2017-2018学年浙江省杭州市江干区八年级上学期期末数学试卷与答案
2017-2018学年度上学期期末考试八年级数学试卷1

浙教版2017-2018学年度上学期期末考试八年级数学试卷1(时间:120分钟 满分:120分 )一、用心选一选(每小题3分,共30分)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 2.下列命题是真命题的是( )A.若两个角相等,则它们是对顶角B.如果a b >,a c >,那么b c> C.两边和其中一边的对角对应相等的两个三角形全等 D.全等三角形的面积相等3.如图在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,若BCBD则点D 到AB 的 距离是()A.1B. 2C.D. 4.下列图象中,以方程240y x --=的解为坐标的点组成的图象是选项中的( ) +5.下列判断正确的是( )A. 35a a ->-B. a a ≥C.a a >- D. 2a a >6.等腰三角形一腰上的中线把这个三角形的周长分成1︰2两部分,已知这个三角形周长为36cm ,则个等腰三角形的底边为( )cm.A.4B.10C.20D.4或207.已知不等式:①2x -<-;②5x >;③2x <;④22x -<-,从这四个不等式中取两个,构成正整数解是3的不等式组是()A.①与②B.②与③C.③与④D.①与④ 8.在函数13y x =-中,自变量的取值范围是( ) A. 3x ≥- B. 3x ≥-且3x ≠ C. 3x ≥且3x ≠- D. 3x ≠-A. B. C. D.第3题图9. 将一次函数213y x =-+的图象,先向左平移3个单位长度,再向下5个单位长度,得到的函数解析式为( ) A. 26y x =-- B. 22y x =-- C. 27y x =-+ D. 23y x =-+ A.第一、二、三象限 B. 第二、三、四象限 C. 第一、三、四象限 D. 第一、二、四象限距离相等,则可选择的地址有 处. m解集为______.18.如图,在△ABC 中,FD 、EG 分别是AB 、AC 的垂直平分线,分别交BC 于点D 、E ,若BC =17cm,则△ADE 的周长是 .19.如图,△ABC ≌△ABE ≌△ADC ,若∠1︰∠2︰∠3=28︰5︰3,则∠α的度数是 .20. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4)点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为28时,m= .第17题图第18题图 第19题图三、专心答一答(共60分)21. (6分)请在下图方格中画出三个以AB 为腰的等腰三角形ABC .(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C 在格点上;3、只需画出图形即可,不写画法;4、标上字母,每漏标一个扣1分.)23. (9分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-16>0. 解:∵x 2-16=(x +4)(x -4), ∴(x +4)(x -4)>0.由有理数的乘法法则“两数相乘,同号得正”,有 (1)4040x x +>⎧⎨->⎩或(2)4040x x +<⎧⎨-<⎩24. (9分)如图,在等腰△ABC 中,点D 是AB 上任一点,AE ⊥CD ,垂足为E ,CH ⊥AB ,垂足为H , 交A E 于点G .(1)若AG =CD ,求证:∠ACB =90°; (2)BD 与CG 相等吗?请说明理由.第22题图第24题图25.(10分)如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是 2 000小时,照明效果一样.(1)根据图象分别求出l 1、l 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)26.(8分)如图已知一块四边形草地ABCD ∠A=60°,∠B =∠D =90°,AB =28米,CD =16米,求这块草地的面积.第25题图 第27题图。
2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
(完整word版)2017-2018八年级数学上期末试题含答案

一.选择题(共12小题,满分36分,每小题3分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是() A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()9.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,从下列条件中补选一个,则错误选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x= _________ .14.(4分)若分式方程:有增根,则k= _________ .15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)16.(4分)如图,在△A BC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______ 度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________ .三.解答题(共7小题,满分64分)18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12小题,满分36分,每小题3分)1.(3分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE 考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是( )A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做8.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1B.x﹣1C.﹣x D.x 考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2。
