如何控制硫化胶的压缩永久变形
硫化橡胶压缩永久变形的影响因素

硫化橡胶压缩永久变形的影响因素摘要:随着社会经济快速发展,压缩永久变形是指橡胶材料及制品在长时间压缩状态下产生的永久性变形,是衡量密封材料及制品使用性能最直观的重要参数,也是评价其贮存老化性能的考核指标。
橡胶压缩永久变形与贮存时间的变化曲线既反映了橡胶材料及制品的贮存老化程度,又可预测出橡胶密封制品的贮存寿命。
但通常使用的橡胶压缩永久变形标准试样一般为厚度10mm及12.5mm的圆柱形试样,其压缩永久变形性能变化相对于密封圈等小型密封制品而言变化较慢,并不能真实反映橡胶制品的实际压缩永久变形性能及贮存寿命,因此,评价橡胶制品压缩永久变形性能需充分考虑制品的具体规格、装配空间、使用环境等因素的影响。
关键词:硫化;橡胶;压缩;永久变形;影响因素引言橡胶和金属的粘接在很多领域都有所涉及,但是橡胶和金属之间较大的极性差异导致二者的高强度粘接成为了一个难题。
进行表面改性以改善橡胶的表面性质是解决这一难题的有效手段,因此研究橡胶表面改性并改善其粘接性能具有重要意义。
紫外光表面接枝(UV-SG)的接枝链仅分布在表面浅的区域,因此可以达到表面改性而不对材料本体造成破坏的目的。
1橡胶材料本构模型研究1.1橡胶材料超弹性本构模型在较小的外力下,橡胶材料可以产生较大的变形,在卸载外力后,又可以恢复到原来的状态,这是橡胶材料的超弹性特性。
在工程应用中,超弹性本构模型一般用于表征橡胶材料的非线性弹性特性。
目前,在有限元软件中已经嵌入了各种形式的超弹性本构模型,但是由于不同的超弹性本构模型具有各自的特点,因此,在实际应用中,必须针对不同超弹性本构模型的特点选择最适合的本构模型。
一般采用应变势函数对应变不变量的导数来表示超弹性材料的应力-应变关系。
目前,超弹性本构模型的研究逐步完善,主要分为两类研究方法,一种为统计热力学方法,另一种为唯象理论方法。
对于不同种类、不同硬度的橡胶,其应力应变关系相差较大,需要基于材料的力学试验来研究橡胶超弹性本构模型。
橡胶制品的压缩永久变形如何调整

橡胶制品的压缩永久变形如何调整摘要:密封橡胶制品是橡胶工业制品的重要组成部分,为获得可靠的长期密封性,一般对胶料的压缩永久变形都有严格的要求。
本文选用了几种常用作密封制品的橡胶作为综述对象,浅述了目前对此类橡胶压缩永久变形的研究概况。
前言:压缩永久变形是橡胶制品的重要性能指标之一,与橡胶密封制品的密封性能密切相关,因此技术人员在设计配方时总是希望能够尽可能地降低压缩永久变形,以达到最佳的密封效果。
硫化橡胶压缩永久变形的大小,涉及到硫化橡胶的弹性与恢复。
有些人往往简单地认为橡胶的弹性好,其恢复就快,永久变形就小。
这种理解是不够的,弹性与恢复是相互关联的两种性质。
但有时候,橡胶的本质没有发生根本的变化,永久变形的大小主要是受橡胶恢复能力的变化所支配。
影响恢复能力的因素有分子之问的作用力、网络结构的变化、分子间的位移等【1】。
当橡胶的变形是由于分子链的伸张引起的,它的恢复(或永久变形的大小)主要由橡胶的弹性所决定,如果橡胶的变形还伴有网络的破坏和分子链的相对划移,这部分可以说是不可恢复的,它是与弹性无关的。
所以,凡是影响橡胶弹性与恢复的因素,都是影响硫化橡胶压缩永久变形的因素。
当然橡胶压缩变形的测试方法一定意义上决定了所测数值的大小。
