转化为关于“m ,n ”的约束条件.2.解题的关键是要准确无误地将已知条件转化为线性约束条件作出可行域,抓住可行域中所求点的相应几何意义.该题立意新颖,在注意基础知识的同时,提升了数学抽象核心素养,渗透了等价转化思想和数形结合思想,考查了学生的综合应用能力.【训练】 在等差数列{a n }中,已知首项a 1>0,公差d >0,a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________,取到最大值时d =________,a 1=________. 答案 200 20 20解析 由题意得点(a 1,d )满足⎩⎨⎧a 1>0,d >0,2a 1+d ≤60,2a 1+3d ≤100,画出可行域,又5a 1+a 5=6a 1+4d , 故经过B 点,即a 1=d =20时,5a 1+a 5取最大值200.A 级 基础巩固一、选择题1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(2021·合肥模拟)若实数x ,y 满足不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0,则2x +3y 的最小值为( )A .4B . 5C . 6D .7 答案 B解析 画出不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0表示的平面区域如图阴影部分(含边界)所示,令z =2x +3y ,则y =-23x +13z ,分析知,当x =1,y =1时,z 取得最小值, 且z min =2+3=5.故选B.3.设点(x ,y )满足约束条件⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0,且x ∈Z ,y ∈Z ,则这样的点共有( )A .12个B .11个C .10个D .9个 答案 A解析画出⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0表示的可行域如图阴影部分所示(含边界),由图可知,满足x ∈Z ,y ∈Z 的(x ,y )为(-4,-1),(-3,0),(-2,1),(-2,0),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(0,3),(1,0),共12个,故选A.4.设变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 由约束条件作出可行域如图中阴影部分(含边界)所示.∵z =-4x +y 可化为y =4x +z ,∴作直线l 0:y =4x ,并进行平移,显然当l 0过点A (-1,1)时,z 取得最大值,z max =-4×(-1)+1=5.故选C.5.(2021·哈师大附中模拟)已知实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =2-2x+y的最大值为( )A.132 B .14 C .12D .2 答案 C解析 由实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1作出可行域如图,则z =2-2x +y 的最大值就是u =-2x +y 的最大值时取得.联立⎩⎨⎧x -y =0,y =1,解得A (1,1),化目标函数u =-2x +y 为y =2x +u ,由图可知,当直线y =2x +u 过点A 时,直线在y 轴上的截距最大,此时z 有最大值2-2+1=12.故选C. 6.(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④ 答案 A解析 法一 画出可行域如图中阴影部分所示.目标函数z =2x +y 是一组平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.法二 取x =4,y =5,满足不等式组⎩⎨⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.7.(2019·北京卷)若x ,y 满足|x |≤1-y ,且y ≥-1,则3x +y 的最大值为( ) A .-7 B .1 C .5 D .7 答案 C解析由|x |≤1-y ,且y ≥-1,得⎩⎨⎧x -y +1≥0,x +y -1≤0,y ≥-1.作出可行域如图阴影部分所示.设z =3x +y ,则y =-3x +z . 作直线l 0:y =-3x ,并进行平移.显然当l 0过点A (2,-1)时,z 取最大值,z max =3×2-1=5.故选C.8.(2021·全国大联考)设不等式组⎩⎨⎧x -y ≤0,2x -y +2≥0,x ≥1表示的平面区域为M ,则( )A .M 的面积为92B .M 内的点到x 轴的距离有最大值C .点A (x ,y )在M 内时,y x +2<2D .若点P (x 0,y 0)∈M ,则x 0+y 0≠2 答案 C解析 作出可行域,如图中阴影部分所示,由图可知,可行域为开放区域,所以选项A 、B 错误;由图可知点(1,1)在可行域内,而此时x +y =1+1=2,故选项D 错误;yx +2表示区域M 内的点(x ,y )与N (-2,0)连线的斜率,由图知⎝⎛⎭⎪⎫y x +2min =k NB =13,∴yx +2∈⎣⎢⎡⎭⎪⎫13,2,故选项C 正确,故选C. 二、填空题9.(2022·山西名校联考)设x ,y 满足约束条件⎩⎨⎧3x -2y -6≤0,x +y -2≥0,x -4y +8≥0,则z =x -2y 的最小值是________. 答案 -4解析 由约束条件画出可行域如图中阴影部分所示,将z =x -2y 化为y =12x -z2,可知z的最小值即为y =12x -z 2在y 轴上截距最大时z 的取值,由图可知,当y =12x -z2过点A 时,在y 轴上的截距最大,由⎩⎨⎧x +y -2=0,x -4y +8=0得A (0,2),∴z min =0-2×2=- 4.10.(2021·平顶山一模)已知O 为坐标原点,A (-1,-2),P 为平面区域M :⎩⎨⎧x +2y -2≤0,2x +y -2≤0,x ≥0,y ≥0内任意一点,则OA →·OP →的最小值为________.答案 -2解析 由题意可得,平面区域M (如图)是由点O (0,0),D (0,1),B (1,0),C ⎝ ⎛⎭⎪⎫23,23围成的四边形区域(包括边界),由数量积的坐标运算得OA →·OP →=-x -2y ,设z =-x -2y ,当直线z =-x -2y 平移到与DC 重合时,目标函数z =-x -2y 有最小值(此时点P 为线段DC 上任意一点),且最小值为-2.故OA →·OP →的最小值为-2.11.(2022·昆明诊断)已知x ,y 满足⎩⎨⎧x +3y ≤15,2x +y ≤12,x ∈N ,y ∈N ,则z =3x +2y 的最大值为________. 答案 19解析 根据条件画出可行域如图中阴影部分所表示的整点,由图可知z =3x +2y 在点M 处取得最大值,由⎩⎨⎧2x +y =12,x +3y =15得M ⎝ ⎛⎭⎪⎫215,185,但M 点的坐标不是整数,经过平移可知经过点(5,2)满足要求,且代入得z =19,故最大值为19.12.