2017-2018学年浙教版八年级上数学期末综合练习数学试卷附答案

八年级数学期末综合练习试题卷(八年级数学上册,本卷满分120分)一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.已知a =3cm ,b =6cm ,则下列长度的线段中,能与a ,b 组成三角形的是(▲)A .2cmB .6cmC .9cmD .11cm 2.在平面直角坐标系中,点M (a 2+1,-3)所在的象限是(▲)A .第一象限B .第二象限C .第三象限D .第四象限3.正比例函数y =(k -2)x 中,y 随x 的增大而减小,则k 的取值范围是(▲)A .k ≥2B .k ≤2C .k >2D .k <24.不等式1-x >0的解在数轴上表示正确的是(▲)AB C D5.下列判断正确的是(▲)A .两边和一角对应相等的两个三角形全等B .一边及一锐角相等的两个直角三角形全等C .顶角和底边分别相等的两个等腰三角形全等D .三个内角对应相等的两个三角形全等6.已知a >b ,则下列四个不等式中,不正确的是(▲)A .a -3>b -3B .-a +2>-b +2C .1a >51bD .1+4a >1+4b517.已知(-1,y 1),(1.8,y 2),(-,y 3)是直线y =-3x +m (m 为常数)上的三个点,则y 1,y 2,2y 3的大小关系是(▲)A .y 3>y 1>y 2B .y 1>y 3>y 2C .y 1>y 2>y 3D .y 3>y 2>y 18.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有(▲)A .4组B .3组C .2组D .1组9.如图,直线y =3x +6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为(▲)八年级数学试题卷(第1页,共4页)A.(3,3)B.(4,3)C.(-1,3)D.(3,4)第9题图第10题图10.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R。
2017-2018学年八年级数学上学期期末考试试题浙教版(1)

浙江省江北区2017-2018学年八年级数学上学期期末考试试题考生须知:全卷共4页,有三大题,25小题.满分100分,考试时间90分钟.温馨提醒:请认真审题,细心答题,相信你是最棒的!一. 选择题(每小题3分,10小题,共30分)1.在平面直角坐标系中,点(2,-3)所在的象限是………………………………(▲)A.第一象限B.第二象限C.第三象限D.第四象限2.不等式的解是………………………………………………………………(▲)A. B. C. D.3.以下图形中对称轴条数最.多.的是……………………………………………………(▲)4.函数y=中,自变量x的取值范围是………………………………………(▲)A.x>﹣2B.x≠0C.x>﹣2且x≠0D.x≠﹣25.如图,在△ABC中,∠A=35°,∠C=45°,则与∠ABC相邻的外角的度数是…(▲)A.35°B.45°C.80°D.100°(第5题图)(第6题图)6.如图所示,在△ABC中,AB=AC,D、E分别是AC、AB的中点,且BD,CE相交于O点,某一位同学分析这个图形后得出以下结论:①△BCD≌△CBE;②△BDA≌△CEA;③△BOE≌△COD;④△BAD≌△BCD;⑤△ACE≌△BCE,上述结论一定正确..的是(▲)A.①②③B.②③④C.①③⑤D.①③④7.下列各组数中,不能..作为直角三角形三边长的是…………………………………(▲)A.1.5,2,3B.5,12,13 C.7,24,25 D.8,15,178.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是……(▲)A.13 B.17 C.22 D.17或229.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或.向左平移4个单位,恰好都在直线y=kx+b上,则k的值是…………………………………………………(▲)A.B.C.D.210.如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是…(▲)A.120°B.135°C.140°D.150°(第10题图)二.填空题(每题3分,8小题,共24分)11.小明的身高h超过了160cm,用不等式可表示为▲.12.命题“若a,b互为倒数,则ab=1”的逆命题是▲.13.已知△ABC≌△DEF,若AB=5,BC=6,AC=8,则△DEF的周长是▲.14.在第二象限到x轴距离为2,到y轴距离为5的点的坐标是▲.15.在Rt△中有一个内角为30°,且斜边和较短直角边之和为15cm,则这个直角三角形的斜边长上的中线长为▲cm.16.已知等腰三角形的腰长为xcm,顶角平分线与对边的交点到一腰的距离为4cm,这个等腰三角形的面积为ycm2,则y与x的函数关系式为▲.17.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点E,交BC于点D,若∠B=35°,则∠CAD=▲°.(第17题图)(第18题图)18.一次函数的图象经过A(-1,1)和B(-,0),则不等式组的解为▲.三.解答题(7小题,共46分)19.(本小题5分)解不等式组并把它的解表示在数轴上.20.(本小题5分)请你用直尺和圆规作图(要求:不必写作法,但要保留作图痕迹).已知:∠AOB ,点M 、N .求作:点P ,使点P 到OA 、OB 的距离相等,且PM=PN .(第20题图)21.(本小题6分)如图,C 是线段AB 的中点,CD ∥BE ,且CD=BE ,求证:AD=CE .(第21题图)22. (本小题6分)如图,△ABC 在平面直角坐标系内.(1)试写出△ABC 各顶点的坐标;(2)求出△ABC 的面积.(第22题图)23.