如杨红卫等人【2】根据对不同形状的试样进行研究,发现由于B型试样截面直径较小,而相反它的曲率半径较大,顶部受压缩的程度也就越严重,且在相同体积下,B型试样与空气接触面积是A型试样的2.2倍,这就是说在实验过程中,B型试样的老化机会要大于A型试样,因此B型试样的压缩永久变形大于A型,同时橡胶的热空气老化是由表及里的,试样越大,内部的老化就会越慢,这也是A型试样的压缩永久变形小于B型试样的一个因素。
而对于10×10mm试样,因为是在室温下恢复,此时的橡胶分子活性较低,难以充分恢复,因此压缩变形相对于A型、B型的高温下恢复而较大。
因此,按GB/T 7759—1996进行试验,B型试样的压缩永久变形大于A型试样;按GB/T7759—1996对B型试样进行试,按GB/T 1683—1981对10×l0mm 试样进行试验,10×l0mm试样的压缩永久变形大于B型试样。
ASDM-低温下的压缩永久变形试验[1]
![ASDM-低温下的压缩永久变形试验[1]](https://img.taocdn.com/s3/m/fca6f7d83186bceb19e8bb77.png)
标准试验方法——橡胶低温下永久变形性能试验1. 范围这个试验方法包括了硫化橡胶性能的评估。
在室温下压缩橡胶,然后在低温下(空气或者二氧化碳)放置,在低温下将其从压接装置中取出,观察其形变回复情况。
1.2 用国际单位制来记录的值即标准值,而括号中的数据只是作为参考使用。
1.3 这个标准没有任何安全隐患。
此测试方法的使用者应注意安全。
2.参考文件2.1 ASTM标准:D375 橡胶性能试验方法——压缩永久变形D832 橡胶性能测试方法——低温测试D3767 橡胶实务——尺寸测量D4483 橡胶和炭黑工业试验方法标准之测试精确度的决定3. 试验方法概述3.1 在室温下,试样将被压缩至它原厚度的25%,然后在设定的低温下放置一段特定时间。
3.2 仍在试验温度下,将此试样恢复(解压)3.3 将试样从压缩仪器中取出后,在10秒和30分钟两个时间点测量其剩余压缩量。
3.4 根据9.1中的公式计算压缩永久形变。
4. 重要性和应用橡胶产品可能会被暴露在各种极端温度下,例如是飞行器用的液压密封件制品,潜艇舱密封垫制品,液压制动器皮碗圈。
此测试方法可以给出一个极限范围,一个在持续暴露在低温下的压缩力得到释放时,常温下的压缩恢复程度会受到抑制的极限范围;5. 压缩永久形变对于这个试验来说,硫化橡胶的永久形变就是指试样厚度减少的百分比,是不可恢复的。
而常见的高温下的形变,在将试样放置常温环境中会恢复其原有厚度。
6. 仪器6.1 压缩永久形变夹具,配有合适的钢制间隔条,见D395中B方法。
6.2 测微仪,见D37676.3 低温试验箱,用干冰,液态二氧化碳,液氮,或者适宜物理冷冻的从顶上打开的,温度可以控制在61°C (1.8°F)之内(见D832)。
试验箱应该配备一把老虎钳,'C'形螺丝钳或者其他可以固定住夹具的工具。
7. 试样标准试样应该是一个圆柱形薄片,直径在29±0.5mm(1.14±0.02),厚度在12.5±0.5mm (0.4±0.02),见试验方法D395。
硫化橡胶的压缩永久变形性能

•具有优异的耐热、耐油、耐磨和高强度等特点。
•助交联剂应用于过氧化物配合中,提高共交联性,显 著改善压缩永久变形。
•助交联剂分为两大类 •分子中不含烯丙基氢
•三羟甲基丙烷三丙烯酸酯(TMPTA) •N, N’—间苯基双马来酰亚胺(HVA-2)
•油封
•橡胶密封制 品和减震制品
•橡胶O形圈
•汽车的发展
•橡胶异 形密封
件
•安全、高 速、舒适
•环保、 节能
•密封性能和减震性能优 异
•典型例子: •纺织印染行业 •橡胶密封制品
•要求
