关于橡胶压缩永久变形测试标准的文章
d395橡胶压缩永久变形特性试验方法

Designation:D395–02Standard Test Methods forRubber Property—Compression Set1This standard is issued under thefixed designation D395;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1These test methods cover the testing of rubber intended for use in applications in which the rubber will be subjected to compressive stresses in air or liquid media.They are applicable particularly to the rubber used in machinery mountings,vibra-tion dampers,and seals.Two test methods are covered as follows:Test Method Section A—Compression Set Under Constant Force in Air7–10B—Compression Set Under Constant Deflection in Air11–14 1.2The choice of test method is optional,but consideration should be given to the nature of the service for which correlation of test results may be sought.Unless otherwise stated in a detailed specification,Test Method B shall be used.1.3Test Method B is not suitable for vulcanizates harder than90IRHD.1.4The values stated in SI units are to be regarded as the standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:D1349Practice for Rubber—Standard Temperatures for Testing2D3182Practice for Rubber—Materials,Equipment,and Procedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized Sheets2D3183Practice for Rubber—Preparation of Pieces for Test Purposes from Products2D3767Practice for Rubber—Measurement of Dimensions2 D4483Practice for Determining Precision for Test Meth-ods Standards in the Rubber and Carbon Black Industries2E145Specification for Gravity-Convection and Forced-Ventilation Ovens33.Summary of Test Methods3.1A test specimen is compressed to either a deflection or by a specified force and maintained under this condition for a specified time and at a specified temperature.3.2The residual deformation of a test specimen is measured 30min after removal from a suitable compression device in which the specimen had been subjected for a definite time to compressive deformation under specified conditions.3.3After the measurement of the residual deformation,the compression set,as specified in the appropriate test method,is calculated according to Eq1and Eq2.4.Significance and Use4.1Compression set tests are intended to measure the ability of rubber compounds to retain elastic properties after pro-longed action of compressive stresses.The actual stressing service may involve the maintenance of a definite deflection, the constant application of a known force,or the rapidly repeated deformation and recovery resulting from intermittent compressive forces.Though the latter dynamic stressing,like the others,produces compression set,its effects as a whole are simulated more closely by compressionflexing or hysteresis tests.Therefore,compression set tests are considered to be mainly applicable to service conditions involving static stresses.Tests are frequently conducted at elevated tempera-tures.5.Test Specimens5.1Specimens from each sample may be tested in duplicate (Option1)or triplicate(Option2).The compression set of the sample in Option1shall be the average of the two specimens expressed as a percentage.The compression set of the sample in Option2shall be the median(middle most value)of the three specimens expressed as a percentage.5.2The standard test specimen shall be a cylindrical disk cut from a laboratory prepared slab.5.2.1The dimensions of the standard specimens shall be:1These test methods are under the jurisdiction of ASTM Committee D11onRubber and are the direct responsibility of Subcommittee D11.10on PhysicalTesting.Current edition approved Dec.10,2002.Published January2003.Originallyapproved st previous edition approved in2001as D395–01.2Annual Book of ASTM Standards,V ol09.01.3Annual Book of ASTM Standards,V ol14.04.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Type1A2BThickness,mm(in.)12.560.5(0.4960.02)6.060.2 (0.2460.01)Diameter,mm(in.)29.060.5(1.1460.02)13.060.2 (0.5160.01)A Type1specimen is used in Test Methods A and B.B Type2specimen is used in Test Method B.5.2.2When cutting the standard specimen,the circular die having the required inside dimensions specified in5.2.1shall be rotated in a drill press or similar device and lubricated by means of a soap solution.A minimum distance of13mm(0.51 in.)shall be maintained between the cutting edge of the die and the edge of the slab.The cutting pressure shall be as light as possible to minimize cupping of the cut edges.The dies shall be maintained carefully so that the cutting edges are sharp and free of nicks.5.3An optional method of preparing the standard specimen may be the direct molding of a circular disk having the dimensions required for the test method used and specified in 5.2.1.N