(本小题7分)宁波某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.24.(本小题7分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距.......(米),甲行走的时间为(分),关于的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画关于函数图象的其余部分,并写出已画图象另一个端点的坐标;(3)问甲、乙两人何时相距390米?(第24题图)25.(本小题10分)如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.(第25题图)(第25题备用图)中小学教育教学资料2017学年第一学期八年级期末测试数学答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)11. h>160 12.若ab=1,则a,b互为倒数 13. 19 14. (-5,2)15. 5 16. y=4x 17.20 18. -<x<-1三、解答题(7小题,共46分)19.(5分)x<1 (图略)两个不等式的解各1分,不等式组的解2分,图1分20.(5分)(作图略)作出一条得2分,不写结论扣一分21.(6分)证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义),……………1分∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等)……………2分在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).……………5分∴AD=CE.……………6分22.(6分) 解:(1)由图可知:A(6,6),B(0,3),C(3,0).…3分(2)S△ABC=S正方形AEOD —S△AEB—S△OBC—S△ACD=6×6-×3×6-×3×3-×3×6=…6分(其它割补求面积或利用等腰三角形求得面积亦可)。
2017-2018学年浙教版八年级上学期期末复习试卷及参考答案

2017-2018学年浙教版八年级上学期期末复习试卷一、单选题1. 若三角形两条边的长度分别是3cm和7cm,则第三条边的长度可能是()A . 3cmB . 4cmC . 5cmD . 10cm2. 不等式2x﹣2<0的解集是()A . x<1B . x<﹣1C . x>1D . x>﹣13. 点A(﹣1,2)与A′关于x轴对称,则点A′的坐标是()A . (1,2)B . (1,﹣2)C . (﹣1,﹣2)D . (﹣1,2)4. 可以用来说明命题“若m<n,则 ”是假命题的反例是()A . m=2,n=﹣3B . m=﹣2,n=3C . m=﹣2,n=﹣3D . m=2,n=35. 等腰三角形的一个外角等于130°,则这个等腰三角形的底角为( )A . 65°B . 50°C . 65°或40°D . 50°或65°6. 一次函数y=x﹣2的图象大致是()A .B .C .D .7. 在Rt△ABC中,∠C=90°,当△ABC沿折痕BE翻折时,点C恰好落在AB的中点D上,若BE=4,则AC的长是()A . 4B . 6C . 8D . 108. 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )A . (4,8)B . (5,8)C . (,)D . (,)9. 在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A .B .C .D .10. 如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()B .C . 1D . 3是斜边长为△ACD的斜边AD为直角边,画第三个等腰A . cmB .C . cmD . cm12. 如图,在等边△ABC AB=10BD=4A . 8B . 10C .D .y= 中,自变量用不等式表示则∠ABE+∠ACE=________16. 如图所示的一块地,∠17. 如图,函数y=2x选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.19. 如图,点E 在边长为4的正方形ABCD 的边AD 上,点A 关于BE 的对称点为A′,延长EA′交DC 于点F ,若CF=1cm ,则AE=________m .三、解答题20. 利用数轴,解一元一次不等式组:.21. 如图,已知在△ABC 中,△ABC 的外角∠ABD 的平分线与∠ACB 的平分线交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .求证:MN=CN ﹣BM .22. 如图,已知四边形ABCD 中,AC 平分∠BAD ,AB=AC=5,AD=3,BC=CD .求点C 到AB 的距离.四、综合题23. 如图所示,△ABC 的顶点分别为A (-4, 5),B (﹣3, 2),C (4,-1).(1) 作出△ABC 关于x 轴对称的图形△A B C ;(2) 写出A 、B 、C 的坐标;(3) 若AC=10,求△ABC 的AC 边上的高.24. 某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:原料维生素C 及价格甲种原料乙种原料111111维生素C(单位/千克)600400原料价格(元/千克)95现要配制这种营养食品20千克,要求每千克至少含有9600单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?最少费用是多少?25. 在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB 上的一个动点,记点P关于y轴对称的点为P′.(1)当b=3时(如图1),①求直线AB的函数表达式.(2)②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标(3)若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.(4)当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b=.五、作图题26. 已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