•耐水性 •耐气透性
•橡胶密封性能 和 •减震性能优劣
•关系密 切
•压缩永久变 形性能优劣
•压缩永久变形小,橡胶密封性能好, 减震性能好。
压缩
永久 变形
78
76 71 58 35 38 33 28 12 16
(%)
•丙烯腈含量 为20~30% 时,丁腈橡胶 的压缩永久变 形较低。
•温度较高, 压缩永久变形 较大。
•图1 丁腈橡胶的丙烯腈含量对压缩永久变形的影响
•注: 压缩永久变形条件为100℃×48h,或130℃×48h
2.1.1.2 橡胶共混
•主要是 •橡胶配方因素 •和 •加工工艺因素
•橡胶配方
•生胶品种 •配合剂品种和用量
•交联密度
•压缩永久变形
•加工工艺
•配合剂的分散状况
•压缩永久变形
•高温压缩 时
•交联键键能大小
•压缩永久变形
2.1 配方因素
•配方因素包括
•1.生 胶 •2.硫化体系 •3.填充补强体系 •4.软化体系 •5.防 老 剂 •6.其他加工助剂
【免费下载】ASTM D395 压缩永久变形中文版

7.5 偏差---在测试方法统计术语里。
偏差是指测试平均值与参考或实际性能值的差异。
因为所测性能的值完全由此测试方法定义,所以不存在参考值。
应此,偏差不能被测定。
测试方法A---------空气中恒定力下的压力永久变形8 装置8.1 千分测试盘-------根据规范D3767,方法A1的用于测量试样厚度的千分测试盘8.2 压力装置由施力弹簧,两个平行的压力片组成。
压力装置由框架或螺纹螺栓固定。
压力装置的装配方法应使其可移动,并在施力后能够保持压力片的平行。
施加的力应符合8.2.1或8.2.2的规定。
8.2已校施力弹簧------应使用螺丝钉装置向已校弹簧施力。
弹簧应由经合适热处理的弹簧钢制成,弹簧应磨平,磨平面与弹簧长轴垂直。
图1 是一个合适的压力装置。
弹簧应符合以下要求:8.2.1.1 弹簧应在室温23 ±5℃(73.4±9℉)下校正。
连续施以递增的力[递增幅度不超过250N(50lbf)],测量相应的变形长度,取精度为0.2mm(0.01in.)。
在1.8kN(400lbf)的力下,力与变形距离的曲线的斜率应为70±3.5kN/m(400±20lbf/in.) 斜率用相应的变形长度除以1.8kN上下的两个力获得。
8.2.1.2 在弹簧被装入压力装置,在1.8kN(400lbf)的力下被压缩,在温度为70±2℃(158±3.6℉)的热空气炉中加热一周后,由于疲劳造成弹簧原始尺寸的变化不应超过3mm(0.01in.)。
在常规的使用中,在一年的时长内,每周对尺寸的检查得出的尺寸变化不应超过上述值。
8.2.1.3 压紧弹簧(压至各线圈接触)所需的最小力应为2.4kN(530lbf).图1 压力永久变形测试方法A使用的带有已校弹簧压力装置8.2.2 外部力的施加------在试样装入装置后,应向压力片和弹簧施加必要的外部力。
可以使用已校的压力器械或已知重量的重物。
压缩永久变形测试操作规范

压缩永久变形测试操作规范
审 核版Βιβλιοθήκη 页 制本 次 定1.1 第1页/共1页 品保课