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________. 答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2), ∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2), ∴⎩⎨⎧x =1+2λ+μ,y =-1+λ+2μ⎩⎨⎧ 3μ=2y -x +3,3λ=2x -y -3,又1≤λ≤2,0≤μ≤1, ∴⎩⎨⎧0≤x -2y ≤3,6≤2x -y ≤9表示的可行域是平行四边形及内部.如图,点B (3,0)到直线x -2y =0的距离d =355.又|BN |= 5.∴区域D 的面积S =355×5=3. B 级 能力提升13.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C .32 D .2 答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎨⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示. 由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元 答案 B解析 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎨⎧x ,y ∈N ,2x +3y ≤480,z =2x +y ,6x +y ≤960,作出不等式组表示的可行域如图中阴影部分所示的整点,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N)时,z 取得最大值,为360.故该企业每月利润的最大值为360千元.15.(2021·西安模拟)已知实数x ,y 满足(x +y -2)(x -2y +3)≥0,则x 2+y 2的最小值为________. 答案95解析 由(x +y -2)(x -2y +3)≥0,得 ⎩⎨⎧x +y -2≥0,x -2y +3≥0或⎩⎨⎧x +y -2≤0,x -2y +3≤0,不等式组表示的平面区域如图阴影部分(含边界)所示.x 2+y 2=(x -0)2+(y -0)2,表示平面区域内取一点到原点的距离的平方, 因为原点到x +y -2=0的距离为d =|0+0-2|2=2,原点到x -2y +3=0的距离为d =|0-2×0+3|5=35=355<2,所以,x 2+y 2的最小值为⎝ ⎛⎭⎪⎫3552=95. 16.(2021·九江联考)若x ,y 满足约束条件⎩⎨⎧4x -3y -6≤0,2x -2y +1≥0,x +2y -1≥0,则z =|x -y +1|的最大值为________. 答案2811解析 根据约束条件画出可行域如图中阴影部分,z =|x -y +1|=2|x -y +1|2表示可行域内的点到直线x -y +1=0的距离的2倍.由图可知点A 到直线x -y +1=0的距离最大.由⎩⎨⎧x +2y -1=0,4x -3y -6=0,解得A ⎝ ⎛⎭⎪⎫1511,-211,所以z max =2811.。

[精品]2019届高考数学二轮复习大题专攻练解析几何B组理新人教A版72

[精品]2019届高考数学二轮复习大题专攻练解析几何B组理新人教A版72

高考大题专攻练10.解析几何(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.已知椭圆E:+=1(a>b>0)的离心率为,其右焦点为F(1,0).(1)求椭圆E的方程.(2)若P,Q,M,N四点都在椭圆E上,已知与共线,与共线,且·=0,求四边形PMQN 的面积的最小值和最大值.【解析】(1)由椭圆的离心率公式可知:e==,由c=1,则a=,b2=a2-c2=1,故椭圆方程为+y2=1.(2)由条件知MN和PQ是椭圆的两条弦,相交于焦点F(1,0),且PQ⊥MN,设直线PQ的斜率为k(k≠0),P(x1,y1),Q(x2,y2),则PQ的方程为y=k(x-1),联立整理得:(1+2k2)x2-4k2x+2k2-2=0,x1+x2=,x1x2=,则|PQ|=·,于是|PQ|=,同理:|MN|==.则S=|PQ||MN|=,令t=k2+,t≥2,S=|PQ||MN|==2,当k=±1时,t=2,S=,且S是以t为自变量的增函数,当k=±1时,四边形PMQN的面积取最小值.当直线PQ的斜率为0或不存在时,四边形PMQN的面积为2.综上:四边形PMQN的面积的最小值和最大值分别为和2.2.如图,在平面直角坐标系xOy中,椭圆Ω:+=1(a>b>0)的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(1)求椭圆Ω的方程.(2)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2.①求证:k1·k2为定值;②求△CEF的面积的最小值.【解题导引】(1)由题知b=1,由=,b=1联立求解即可得出.(2)①方法一:直线AC的方程为y=k1x+1,与椭圆方程联立可得坐标,即可得出.方法二:设B(x0,y0)(y0>0),则+=1,因为点B,C关于原点对称,则C(-x0,-y0),利用斜率计算公式即可得出.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得E,F,可得△CEF的面积S△CEF=|EF|(2-y c).【解析】(1)由题意知b=1,由=,所以a2=2,b2=1.故椭圆的方程为+y2=1.(2)①方法一:直线AC的方程为y=k1x+1,由得(1+2)x2+4k1x=0,解得x C=-,同理x B=-,因为B,O,C三点共线,则由x C+x B=--=0,整理得(k1+k2)(2k1k2+1)=0,所以k1k2=-.方法二:设B(x0,y0)(y0>0),则+=1,因为点B,C关于原点对称,则C(-x0,-y0),所以k1k2=·===-.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得E,F,而y C=k1x C+1=-+1=,所以,△CEF的面积S△CEF=|EF|(2-y c)==··.由k1k2=-,得k2=-,则S△CEF=·=3k1+≥,当且仅当k1=时取得等号,所以△CEF的面积的最小值为.【加固训练】(2017·广元一模)已知点P是椭圆C上任一点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且=.直线l与椭圆C交于不同两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(1)求椭圆C的方程.(2)当A为椭圆与y轴正半轴的交点时,求直线l方程.(3)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.【解题导引】(1)设P(x,y),得==,由此能求出椭圆C的方程.