OTE1—It should be recognized that an equal time and temperature,if used for both the slab and molded specimen,will not produce an equivalent state of cure in the two types of specimen.A higher degree of cure will be obtained in the molded specimen.Adjustments,preferably in the time of cure,must be taken into consideration if comparisons between the specimens prepared by different methods are to be considered valid. N OTE2—It is suggested,for the purpose of uniformity and closer tolerances in the molded specimen,that the dimensions of the mold be specified and shrinkage compensated for therein.A two-plate mold with a cavity13.060.1mm(0.51060.004in.)in thickness and29.2060.05 mm(1.14860.002in.)in diameter,with overflow grooves,will provide Type1specimens for Test Method A and Test Method B.A similar mold but having a cavity of6.360.3mm(0.2560.012in.)in thickness and 13.260.1mm(0.5260.004in.)in diameter will provide Type2 specimens for Test Method B.5.4When the standard test specimen is to be replaced by a specimen taken from a vulcanized rubber part of greater thickness than the one indicated in5.2.1,the sample thickness shall be reducedfirst by cutting transversely with a sharp knife and then followed by buffing to the required thickness in accordance with Practice D3183.5.5An alternative method of preparing specimens is by plying up cylindrical disks cut from a standard sheet prepared in accordance with Practice D3182using the specimen sizes specified in5.2.1and cutting as described in5.2.2,or where a drill press is not available cutting the specimens with a single stroke from a cutting die.5.5.1The disks shall be plied,without cementing,to the thickness required.Such plies shall be smooth,flat,of uniform thickness,and shall not exceed seven in number for Type1 specimens and four in number for Type2specimens.5.5.2Care shall be taken during handling and placing of the plied test specimen in the testfixture by keeping the circular faces parallel and at right angles to the axis of the cylinder.5.5.3The results obtained on plied specimens may be different from those obtained using solid specimens and the results may be variable,particularly if air is trapped between disks.5.5.4The results obtained on the specimens prepared by one of the methods may be compared only to those prepared by the same method.5.6For routine or product specification testing,it is some-times more convenient to prepare specimens of a different size or shape,or both.When such specimens are used,the results should be compared only with those obtained from specimens of similar size and shape and not with those obtained with standard specimen.For such cases,the product specification should define the specimen as to the size and shape.If suitable specimens cannot be prepared from the product,the test method and allowable limits must be agreed upon between the producer and the purchaser.6.Conditioning6.1Store all vulcanized test specimens or product samples to be tested at least24h but not more than60days.When the date of vulcanization is not known,make tests within60days after delivery by the producer of the article represented by the specimen.6.2Allow buffed specimens to rest at least30min before specimens are cut for testing.6.3Condition all specimens before testing for a minimum of 3h at2362°C(73.463.6°F).Specimens whose compression set properties are affected by atmospheric moisture shall be conditioned for a minimum of24h in an atmosphere controlled to5065%relative humidity.7.Precision and Bias47.1These precision statements have been prepared in ac-cordance with Practice D4483.Please refer to Practice D4483 for terminology and other testing and statistical concepts.7.2Prepared test specimens of two rubbers for Test MethodsA andB were supplied tofive laboratories.These were tested in duplicate each day on two separate testing days.A test result, therefore,is the average of two test specimens,for both Test Methods A and B.7.3One laboratory did not run the Test Method A testing; therefore,the precision for Test Method A is derived from four laboratories.7.4The Type1precision results are given in Table1and Table2.4Supporting data are available from ASTM Headquarters.Request RR: D11–1138.TABLE1Type1Precision Results,%Compression Set—TestMethod AMaterialMeanLevelWithin Laboratory A Between Laboratory AS r r(r)S R R(R)1 1.73(%)0.0500.1428.20.1900.5431.1 226.10.898 2.549.7 2.37 6.7125.7A Sr=within laboratory standard deviation.r=repeatability(in measurement units).