1.目的:规范橡胶压缩永久变形测试方法,保证硫化橡胶永久压缩变形测试的准确性。 2.范围:适用于硫化橡胶压缩永久变形的测定。 3.使用仪器:橡胶压缩永久变形仪装置。 4.测试方法: 4.1 试样准备: 4.1.1 在测试前将试样放置在温度为25 ±2℃的环境中至少1小时。 4.1.2 试验前检查试样,如果试样表面有杂物,须用纱布沾酒精擦净。 4.1.3 测量试样的原始厚度并记录,取精度为0.01mm,同种材质试样至少2个以上。 4.1.4 根据试样厚度和压缩量要求计算垫片厚度,通常压缩量为25%。 4.2 试验前准备: 4.2.1 将试样放入压力装置的压力片间,试样两边和中间都应有垫片,垫片与试样间应有足 够的距离。 4.2.2 试样、垫片和压力片放好之后,锁紧固定螺丝,使压力片和垫片接触。 4.2.3 当放入压缩永久变形仪装置时,试样的温度应为室温。在组装完成后1小时内将装置放 入已设置好的恒温烘箱。 4.2.4 根据客户或工程部指定要求选择温度和时长,常用的测试条件为NBR材质:100℃*22h, 硅胶材质:175℃*22h,其他材质:70℃*22h,在对比测试中应使用相同的温度和加 热时间。 4.2.5 测试结束后,从烘箱中取出装置,马上取出试样在室温下冷却30分钟后,测试最终厚度。 4.2.6 B042客户的测试要求从烘箱取出装置后,需在室温下冷却120分钟,再取出试样在室温下 冷却30分钟后,测试最终厚度。 4.3 实验结果计算: 试样原厚度-试验后试样厚度 试样厚度-垫片厚度 4.4 求出几个试样的平均值,将结果记入<压缩歪测试报告>中。 4.5 保持试验装置干净,定时上防锈油。
影响压缩永久变形的因素

影响硫化橡胶压缩永久变形的因素压缩永久变形是橡胶制品的重要性能指标之一。
硫化橡胶压缩永久变形的大小,涉及到硫化橡胶的弹性与恢复。
有些人往往简单地认为橡胶的弹性好,其恢复就快,永久变形就小。
这种理解是不够的,弹性与恢复是相互关联的两种性质。
但有时候,橡胶的本质没有发生根本的变化,永久变形的大小主要是受橡胶恢复能力的变化所支配。
影响恢复能力的因素有分子之问的作用力(粘性)、网络结构的变化或破坏、分子问的位移等。
当橡胶的变形是由于分子链的伸张引起的,它的恢复(或永久变形的大小)主要由橡胶的弹性所决定:如果橡胶的变形还伴有网络的破坏和分子链的栩对流动,这部分可以说是不可恢复的,它是与弹性无关的。
所以,凡是影响橡胶弹性与恢复的因素,都是影响硫化橡胶压缩永久变形的因素。
有几个概念,如弹性、打击弹性(回弹性)、弹性与模量、压缩永久变形、扯断永久变形等,它们之问的关系,不易表述清楚现把我个人的理解提出与大家讨论。
弹性——橡胶的弹性应是珲论上的一个概念,它表示橡胶分子链段和侧基内旋转的难易程度,或是橡胶分子链柔顺及分子问作用力的大小。
对于硫化橡胶,其弹性还与交联网络密度及规整性有关。
弹性与扯断永久变形——我们常说天然橡胶的弹性很好,但它的扯断永久变形往往是很大的,这主要是天然橡胶仲长率很大,仲长过程中造成网络的破坏及分子链的位移很大,断裂后的恢复历程长和不可恢复的部分增加。
如果以定仲长的永久变形作比较,天然橡胶的永久变形就不一定很大了。
打击弹性或回弹性是在定负荷(或定能量)条件下测定的,其弹性的大小与硫化胶的交联程度或模量有直接的关系,表述的是橡胶弹性和粘性(或吸收)的综合。
压缩永久变形是在定变形条件下测定的,其值的大小与橡胶的弹性及恢复能力有关。
下面谈谈有关橡胶弹性与恢复的个人认识一、橡胶的弹性1.橡胶的种类弹性取决于橡胶分子链的内旋转难易,分子问作用力的大小。
如天然胶、顺丁胶、丁基胶、硅橡胶等被认为足弹性好的橡胶。
硫化橡胶的压缩永久变形性能

硫化橡胶的压缩永久变形性能引言硫化橡胶作为一种重要的弹性材料,广泛应用于汽车、建筑和电子等领域。
与其他弹性材料相比,硫化橡胶具有良好的耐磨性、耐腐蚀性和耐老化性,在各个领域中扮演着重要角色。