(2)由已知条件得k BF=-1,BF:y=-(x+1)=-x-1,代入+y2=1,得:3x2+4x=0,由此能求出直线l方程.(3)B关于x轴的对称点B1在直线AF上.设直线AF的方程为y=k(x+1),代入+y2=1,得:x2+2k2x+k2-1=0,由此能证明直线l总经过定点M(-1,0).【解析】(1)设P(x,y),则d1=|x+2|,d2=,==,化简得+y2=1,所以椭圆C的方程为+y2=1.(2)因为A(0,1),F(-1,0),所以k AF==1,∠OFA+∠OFB=180°,所以k BF=-1,直线BF的方程为y=-(x+1)=-x-1,代入+y2=1,得:3x2+4x=0,所以x=0或x=-,代入y=-x-1得,(舍)或所以B.k AB==,所以AB的方程为y=x+1.(3)由于∠OFA+∠OFB=180°,所以B关于x轴的对称点B1在直线AF上. 设A(x1,y1),B(x2,y2),B1(x2,-y2).设直线AF的方程为y=k(x+1),代入+y2=1,得:x2+2k2x+k2-1=0,x1+x2=-,x1x2=,k AB=,所以AB的方程为y-y1=(x-x1),令y=0,得:x=x1-y1=,y1=k(x1+1),y2=k(x2+1),x=====-1.所以直线l总经过定点M(-1,0).。

江苏专用2019高考数学二轮复习解答题专项练4解析几何理【含答案】

江苏专用2019高考数学二轮复习解答题专项练4解析几何理【含答案】

4.解析几何1.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点P (2,-1).(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A (x 1,y 1),B (x 2,y 2)两点,若直线PQ 平分∠APB ,求证:直线AB 的斜率是定值,并求出这个定值.解 (1)由e =ca =32,得a ∶b ∶c =2∶1∶3, 椭圆C 的方程为x 24b 2+y 2b2=1.把P (2,-1)代入,得b 2=2, 所以椭圆C 的方程是x 28+y 22=1.(2)由已知得PA ,PB 的斜率存在,且互为相反数. 设直线PA 的方程为y +1=k (x -2),其中k ≠0.由⎩⎪⎨⎪⎧y +1=k (x -2),x 2+4y 2=8消去y ,得x 2+4[kx -(2k +1)]2=8,即(1+4k 2)x 2-8k (2k +1)x +4(2k +1)2-8=0, 因为该方程的两根为2,x A , 所以2x A =4(2k +1)2-81+4k , 即x A =8k 2+8k -21+4k 2, 从而y A =4k 2-4k -14k 2+1. 把k 换成-k ,得x B =8k 2-8k -21+4k 2,y B =4k 2+4k -14k 2+1. 故k AB =y B -y A x B -x A =8k -16k =-12,是定值. 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为23,且离心率e =22.(1)求椭圆C 的方程;(2)是否存在定圆E ,使得过圆E 上的任意一点都可以作两条互相垂直的直线l 1,l 2,且l 1,l 2与椭圆C 都只有一个公共点?若存在,求出圆E 的方程;若不存在,请说明理由.解 (1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22得,a =2c ,又短轴长为23,所以2b =23,b = 3. 又b 2+c 2=a 2,得a =6,b =c =3, 所以椭圆C 的方程为x 26+y 23=1. (2)假设满足条件的圆E 存在,则可设P (x 0,x 0)是圆E 上的任意一点,当过P 的直线l 的斜率为k 时,其方程为y =k (x -x 0)+y 0,代入x 26+y 23=1,得x 26+(kx -kx 0+y 0)23=1.即(1+2k 2)x 2+4k (y 0-kx 0)x +2(y 0-kx 0)2-6=0.①若直线l 与椭圆C 的公共点只有一个,则①中判别式Δ=0, 即16k 2(y 0-kx 0)2-8(1+2k 2)[(y 0-kx 0)2-3]=0. 整理得关于k 的方程(6-x 20)k 2+2x 0y 0k -y 20+3=0,②要使过圆E 上任意一点都可以作两条互相垂直的直线l 1,l 2,且l 1,l 2与椭圆C 都只有一个公共点,则方程②必须有两根,且两根之积为-1,故-y 20+36-x 20=-1,即x 20+y 20=9,满足②中的判别式Δ>0.又对于点(6,3),(-6,3),(6,-3),(-6,-3),直线l 1,l 2中有一条的斜率不存在,另一条的斜率为0,显然成立,故满足条件的圆E 存在,方程为x 2+y 2=9. 3.已知中心在坐标原点的椭圆E 的一个焦点为F 2(1,0),且该椭圆过定点M ⎝ ⎛⎭⎪⎫1,22. (1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且F 2A →=λF 2B →,若λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 的长度的最小值.解 (1)设椭圆E 的标准方程为x 2a 2+y 2b2=1(a >b >0),易知c =1.因为椭圆E 过定点M ⎝ ⎛⎭⎪⎫1,22,所以1a 2+12b 2=1, 结合c 2=a 2-b 2可得a =2,b =1, 所以椭圆E 的标准方程为x 22+y 2=1.(2)由题意可设l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 2+2y 2-2=0得(k 2+2)y 2+2ky -1=0,则Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),因为y 1,2=-2k ±8(k 2+1)2(k +2)=-k ±2(k 2+1)k +2, 所以⎩⎪⎨⎪⎧y 1+y 2=-2kk 2+2, ①y 1y 2=-1k 2+2,②y 1=λy 2(-2≤λ≤-1), ③由①2÷②得y 1y 2+y 2y 1+2=-4k 2k 2+2⇒λ+1λ+2=-4k2k 2+2,由λ∈[-2,-1]得-12≤λ+1λ+2≤0⇒-12≤-4k 2k 2+2≤0,解得0≤k 2≤27.QA →=(x 1-2,y 1),QB →=(x 2-2,y 2),QA →+QB →=(x 1+x 2-4,y 1+y 2),x 1+x 2-4=k (y 1+y 2)-2=-4(k 2+1)k 2+2,QC 2=|QA →+QB →|2=(x 1+x 2-4)2+(y 1+y 2)2=16(k 2+1)2(k 2+2)2+4k 2(k 2+2)2=16-28k 2+2+8(k 2+2)2. 令t =1k 2+2,则t ∈⎣⎢⎡⎦⎥⎤716,12,QC 2=8t 2-28t +16=8⎝ ⎛⎭⎪⎫t -742-172. 所以当t =12时,(QC )min =2.4.已知A ,F 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点、右焦点,点P 为椭圆C 上一动点,当PF ⊥x 轴时,AF=2PF .