(r)=repeatability(in percent).S R=between laboratory standard deviation. R=reproducibility(in measurement units). (R)=reproducibility(in percent).7.5Bias—In test method statistical terminology,bias is the difference between an average test value and the reference or true test property value.Reference values do not exist for these test methods since the value or level of the test property is exclusively defined by the test method.Bias,therefore,cannot be determined.TEST METHOD A—COMPRESSION SET UNDERCONSTANT FORCE IN AIR8.Apparatus8.1Dial Micrometer—A dial micrometer,for measuring specimen thickness,in accordance with Practice3767,Method A1.8.2Compression Device,consisting of a force application spring and two parallel compression plates assembled bymeans of a frame or threaded bolt in such a manner that the device shall be portable and self-contained after the force has been applied and that the parallelism of the plates shall be maintained.The force may be applied in accordance with either 8.2.1or8.2.2.8.2.1Calibrated Spring Force Application—The required force shall be applied by a screw mechanism for compressing a calibrated spring the proper amount.The spring shall be of properly heat-treated spring steel with ends ground and per-pendicular to the longitudinal axis of the spring.A suitable compression device is shown in Fig. 1.The spring shall conform to the following requirements:8.2.1.1The spring shall be calibrated at room temperature 2365°C(73.469°F)by applying successive increments of force not exceeding250N(50lbf)and measuring the corresponding deflection to the nearest0.2mm(0.01in.).The curve obtained by plotting the forces against the corresponding deflections shall have a slope of7063.5kN/m(400620 lbf/in.)at1.8kN(400lbf).The slope is obtained by dividing the two forces above and below1.8kN by the difference between the corresponding deflections.8.2.1.2The original dimensions of the spring shall not change due to fatigue by more than0.3mm(0.01in.)after it has been mounted in the compression device,compressed under a force of1.8kN(400lbf),and heated in the oven for one week at70°C62°C(15863.6°F).In ordinary use,a weekly check of the dimensions shall show no greater change than this over a period of1year.8.2.1.3The minimum force required to close the spring (solid)shall be2.4kN(530lbf).8.2.2External Force Application—The required force shall be applied to the compression plates and spring by external means after the test specimen is mounted in the apparatus. Either a calibrated compression machine or known masses may be used for force application.Provision shall be made by the use of bolts and nuts or other devices to prevent the specimen and spring from losing their initial deflections when the external force is removed.The spring shall have essentially the same characteristics as described in8.2.1,but calibration is not required.A suitable compression device is shown in Fig.2.8.3Plates—The plates between which the test specimen is compressed shall be made of steel of sufficient thickness to withstand the compressive stresses without bending.8.3.1The surfaces against which the specimen is held shall have a chromium platedfinish and shall be cleaned thoroughly and wiped dry before each test.8.3.2The steel surfaces contacting the rubber specimens shall be ground to a maximum roughness of250µm(10µin.) and then chromium plated and polished.8.3.3The chromium plating and subsequent polishing shall not affect thefinalfinish beyond the tolerance stated in8.3.2.8.4Oven,conforming to the specification for a Type IIB laboratory oven given in Specification E145.8.4.1Type IIB ovens specified in Test Method E145are satisfactory for use through70°C.For higher Temperatures Type II A ovens are necessary.8.4.2The interior size shall be as follows or of an equivalent volume:TABLE2Type1Precision Results,%Compression Set—TestMethod BMaterial MeanLevelWithin Laboratory A Between Laboratory AS r r(r)S R R(R)113.7(%)0.591 1.6712.2 1.54 4.3631.8 252.80.567 1.60 3.0 5.9216.831.7 A Sr=within laboratory standard deviation.r=repeatability(in measurement units).(r)=repeatability(in percent).S R=between laboratory standard deviation.R=reproducibility(in measurement units).