压缩永久变形是硫化橡胶材料的一个重要性能指标,本文将详细阐述硫化橡胶的压缩永久变形性能。
背景压缩永久变形是指材料在受到压缩后,在压力解除后不能完全恢复到原始状态而产生的塑性变形。
硫化橡胶的压缩永久变形性能是评估其使用寿命和可靠性的重要指标之一。
使用硫化橡胶制造的密封件、减震器等零部件在实际应用中需要经受长时间的压缩作用,如果硫化橡胶的压缩永久变形性能不好,很容易导致零部件失效,影响设备的正常运行和使用寿命。
影响因素硫化橡胶的压缩永久变形性能受多种因素的影响,下面列举了一些主要因素:1.材料硬度:硬度较高的硫化橡胶在受到相同的压缩力后,其压缩永久变形量往往较小。
2.环境温度:环境温度升高,硫化橡胶的压缩永久变形量通常会增加。
3.压缩速率:较高的压缩速率可能会增加硫化橡胶的压缩永久变形量。
4.压缩程度:较大的压缩程度往往会导致较大的压缩永久变形量。
实验方法为了评估硫化橡胶的压缩永久变形性能,常常采用以下实验方法:1.压缩永久变形实验:使用一定的压缩力将硫化橡胶样品压缩一定时间,然后解除压力,测量样品的恢复程度,计算压缩永久变形率。
2.热氧老化实验:将硫化橡胶样品置于高温和氧气环境中进行老化处理,然后进行压缩永久变形实验,观察变形率的变化。
实验结果及分析根据实验数据统计,我们得到了以下结果:•硫化橡胶材料A在25℃下的压缩永久变形率为10%,而材料B的压缩永久变形率为15%。
•硫化橡胶材料A经过热氧老化处理后,其压缩永久变形率上升到12%。
根据实验结果分析,硫化橡胶材料的硬度、环境温度和压缩速率等因素对压缩永久变形性能有一定影响。
此外,热氧老化处理也会导致硫化橡胶材料的压缩永久变形性能变差。
应用前景硫化橡胶广泛应用于各个领域,压缩永久变形性能的优化对于提高设备的正常运行和使用寿命具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
众所周知,硫化胶的压缩永久变形是橡胶制品的一项重要物理力学性能指标,它决定着橡胶制品的使用性能和使用寿命。
压缩永久变形的决定因素很多,也很复杂,不但取决于生胶,而且还取决于配方和工艺等方面。
因此,我们要认真仔细的加以分析和研究,找出其内在因素,才能找出其解决的方法。
首先取决于生胶的品种,因为生胶是橡胶制品的最主要的原材料,如果没有生胶,则就成为“无米之炊”了。
生胶的品种不同则其结构也不同,结构不同则其性能就不同。
生胶的分类,有结晶性与非结晶性的;有极性与非极性的;有饱和的与不饱和的;有自补强性的与非自补强性的;有热塑性的与非热塑性的等等,总之,结构不同、组成不同、所含基因不同,其性能就不同。
下面是各种生胶的压缩永久变形的大小顺序如下:
BR<NR<CR<FKM<NBR<CSM<PV<TR<IIR<SBR(由小到大)
一般来说,弹性大的、强度高的、结晶自补强性的生胶,它的变形容易恢复,压缩永久变形就较小;而结构中侧链、支链多、基因多的,则内阻大,变形后不易恢复,残留部分变形的则压缩永久变形较大。
如BR、NR、CR、FKM的压缩永久变形就较小,而TR、IIR、SBR的压缩永久变形就较大,因为SBR的滞后损失最大,所以它的压缩永久变形就大。
其次是含胶率的高低。
含胶率高的(60%以上),填料少的,硫化后硫化胶的交联键的空间网状结构中的空隙大,受力后容易塌陷,压缩永久变形就较大。
含胶率低(30%以下),填料多,硫化后其硫化胶的空间网状结构的空隙小。
受力后挺性大,不易变形,因此其压缩久变形就较小。
含胶率中等的则其压缩永久变形居中,介于两者之间。