(1)求椭圆C 的离心率;(2)若椭圆C 上存在点Q ,使得四边形AOPQ 是平行四边形(点P 在第一象限),求直线AP 与OQ 的斜率之积; (3)记圆O :x 2+y 2=aba 2+b 2为椭圆C 的“关联圆”. 若b =3,过点P 作椭圆C 的“关联圆”的两条切线,切点为M ,N ,直线MN 在x 轴和y 轴上的截距分别为m ,n ,求证:3m 2+4n2为定值.(1)解 由PF ⊥x 轴,知x P =c ,代入椭圆C 的方程,得c 2a 2+y 2Pb 2=1,解得y P =±b 2a. 又AF =2PF ,所以a +c =2b 2a,所以a 2+ac =2b 2,即a 2-2c 2-ac =0,所以2e 2+e -1=0, 由0<e <1,解得e =12.(2)解 因为四边形AOPQ 是平行四边形, 所以PQ =a 且PQ ∥x 轴,所以x P =a 2,代入椭圆C 的方程,解得y P =±32b ,因为点P 在第一象限,所以y P =32b , 同理可得x Q =-a 2,y Q =32b ,所以k AP k OQ =3b 2a2-(-a )·3b 2-a 2=-b 2a2, 由(1)知e =c a =12,得b 2a 2=34,所以k AP k OQ =-34.(3)证明 由(1)知e =c a =12,又b =3,解得a =2,所以椭圆C 的方程为x 24+y 23=1,圆O 的方程为x 2+y 2=237.①连结OM ,ON (图略),由题意可知,OM ⊥PM ,ON ⊥PN , 所以四边形OMPN 的外接圆是以OP 为直径的圆,设P (x 0,y 0),则四边形OMPN 的外接圆方程为⎝ ⎛⎭⎪⎫x -x 022+⎝ ⎛⎭⎪⎫y -y 022=14(x 20+y 20),即x 2-xx 0+y 2-yy 0=0.②①-②,得直线MN 的方程为xx 0+yy 0=237,令y =0,则m =237x 0,令x =0,则n =237y 0.所以3m 2+4n 2=49⎝ ⎛⎭⎪⎫x 204+y 203,因为点P 在椭圆C 上,所以x 204+y 203=1,所以3m 2+4n 2=49(为定值).5.如图,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为椭圆C 1上任一点,MN 是圆C 2:x 2+(y -3)2=1的一条直径,在y 轴上截距为3-2的直线l 与AF 平行且与圆C 2相切. (1)求椭圆C 1的离心率;(2)若椭圆C 1的短轴长为8,求PM →·PN →的最大值.解 (1)由题意得F (c,0),A (0,b ),则k AF =-b c. 因为在y 轴上截距为3-2的直线l 与AF 平行,所以直线l :y =-b cx +3-2,即bx +cy +(2-3)c =0. 因为圆C 2的圆心C 2(0,3),半径r =1,且直线l 与圆C 2相切,所以|2c |b 2+c2=1,即2ca=1,所以e =22. (2)因为椭圆C 1的短轴长为8,所以2b =8,即b =4. 因为a 2=b 2+c 2,e =22,所以a =2c,2c 2=b 2+c 2. 所以c =b =4,a =42,所以椭圆方程为x 232+y 216=1.设P (x ,y ),则 PM →·PN →=(PC 2→+C 2M →)·(PC 2→+C 2N →)=PC 2→2+PC 2→·(C 2M →+C 2N →)+C 2M →·C 2N → =PC 2→2+C 2M →·C 2N →=x 2+(y -3)2-1=32⎝ ⎛⎭⎪⎫1-y 216+(y -3)2-1=-y 2-6y +40=-(y +3)2+49,又y ∈[-4,4],所以当y =-3时,PM →·PN →的最大值为49.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 在椭圆上(异于椭圆C 的左、右顶点),过右焦点F 2作∠F 1PF 2的外角平分线L 的垂线F 2Q ,交L 于点Q ,且OQ =2(O 为坐标原点),椭圆的四个顶点围成的平行四边形的面积为4 3. (1)求椭圆C 的方程;(2)若直线l :x =my +4(m ∈R )与椭圆C 交于A ,B 两点,点A 关于x 轴的对称点为A ′,直线A ′B 交x 轴于点D ,求当△ADB 的面积最大时,直线l 的方程.解 (1)由椭圆的四个顶点围成的平行四边形的面积为4×12ab =43,得ab =2 3.延长F 2Q 交直线F 1P 于点R ,因为F 2Q 为∠F 1PF 2的外角平分线的垂线,所以PF 2=PR ,Q 为F 2R 的中点, 所以OQ =F 1R 2=F 1P +PR 2=F 1P +PF 22=a ,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)联立⎩⎪⎨⎪⎧x =my +4,x 24+y23=1,消去x ,得(3m 2+4)y 2+24my +36=0,①所以Δ=(24m )2-4×36×(3m 2+4)=144(m 2-4)>0,即m 2>4. 设A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1), 解①得y 1,2=-12m ±6m 2-43m 2+4, 则y 1+y 2=-24m 3m 2+4,y 1y 2=363m 2+4, 直线A ′B 的斜率k =y 2-(-y 1)x 2-x 1=y 2+y 1x 2-x 1,所以直线A ′B 的方程为y +y 1=y 1+y 2x 2-x 1(x -x 1), 令y =0,得x D =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+y 1(my 2+4)y 1+y 2=2my 1y 2y 1+y 2+4,故x D =1,所以点D 到直线l 的距离d =31+m2,所以S △ADB =12AB ·d =12d ·(x 1-x 2)2+(y 1-y 2)2=32|y 1-y 2| =18·m 2-43m 2+4.令t =m 2-4(t >0),则S △ADB =18·t3t 2+16=183t +16t≤1823×16=334, 当且仅当3t =16t ,即t 2=163=m 2-4,即m 2=283>4,m =±2213时,△ADB 的面积最大,所以直线l 的方程为3x +221y -12=0或3x -221y -12=0.。

第12讲 解析几何填空压轴题(原卷版)

第12讲  解析几何填空压轴题(原卷版)