2017-2018学年第一学期期末八年级数学试题(含答案)

2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省杭州市江干区八年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列长度的三条线段能组成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,5.5cmC.5cm,8cm,12cm D.4cm,5cm,9cm2.(3分)下列图案属于轴对称图形的是()A.B.C.D.3.(3分)如图,在△ABC和△DEF中,B,E,C,F在同一直线上,AB=DE,AC=DF,要使△ABC≌△DEF,还需要添加一个条件是()A.EC=CF B.BE=CF C.∠B=∠DEF D.AC∥DF4.(3分)点M(﹣5,y)向下平移6个单位长度后所得到的点与点M关于x轴对称,则y 的值是()A.﹣6B.6C.﹣3D.35.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=60°,2=40°B.∠1=50°,∠2=40°C.∠1=∠2=40°D.∠1=∠2=45°6.(3分)已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A.b<0B.b>0C.k<0D.k>07.(3分)若a<b,则下列各式中一定成立的是()A.a2<b2B.a﹣1<b﹣1C.ac<bc D.ac2<bc28.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较9.(3分)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.10.(3分)如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题(每小题4分,共24分)11.(4分)“5与m的2倍的和是负数”可以用不等式表示为.12.(4分)若不等式组的解集是﹣1<x≤1,则a=,b=.13.(4分)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.14.(4分)如图,已知函数y=kx+b和y=x﹣2的图象交于点P,根据图象则不等式组kx+b <x﹣2<0的解是.15.(4分)如图,在△ABC中,D,E,F分别是AB,BC上的点,且AE=AD,BD=BF,若∠EDF=42°,则∠C的度数为度.16.(4分)已知A(1,1),B(﹣1,﹣1),C点是x轴上的动点,当△ABC为直角三角形时,则点C的坐标为.三、解答题(共66分)17.(5分)如图,已知AB=CD,∠ABC=∠BCD,AC,BD交于点P,求证:BP=CP.18.(5分)解不等式:4x+5≥1﹣2x.19.(5分)解不等式(组):.20.(6分)写出命题“等腰三角形两腰上的高线长相等”的逆命题,判断这个命题的真假,并说明理由.21.(9分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC关于x轴对称得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)把△A1B1C1平移,使点B平移到B2(3,4),请作出△A1B1C1平移后的△A2B2C2,并写出A2的坐标;(3)已知△ABC中有一点D(a,b),求△A2B2C2中的对应点D2的坐标.22.(10分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.(12分)如图,在△CBD中,CD=BD,CD⊥BD,BE平分∠CBA交CD于点F,CE ⊥BE垂足是E,CE与BD交于点A.求证:(1)BF=AC;(2)BE是AC的中垂线;(3)若AD=2,求AB的长.24.(14分)如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P 与点A重合时停止运动,运动时间为t秒.(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;(2)连接PC、PD,求△CPD的面积S关于t的函数表达式;(3)点P在运动过程中,是否存在某个位置使得△CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.2017-2018学年浙江省杭州市江干区八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,3+2=5<5.5,不能够组成三角形;C中,5+8=13>12,能组成三角形;D中,4+5=9,不能组成三角形.故选:C.2.【解答】解:是轴对称图形,故选:C.3.【解答】解:可添加条件BE=CF,理由:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:B.4.【解答】解:∵点M(﹣5,y)向下平移6个单位长度,∴平移后的解析式为:(﹣5,y﹣6),∵点M(﹣5,y)向下平移6个单位长度后所得到的点与点M关于x轴对称,∴y+y﹣6=0,解得:y=3.故选:D.5.【解答】解:A、不满足条件,故A选项错误;B、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故B选项错误;C、不满足条件,也不满足结论,故C选项错误;D、满足条件,不满足结论,故D选项正确.故选:D.6.【解答】解:点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A 在第三象限,点B在第四象限,∴该函数与y轴交于负半轴,∴b<0,故选:A.7.