以下为胶料的硬度、硫化程度、交联键的类型、炭黑、填料粒子的形状等。
胶料的硬度:
胶料的硬度取决于硫化剂、补强剂、填充剂用量的多少。
一般来说,用量多则硫化胶的硬度就高,其压缩永久变形就小,适全于高硬度的制品;而用量少则硫化胶的硬度就较低,其压缩永久变形就大,适合于低硬度的制品。
应指出的是,硬度高的橡胶制品,其收缩率较小,硬度低的橡胶制品,其收缩率则较大。
而85°,以上的高硬度橡胶制品,其收缩率则有所增大。
所以在设计配方时应加以考虑。
而补强剂、填充剂(增硬性的)用量中等(适中)的,则其压缩永久变形居中。
胶料的硫化程度:
胶料的硫化程度决定硫化胶的物理机械性能的高低,也包括压缩永久变形的大小。
一般来说,胶料的硫化程度高,则硫化胶的交联密度大,硫化胶的网状结构的空隙小,不容易变形,变形时容易恢复,因此压缩永久变形就较小;而硫化程度低,则硫化胶的交联密度小,硫化胶的空间网状结构的空隙大,受力后容易变形,且伸长率较大,容易变形,不易恢复,因此压缩永久变形就较大;硫化程度中等,其交联密度居中,压缩永久变形则居中。
硫化胶的交联键的类型:
我们知道,胶料的硫化体系不同,硫化胶的交联键的结构就不同,交联键的结构不同,其交联键的键能和键长就不同,它决定硫化胶的物理力学性能,也决定着受力后的压缩永久变形。
一般来说,交联键的键能低的、键长越长的,受力后容易变形,变形后的恢复也缓慢,压缩永久变形就较大;交联键的键能高的、键长越短的,受力后不易变形,变形后的恢复也较快,压缩永久变形就较小。
如多硫键(-C-Sx-)的键能低(54千卡/摩尔),键长(2.04×n,A)大,压缩永久变形大;而碳碳键(-C-C-)的键能高(84千卡/摩尔),键长短(1.54A),压缩永久变形就较小。
下面是不同硫化体系、交联键类型的硫化胶的压缩永久变形的大小:
硫化体系:
硫黄硫化体系>半有效硫化体系>有效硫化体系>树脂硫化体系>有机过氧化物硫化体系。
交联键的类型:
多硫键(-C-Sx-C-)>双硫键(-C-S-S-C-)>单硫键(-C-S-C-)>醚键(-C-O-C-)>碳一碳键(-C-C-)。
炭黑、填充剂的形状:
我们知道,为了使橡胶制品获得优良的物理力学性能,一般要填加一定量的补强剂,以提高硫化胶的拉伸强度、定伸应力、耐磨性等。
另外,为了降低生产成本,还需要加入一些能增加体积的填充剂,以增加容积,降低含胶率。
但是,补强剂和填充剂的粒子结构、形态,对硫化胶的物理力学性能,特别是压缩永久变形起着重要作用。
如炭黑粒子表面粗糙度大,表面有许多微小孔隙度,容易与混炼胶形成炭黑凝胶(吸留或包容橡胶),可以提高硫化胶的拉伸强度、定伸应力、硬度、耐磨性能等,其抗压缩永久变形的能力就大,压缩永久变形就小。
还有,填料的粒子的形态与胶料的相容性好,对硫化胶有某些补强作用,能提高硫化胶的定伸应力,也会降低硫化胶的压缩永久变形。
一般来说,炭黑和填料的粒子形态对硫化胶的压缩永久变形大小如下:
针状、纺锤形(碳酸镁、陶土、含水硅酸钙等)>片状粒子(碳酸钙、滑石粉、石墨等)>园状球形(各类炭黑、新工艺炭黑等)。
所以,在选择补强剂炭黑和填充剂时,要根据橡胶制品的不同性能要求来加以选用。
如压出制品,可选择快压出炭黑(FEF),通用炉黑(CPF)和半补强炉黑(SRF)、硬质陶土(软质陶土的粒径大,只能增容,不能补强);耐磨的制品,可选择高耐磨炉黑(HAF)、白炭黑、硬质陶土等。
这样既使硫化胶具有一定的物理力学性能,又具有较低的压缩永久变形,可以获得较好的使用效果,使橡胶制品具有较好的使用性能和使用寿命。