第12讲 解析几何填空压轴题1.(山东临沂模拟)如图,抛物线2:4C xy =的焦点为,F P 为抛物线C 在第一象限内的一点,抛物线C在点P 处的切线PM 与圆F 相切(切点为M )且交y 轴于点Q ,过点P 作圆F 的另一条切线PN (切点为N )交y 轴于T 点.若已知FQ FP =,则FT 的最小值为_____________.2.(湖北武汉高三月考)已知过抛物线22yx =-的焦点F 的直线与抛物线交于,A B 两点,则AF BFAB⋅=____________. 3.(内蒙古赤峰高三月考(文))过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作C 的一条渐近线的垂线,垂足为A 交另一条渐近线于点B ,若FB AF λ=,34λ≤≤,求C 的离心率的取值范围为___________4.(山东烟台高三一模)已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.5.(2021中学生标准学术能力3月测试)已知双曲线22221(0,0)x y a b a b-=>>的焦点为12,F F ,P 是双曲线上一点,且123F PF π∠=.若12F PF ∆的外接圆和内切圆的半径分别为,R r ,且4R r =,则双曲线的离心率为__________.6.(山东日照高三一模)已知1F ,2F 分别为双曲线C :221412x y-=的左、右焦点,E 为双曲线C 的右顶点,过2F 的直线与双曲线C 的右支交于A ,B ,两点(其中点A 在第一象限),设M ,N 分别为12AF F △,12BF F △的内心,则ME NE -的取值范围是______.7.(辽宁沈阳高三一模)已知抛物线24x y =,点()(),2,1,1M t t -∈-,过M 作抛物线的两条切线,MA MB ,其中,A B 为切点,直线AB 与y 轴交于点,P 则PA PB的取值范围是_________.8.(湖南长沙雅礼中学高三月考)设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 直线的l 分别与双曲线左、右两支交于M ,N 两点,且22F M F N ⊥,22F M F N=,则双曲线C 的离心率为___________.9.(湖北B4新高考的研)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为 F ,离心率为e .若动点B 在双曲线C 的右支上且不与右顶点重合,满足BFAe BAF∠∠=恒成立,则双曲线C 的渐近线的方程为_________.10.(江苏徐州徐州一中高三期末)已知12,F F 分别为双曲线2222:1(0,0)y xE a b a b-=>>的两个焦点,E上的点P 到原点的距离为b ,且2112sin 3sin PF F PF F ,则双曲线E 的渐近线方程为__________.11.(沙坪坝区·重庆一中高三月考)抛物线2:8C x y =的焦点为F ,过F 且斜率为2的直线l 与抛物线C 交于A ,B 两点,点D 为抛物线C 上的动点,且点D 在l 的右下方,则DAB 面积的最大值为______ 12.(江苏三校联考)平面直角坐标系xOy 中,已知圆()22:11C x y -+=,点P 为直线2y x =+上的动点,以PC 为直径的圆交圆C 于A 、B 两点,点Q 在PC 上且满足AQ PB ⊥,则点Q 的轨迹方程是________.13.(浙江宁波模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,且以A 为圆心,双曲线虚轴长为直径的圆与双曲线的一条渐近线相交于,B C 两点,若2,33BAC ππ⎡⎤∠∈⎢⎥⎣⎦,则双曲线C 的离心率的取值范围是__________.14.(广西南宁南宁三中(理))已知()3,0A ,若点P 是抛物线28y x =上的任意一点,点Q 是圆()2221x y -+=上任意一点,则2PAPQ最小值是_____15.(三省三校诊断性测试(理))已知双曲线22221x y a b-=的左,右焦点分别为1F ,2F ,过右焦点2F 的直线l 交该双曲线的右支于M ,N 两点(M 点位于第一象限),12MF F △的内切圆半径为1R ,12NF F △的内切圆半径为2R ,且满足124R R =,则直线l 的斜率为___________. 16.(内蒙古赤峰高三月考(理))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、,M 是双曲线一条渐近线上位于第二象限的一点,10MF OM =(O为坐标原点),若线段1MF 交双曲线于点P ,且213PF PF a +=,则双曲线的离心率为___________.17.(陕西下学期质检)已知1F ,2F 分别是双曲线C :22221x ya b-=(0a >,0b >)的左、右焦点,过1F 的直线l 与双曲线的右支交于第一象限内的一点P ,若,33b a G ⎛⎫⎪⎝⎭为12F PF △的重心,则该双曲线的离心率为______.18.(华大新高考联盟3月质检(文))已知点M 在抛物线C :24y x =上运动,圆C '过点()5,0,(,()3,2-,过点M 引直线1l ,2l 与圆C '相切,切点分别为P ,Q ,则PQ 的取值范围为__________.19.(江苏徐州高三二模)已知椭圆22122:1(0)x y C a b a b+=>>的右顶点为P ,右焦点F 与抛物线2C 的焦点重合,2C 的顶点与1C 的中心O 重合.若1C 与2C 相交于点A ,B ,且四边形OAPB 为菱形,则1C 的离心率为___________.20.(山西高三一模(文))已知抛物线22(0)y px p =>的焦点为F ,点,02p M ⎛⎫-⎪⎝⎭,过点F 的直线与此抛物线交于,A B 两点,若||24AB =,且tan AMB ∠=p =___________.21.(河南高三一模(理))已知直线l :0x -=交双曲线Γ:()222210,0x y a b a b-=>>于A ,B 两点,过A 作直线l 的垂线AC 交双曲线Γ于点C .若60ABC ∠=︒,则双曲线Γ的离心率为______. 22.(内蒙古呼和浩特高三一模(文))古希腊的几何学家用平面去截一个圆锥面,将所截得的不同的截线称为圆锥曲线.某同学用过母线PB 的中点且与底面圆的直径AB 垂直的平面截圆锥,得到了如图所示的一支双曲线.已知圆锥的高2PO =,底面圆的半径为4,则此双曲线的两条渐近线的夹角的正弦值为___________.23.(江西九校联考(理))已知离心率为2的双曲线1C :()222210,0x ya b a b-=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,M 是1C 与2C 的公共点,若5MF =,则1C 的标准方程为______.24.(中学生标准学术能力3月测试(文))已知双曲线2222:1(0,0)x y C a b a b-=>>,1F ,2F 分别是双曲线C 的左、右焦点,P 为右支上一点()0P y ≠,在线段1PF 上取“12PF F △的周长中点”M ,满足2112||MP PF MF F F +=+,同理可在线段2PF 上也取“12PF F △的周长中点”N .若PMN 的面积最大值为1,则b =__________.25.(广东广州高三一模)已知圆22(1)4x y -+=与双曲线2222:1x y C a b-=的两条渐近线相交于四个点,按顺时针排列依次记为,,,M N P Q ,且||2||MN PQ =,则C 的离心率为_______.26.