【解答】解:A、∵a<b,但a2不一定<b2,故此选项错误;B、∵a<b,∴a﹣1<b﹣1,故此选项正确;C、∵a<b,∴ac<bc错误,关键是不知道c的正负,故此选项错误;C、∵a<b,∴当c=0时,ac2=bc2,故此选项错误;故选:B.8.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.9.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y 最大,当火车开始出来时y逐渐变小.故选:B.10.【解答】解:连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又QP∥AR,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴AQ=PQ,没有办法证明△PQR≌△CPS,③不成立,没有办法证明AC﹣AQ=2SC,④不成立.故选:B.二、填空题(每小题4分,共24分)11.【解答】解:m的2倍为2m,5与m的2倍的和写为5+2m,和是负数,则5+2m<0,故答案为5+2m<0.12.【解答】解:∵解不等式①得:x>1+a,解不等式②得:x≥﹣∴不等式组的解集为:1+a<x≤﹣∵不等式组的解集是﹣1<x≤1,∴1+a=﹣1,﹣=1,解得:a=﹣2,b=﹣3故答案为:﹣2,﹣3.13.【解答】解:连接CM、CN,由勾股定理得,AB=DE==5,∵△ABC、△CDE是直角三角形,M,N为斜边的中点,∴CM=,CN=,∠MCB=∠B,∠BCD=∠D,∴∠MCN=90°,∴MN=,故答案为:.14.【解答】解:∵一次函数y=kx+b和y=x﹣2的图象交于点P(2,﹣1),由图象上可以看出:当x>2是kx+b<x﹣2,又∵当x<4时,一次函数y=x﹣2<0,∴不等式组kx+b<x﹣2<0的解集为:2<x<4.故答案为:2<x<415.【解答】解:∵∠EDF=42°,∴∠ADE+∠BDF=138°,∵AE=AD,BD=BF,∴∠AED+∠BFDBDF=138°,∴∠CED+∠CFD=222°,∴∠C=360°﹣42°﹣222°=96°.故答案为:96°.16.【解答】解:设点C的坐标为(a,0).∴AC=,AB==,BC=.当AC为斜边时,(a﹣1)2+12=8+(a+1)2+12,解得:a=﹣2,此时点C的坐标为(﹣2,0).当AB为斜边时,8=(a﹣1)2+12+(a+1)2+12,解得:a=,此时点C的坐标为(,0)或(﹣,0).当BC为斜边时,(a﹣1)2+12+8=(a+1)2+12,解得:a=2,此时点C的坐标为(2,0).综上所述,点C的坐标为(﹣2,0)或(2,0)或(,0)或(﹣,0).三、解答题(共66分)17.【解答】证明:在△ABC与△DCB中,∴△ABC≌△DCB(SAS),∴∠DBC=∠ACB,即△PBC为等腰三角形,∴PB=PC.18.【解答】解:4x+5≥1﹣2x,移项得:4x+2x≥1﹣5,合并同类项得:6x≥﹣4,系数化为1得:x≥﹣.19.【解答】解:,由①得,x≥,由②得,x>﹣2;故不等式组的解集为:x≥.20.【解答】解:命题“等腰三角形两腰上的高线长相等”的逆命题是两边上的高相等的三角形为等腰三角形,此逆命题为真命题.如图在△ABC中,CD⊥AB,BE⊥AC,且CD=BE,∵BC=BC,∴△CBD≌△BCE(HL),∴∠DBC=∠ECB,∴△ABC为等腰三角形.21.【解答】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(﹣2,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(2,1);(3)△A2B2C2中的对应点D2的坐标为(a+5,﹣b).22.【解答】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b 元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,解得:50≤x≤53,∵x为正整数,x=50,51,52,53∴共有4种进货方案,分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.(3)因为B种纪念品利润较高,故B种数量越多总利润越高,设利润为W,则W=20x+30(100﹣x)=﹣10x+3000.∵k=﹣10<0,∴W随x大而小,∴选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.23.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDF=∠ADC=∠AEB=90°,∵∠DBF+∠A=90°,∠DCA+∠A=90°,∴∠DBF=∠DCA,∵BD=CD,∴△BDF≌△CDA(SAS),∴BF=AC.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠BEA=∠BEC=90°,∴∠A+∠ABE=90°,∠BCA+∠CBE=90°,∴∠A=∠BCA,∴BC=BA,∵BE⊥AC,∴CE=EA,∴BE是AC的中垂线.(3)解:连接AF.∵△BDF≌△CDA,∴AD=DF=2,AF=2,∵BE垂直平分AC,∴CF=AF=2,∴BD=CD=2+2,∴AB=BD+AD=4+2.24.【解答】解:(1)∵四边形ABCO是正方形,∴∠COD=∠OCP,∵OC=CO,∴当CP=OD=1时,△CPO≌△ODC,∴P(1,3),设直线OP的解析式为y=kx,则有3=k,∴直线OP的解析式为y=3x.(2)当点P在线段BC上时,如图1中,S=•CP•CO=t(0<t≤3),当点P在线段AB上时,如图2中,BP=t﹣3,AP=3﹣(t﹣3)=6﹣t,S=3×3﹣×1×3﹣×3×(t﹣3)﹣×2×(6﹣t)=﹣t+6(3<t≤6),综上所述,S=.(3)如图3中,①当DC=DP1时,P1(2,3),②当DC=DP2时,AP2==,∴P2(3,).③当CD=CP3=时,BP3==1,∴P3(3,2).④当P4C=P4D时,设AP4=a,则有22+a2=32+(3﹣a)2,解得a=,∴P4(3,),综上所述,满足条件的点P坐标为(2,3)或(3,)或(3,2)或(3,).die——dead——lose ————。