(安徽江南十校联考(文))如图,,A F 分别为双曲线()2221016x y a a -=>的右顶点和右焦点,过F 作x 轴的垂线交双曲线于H ,且H 在第一象限,,,A F H 到同一条渐近线的距离分别为123,,d d d ,且1d 是2d 和3d 的等差中项,则C 的离心率为___________·27.(吉林吉林高三三模(理))己知圆()22:116,C x y P ++=是圆C 上任意点,若1,0A ,线段AP 的垂直平分线与直线CP 相交于点Q ,则点Q 的轨迹方程是_______﹔若A 是圆C 所在平面内的一定点,线段AP 的垂直平分线与直线CP 相交于点Q ,则点Q 的轨迹是:①一个点②圆③椭圆④双曲线⑤抛物线,其中可能的结果有__________.28.(浙江省宁海中学高三月考)如图,已知1F ,2F 为椭圆C :2221xy a+=(1a >)的两焦点,O 为坐标原点,1H ,2H 分别1F ,2F 在C 的切线l 上的射影,则点1H 的轨迹方程是___________;若有且仅有2条l 使得12OH H 的面积最大,则C 离心率的最大值是___________.29.(安徽黄山高三一模(理))在平面上给定相异两点A ,B ,设点P 在同一平面上且满足||||PA PB λ=,当0λ>且1λ≠时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线22221(0,0)x y a b a b-=>>,12,F F 分别为双曲线的左、右焦点,A ,B 为双曲线虛轴的上、下端点,动点P 满足||2||PB PA =,PAB △面积的最大值为4.点M ,N 在双曲线上,且关于原点O 对称,Q 是双曲线上一点,直线QM 和QN 的斜率满足3QM QN k k ⋅=,则双曲线方程是______________;过2F 的直线与双曲线右支交于C ,D 两点(其中C 点在第一象限),设点M 、N 分别为12CF F △、12DF F △的内心,则MN 的范围是____________.30.(浙江温州高三二模)已知1F 、2F 分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,过1F 的直线与椭圆交于P 、Q 两点,若121::2:3:1PF PF QF =,则12cos F PF ∠=________,椭圆的离心率为_________.31.(江苏盐城高三一模)罗默、伯努利家族、莱布尼兹等大数学家都先后研究过星形线22331:x C y +=的性质,其形美观,常用于超轻材料的设计.曲线C 围成的图形的面积S _____2(选填“>”、“<”或“=”),曲线C 上的动点到原点的距离的取值范围是________.31.(江苏连云港高三开学考试)焦点为F 的抛物线22(0)y px p =>上一点M ,||4MF =,若以MF 为直径的圆过点(0,2)A ,则圆心坐标为________,抛物线的方程为________.32.(江苏南通高三期末)在平面直角坐标系xOy 中,设抛物线()220y px p =>与双曲线()222210,0x y a b a b -=>>及其渐近线在第一象限的交点分别为P ,A ,抛物线的焦点F 恰与双曲线的右顶点重合,AF x ⊥轴,则b a =________;若PF =p =________. 33.(江苏启东模拟)已知椭圆221ax by +=与直线1x y +=交于点A ,B ,点M 为AB 的中点,直线MO (O 为原点)的斜率为2,则b a =____________;又OA OB ⊥,则2a b +=____________.34.(山东青岛高三期末)如图所示,在平面直角坐标系中,0,5Q ⎛-⎝⎭,()3,0L -,圆Q 过坐标原点O ,圆L 与圆Q 外切.则(1)圆L 的半径等于__________;(2)已知过点L 和抛物线()220x py p =>焦点的直线与抛物线交于A ,B ,且3OA OB ⋅=-,则p =______.35.(浙江温州高三期末)已知点1F 、2F 分别为双曲线2221(0)xy a a-=>的左、右焦点,点P 是双曲线与以12F F 为直径的圆在第一象限内的交点,直线1F P 与直线0x ay +=交于点H ,且点H 是线段1F P 的中点,则1F H =______,双曲线的离心率为______.。

江苏专版2019版高考数学一轮复习第九章解析几何课时达标检测四十二椭圆

江苏专版2019版高考数学一轮复习第九章解析几何课时达标检测四十二椭圆

课时达标检测(四十二)椭圆[练基础小题——强化运算能力]1.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m =________. 解析:将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m,b =1.所以 1m =2,即m =14. 答案:142.已知椭圆C 的中心为原点,焦点F 1,F 2在y 轴上,离心率为32,过点F 2的直线交椭圆C 于M ,N 两点,且△MNF 1的周长为8,则椭圆C 的焦距为________.解析:由题意得|MF 1|+|NF 1|+|MN |=|MF 1|+|NF 1|+|MF 2|+|NF 2|=(|MF 1|+|MF 2|)+(|NF 1|+|NF 2|)=2a +2a =8,解得a =2,又e =ca =32,故c =3,即椭圆C 的焦距为2 3. 答案:2 33.如图,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,∠F 1PF 2=120°,则a 的值为________.解析:由题可知b 2=2,则c =a 2-2,故|F 1F 2|=2a 2-2,又|PF 1|=4,|PF 1|+|PF 2|=2a ,则|PF 2|=2a -4,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3.答案:34.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的方程为________.解析:由题意可知e =ca =32,2b =4,得b =2, ∴⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,∴椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=1[练常考题点——检验高考能力]一、填空题1.(2018·海门中学模拟)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.解析:设F 关于y =12x 的对称点为P (x 0,y 0),又F (1,0),所以⎩⎪⎨⎪⎧y 0-0x 0-1=-2,y 02=12·x 0+12,解得⎩⎪⎨⎪⎧x 0=35,y 0=45,又P 在椭圆上,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),所以⎩⎪⎨⎪⎧925a 2+1625b 2=1,c 2=a 2-b 2=1,解得⎩⎪⎨⎪⎧a 2=95,b 2=45,则椭圆方程为x 295+y 245=1.答案:59x 2+54y 2=12.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为________.解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12.答案:123.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y 2b2=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是________.解析:圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c,0),上顶点(c ,c )在椭圆内部,∴只需⎩⎪⎨⎪⎧2c ≤a ,c 2a 2+c2b2≤1,又b 2=a 2-c 2,∴0<c a ≤12.即椭圆离心率的取值范围是⎝ ⎛⎦⎥⎤0,12答案:⎝ ⎛⎦⎥⎤0,124.已知椭圆x 2a 2+y 2b2=1(a >b >0)上的动点到焦点的距离的最小值为2-1.以原点为圆心、椭圆的短半轴长为半径的圆与直线x -y +2=0相切,则椭圆C 的方程为________.解析:由题意知a -c =2-1,又b =21+1=1,由⎩⎨⎧b =1,a 2-c 2=b 2,a -c =2-1得a 2=2,b2=1,故c 2=1,椭圆C 的方程为x 22+y 2=1.答案:x 22+y 2=15.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是________.解析:根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,所以e =c a =1-b 2a2= 1-b 24.因为1≤b <2,所以0<e ≤32.答案:⎝⎛⎦⎥⎤0,32 6.(2018·泰兴中学月考)已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1―→·EF 2―→的最大值、最小值分别为________.解析:由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1―→=(-1-x ,-y ),EF 2―→=(1-x ,-y ),EF 1―→·EF 2―→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1―→·EF 2―→有最小值7,当x =±3时,EF 1―→·EF 2―→有最大值8.答案:8,77.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.解析:由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点⎝ ⎛⎭⎪⎫1,32必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y23=1.答案:x 24+y 23=18.点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为______.解析:由题意知,|PF 1|+|PF 2|=10,|F 1F 2|=6,S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)×1=12|F 1F 2|·y P =3y P =8,所以y P =83. 答案:839.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e=3.答案:310.(2018·南通模拟)如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,1二、解答题11.如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a>b >0)的左、右焦点,顶点B 的坐标为(0,b ),连结BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a =2,即a 2=2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, 所以1692+19b 2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +y b=1.解方程组⎩⎪⎨⎪⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1.结合b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55(负值舍去). 12.(2018·南京学情调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b>0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1―→=λF 1Q ―→.(1)若点P 的坐标为⎝ ⎛⎭⎪⎫1,32,且△PQF 2的周长为8,求椭圆C 的方程; (2)若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎢⎡⎦⎥⎤12,22,求实数λ的取值范围.解:(1) 因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点, 所以PF 1+PF 2=QF 1+QF 2=2a , 从而△PQF 2的周长为4a , 由题意得4a =8,解得a =2.因为点P 的坐标为⎝ ⎛⎭⎪⎫1,32, 所以1a 2+94b 2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)因为PF 2⊥x 轴,且P 在x 轴上方,所以可设P (c ,y 0),y 0>0,Q (x 1,y 1).因为点P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝ ⎛⎭⎪⎫c ,b 2a .因为F 1(-c,0),所以PF 1―→=⎝ ⎛⎭⎪⎫-2c ,-b 2a ,F 1Q ―→=(x 1+c ,y 1).由PF 1―→=λF 1Q ―→,得⎩⎪⎨⎪⎧-2c =λ(x 1+c ),-b 2a =λy 1,解得⎩⎪⎨⎪⎧x 1=-λ+2λc ,y 1=-b2λa,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝ ⎛⎭⎪⎫λ+2λ2e 2+b 2λ2a 2=1,即(λ+2)2e 2+(1-e 2)=λ2,即(λ2+4λ+3)e 2=λ2-1. 因为λ+1≠0,所以(λ+3)e 2=λ-1, 从而λ=3e 2+11-e 2=41-e2-3.因为e ∈⎣⎢⎡⎦⎥⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为⎣⎢⎡⎦⎥⎤73,5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲椭圆
1.已知正方形ABCD的四个顶点在椭圆+=1(a>b>0)上,AB∥x轴,AD过左焦点F,则该椭圆的离心率为.
2.已知椭圆C:+=1(a>b>0)的右焦点为F,直线y=-x与椭圆C交于A,B两点,且AF⊥BF,则椭圆C的离心率为.
3.已知点P是椭圆+=1上的动点,F1为椭圆的左焦点,定点M(6,4),则|PM|+|PF1|的最大值为.
4.已知椭圆+=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点.若直线AB2与直线B1F 的交点恰在椭圆的右准线上,则椭圆的离心率为.
5.椭圆C:+=1的一条准线与x轴的交点为P,点A为其短轴的一个端点.若PA的中点在椭圆C上,则椭圆的离心率为.
6.(2018盐城中学高三上学期期末)已知椭圆C1:+=1与圆C2:x2+y2=b2,若椭圆C1上存在点P,由点P向圆C2所作的两条切线PA,PB且∠APB=60°,则椭圆C1的离心率的取值范围是.
7.(2018盐城射阳二中教学质量调研(三))如图,在平面直角坐标系xOy中,F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长,交椭圆于点P,直线PF2,PF1的斜率之积为1,则椭圆的离心率e为.
8.(2018扬州中学高三下学期开学考)在平面直角坐标系xOy中,已知点A在椭圆+=1上,点P满足
=(λ-1)(λ∈R),且·=48,则线段OP在x轴上的投影长度的最大值为.
9.(2018淮海中学高三数学3月模拟)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.
(1)求椭圆的标准方程;
(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM面积的2倍,求直线AB的方程.
10.在平面直角坐标系xOy中,设椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是椭圆的左、右焦点,过F2作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,且△AF1F2的周长是4+2.
(1)求椭圆C的方程;
(2)当|AB|=|DE|时,求△ODE的面积.
答案精解精析
1.答案
解析不妨设点A在第二象限.由题意,可得A在直线y=-x上,所以=c,即b2=a2-c2=ac,e2+e-1=0,(0<e<1),解得e=.
2.答案-1
解析设左焦点为F',则四边形F'AFB是平行四边形.又AF⊥BF,所以四边形F'AFB是矩形,所以
|OA|=|OF|=c.又∠AOF=120°,所以|AF|=c,|AF'|=c.由椭圆的定义可得|AF|+|AF'|=c+c=2a.故离心率
e===-1.
3.答案15
解析设椭圆+=1的右焦点为F2,则F2(3,0),|MF2|=5.所以|PM|+|PF1|=2a+|PM|-|PF2|≤2a+|MF2|=10+5=15,当且仅当点M在MF2的延长线与椭圆的交点处时取等号.故|PM|+|PF1|的最大值为15.
4.答案
解析由题意可得,直线AB2:+=1,B1F:+=1.两式相加,得-=2⇒x==,化简得2c2+ac-a2=0,即2e2+e-1=0,又椭圆的离心率0<e<1,所以e=.
5.答案
解析不妨设P,A.因为PA的中点在椭圆C:+=1(a>b>0)上,所以+=1.化简得a=c.所以离心率e==.
6.答案
解析由椭圆C1:+=1(a>b>0)的焦点在x轴上,
连接OA,OB,OP,依题意,O,P,A,B四点共圆,
∵∠APB=60°,∠APO=∠BPO=30°,
在Rt△OAP中,∠AOP=60°,
∴cos∠AOP==.
∴|OP|==2b.
∴b<|OP|≤a,
∴2b≤a.
∴4b2≤a2,
由a2=b2+c2,即4(a2-c2)≤a2,
得3a2≤4c2,即≥.∴e≥.
又0<e<1,∴≤e<1.
∴椭圆C1的离心率的取值范围是≤e<1.
7.答案
解析直线PB的方程为y=-x+b,将其代入椭圆方程,解得P,则
=,=-,=·=1,b4=3a2c2+c4,b4-c4=a2(b2-c2)=3a2c2,b2=4c2,a2=5c2,a=c.故则离心率e==.
8.答案10
解析由=(λ-1)(λ∈R),得=λ,则O,P,A三点共线,则·=||·||=48.设OP与x轴的夹角为θ,A(x,y),B 为A在x轴上的投影,则线段OP在x轴上的投影长度为||cosθ===48×≤48×=10,当且仅当|x|=,即|x|=时,取等号.故投影长度的最大值为10.
9.解析(1)设椭圆的焦距为2c.由题意,得=,=4.解得a=2,c=.
所以b=.
所以椭圆的方程为+=1.
(2)因为S△AOB=2S△AOM,所以|AB|=2|AM|,所以点M为AB的中点.
设直线AB的方程为y=k(x+2).

得(1+2k2)x2+8k2x+8k2-4=0.
所以(x+2)[(1+2k2)x+4k2-2]=0.解得x B=.
所以x M==,y M=k(x M+2)=.
代入x2+y2=,得+=.
化简得28k4+k2-2=0,
即(7k2+2)(4k2-1)=0.解得k=±.
所以直线AB的方程为y=±(x+2),
即x+2y+2=0,x-2y+2=0.
10.解析(1)由e=,知=.所以c=a.
因为△PF1F2的周长是4+2,
所以2a+2c=4+2.
所以a=2,c=,故b2=a2-c2=1.
所以椭圆C的方程为+y2=1.
(2)分析知直线l2的斜率存在,且不为0,设l1的方程为x=my+.与椭圆方程联立,得消去x并整理,得y2+y-=0.
所以|AB|=|y1-y2|=·=.
同理|DE|==.
所以=×.解得m2=2.
所以|DE|=,
直线l2的方程为y=±(x-).
所以点O到直线l2的距离d=.
故S△ODE=××=.。

相关文档
最新文档