(R)=reproducibility(in percent).Interior size of air oven:min.300bt300mm by300mm(12by12by12in.)max.900by900by1200mm(36by36by48in.) 8.4.3Provision shall be made for placing test specimens in the oven without touching each other or the sides of the aging chamber.8.4.4The heating medium for the aging chamber shall be air circulated within it at atmospheric pressure.8.4.5The source of heat is optional but shall be located in the air supply outside of the aging chamber.8.4.6A suitable temperature measurement device located in the upper central portion of the chamber near the test speci-mens shall be provided to record the actual aging temperature.8.4.7Automatic temperature control by means of thermo-static regulation shall be used.8.4.8The following special precautions shall be taken in order that accurate,uniform heating is obtained in all parts of the aging chamber.8.4.8.1The heated air shall be thoroughly circulated in the oven by means of mechanical agitation.When a motor driven fan is used,the air must not come in contact with the fan motor brush discharge because of danger of ozone formation.8.4.8.2Baffles shall be used as required to prevent local overheating and dead spots.8.4.8.3The thermostatic control device shall be so located as to give accurate temperature control of the heating medium. The preferred location is adjacent to the temperature measuring device listed in section8.4.6.8.4.8.4An actual check shall be made by means of maxi-mum reading thermometers placed in various parts of the oven to verify the uniformity of the heating.9.Procedure9.1Original Thickness Measurement—Measure the original thickness of the specimen to the nearest0.02mm(0.001in.). Place the specimen on the anvil of the dial micrometer so that the presser foot will indicate the thickness at the central portion of the top and bottom faces.9.2Application of Compressive Force—Assemble the specimens in the compression device,using extreme care to place them exactly in the center between the plates to avoid tilting.If the calibrated spring device(see Fig.1)is used,apply the compressive force by tightening the screw until the deflection as read from the scale is equivalent to that shown on the calibration curve for the spring corresponding to a force of 1.8kN(400lbf).With the external loading device(see Fig.2), apply this force to the assembly in the compression machine or by adding required masses,but in the latter case,take care to add the mass gradually without shock.Tighten the nuts and bolts just sufficiently to hold the initial deflections of the specimen and spring.It is imperative that no additional force be applied in tightening the bolts.9.3Test Time and Test Temperature—Choose a suitable temperature and time for the compression set,depending upon the conditions of the expected service.In comparative tests,use identical temperature and heating periods.It is suggested that the test temperature be chosen from those listed in Practice D1349.Suggested test periods are22h and70h.The specimen shall be at room temperature when inserted in the compression device.Place the assembled compression device in the oven within2h after completion of the assembly and allow it to remain there for the required test period in dry air at the test temperature selected.At the end of the test period,take the device from the oven and remove the specimens immedi-ately and allow it to cool.9.4Cooling Period—While cooling,allow the specimens to rest on a poor thermally conducting surface,such as wood,for 30min before making the measurement of thefinal thickness. Conduct the cooling period at a standard laboratory tempera-ture of2362°C(73.463.6°F).Specimens whose compres-sion set property is affected by atmospheric moisture shall be cooled in an atmosphere controlled to5065%relative humidity.9.5Final Thickness Measurement—After the rest period, measure thefinal thickness at the center of the specimen in accordance with9.1.10.Calculation10.1Calculate the compression set as a percentage of the original thickness as follows:C A5@~t o2t i!/t o#3100(1) where:C A=Compression set(Test Method A)as a percentage ofthe original thickness,t o=original thickness(see9.1),andt i=final thickness (see 9.5).11.Report11.1Report the following information:11.1.1Original dimensions of the test specimen,including the original thickness,t o ,11.1.2Actual compressive force on the specimen as deter-mined from the calibration curve of the spring and spring deflection reading (see 8.2.1)or as applied by an external force (see 8.2.2),11.1.3Thickness of the test specimen 30min after removal from the clamp,t i ,11.1.4Type of test specimen used,together with the time and temperature of test,11.1.5Compression set,expressed as a percentage of the original thickness,11.1.6Test method used (Test Method A),and 11.1.7Number of specimens tested.TEST METHOD B—COMPRESSION SET UNDERCONSTANT DEFLECTION IN AIR 12.Apparatus12.1Dial Micrometer —A dial micrometer,for measuring the specimen thickness,in accordance with Practice D 3767,Method A 1.N OTE 3—For vulcanizates having a hardness below 35IRHD,the force on the presser foot should be reduced to 0.260.05N (0.0460.01lbf).12.2Spacer Bars ,to maintain the constant deflection re-quired under Test Method B.12.2.1Spacer bars for Type 1samples shall have a thickness of 9.560.02mm (0.37560.001in.).12.2.2Spacer bars for Type 2samples shall have a thickness of 4.5060.01mm (0.177060.0005in.).12.3Compression Device ,consisting of two or more flat steel plates between the parallel faces of which the specimens may be compressed as shown in Fig.3.Steel spacers for the required percentage of compression given in 13.2shall be placed on each side of the rubber specimens to control their thickness while compressed.12.4Oven ,see 8.4.12.5Plates —The plates between which the test specimen is compressed shall be made of steel of sufficient thickness to withstand the compressive stresses without bending.12.5.1The surfaces against which the specimen is held shall have a chromium-plated finish and shall be cleaned thoroughly and wiped dry before each test.12.5.2The steel surfaces contacting the rubber specimens shall be ground to a maximum roughness of 250µm (10µin.)and then chromium plated and polished.12.5.3The chromium plating and subsequent polishing shall not affect the final finish beyond the tolerance stated in 12.5.2.13.Procedure13.1Original Thickness Measurement —Measure the origi-nal thickness of the specimen to the nearest 0.02mm (0.001in.).Place the specimen on the anvil of the dial micrometer so that the presser foot will indicate the thickness at the central portion of the top and bottom faces.13.2Application of Compressive Force —Place the test specimen between the plates of the compression device with the spacers on each side,allowing sufficient clearance for the bulging of the rubber when compressed (see Fig.3).Where a lubricant is applied,it shall consist of a thin coating of a lubricant having substantially no action on the rubber.For most purposes,a silicon or fluorosilicon fluid is suitable.Tighten the bolts so that the plates are drawn together uniformly until they are in contact with the spacers.The amount of compression employed shall be approximately 25%.A suitable mechanical or hydraulic device may be used to facilitate assembling and disassembling the test fixture.13.3Test Time and Temperature —Choose a suitable tem-perature and time for the compression set,depending upon the conditions of the expected service.In comparative tests,use identical temperature and test periods.It is suggested that the test temperature be chosen from those listed in Practice D 1349.Suggested test periods are 22h and 70h.The test specimen shall be at room temperature when inserted in the compression device.Place the assembled compression device in the oven within 2h after completion of the assembly and allow it to remain there for the required test period in dry air at the test temperature selected.At the end of the test period,take the device from the oven and remove the test specimen immediately and allow them to cool.13.4Cooling Period —While cooling,allow the test speci-men to rest on a poor thermally conducting surface,such as wood,for 30min before making the measurement of the final thickness.Maintain the conditions during the cooling period in accordance with 9.4.13.5Final Thickness Measurement —After the rest period,measure the final thickness at the center of the test specimen in accordance with 13.1.14.Calculation14.1Calculate the compression set expressed as a percent-age of the original deflection as follows:C B 5@~t o 2t i !/~t o 2t n !#3100(2)where:C B =compression set (Test Method B)expressed aspercentage of the original deflection,t 0=original thickness of specimen (13.1),t i =final thickness of specimen (13.5),and t n =thickness of the spacer bar used.N OTE 4—Lubrication of the operating surfaces of thecompressionFIG.3Device for Compression Set Test Under ConstantDeflection,Test MethodBdevice is optional while giving more reproducible results;lubrication may somewhat alter the compression set values.15.Report15.1Report the following information:15.1.1Original dimensions of the test specimen including the original thickness,t o,15.1.2Percentage compression of the specimen actually employed,15.1.3Thickness of the test specimen30min after removal from the clamp,t i,15.1.4Type of test specimen used,together with the time and temperature of test,15.1.5Whether or not the surfaces of the compression device are lubricated.If they are,what type lubrication was used,15.1.6Compression set,expressed as a percentage of the original deflection,15.1.7Test method used(Test Method B),and15.1.8Number of specimens tested.16.Keywords16.1compression set;compression set under constant de-flection;compression set under constant force;deflection; deformation;elastic property;hysteresis;recoveryASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().。
橡胶制品的压缩永久变形如何调整

橡胶制品的压缩永久变形如何调整摘要:密封橡胶制品是橡胶工业制品的重要组成部分,为获得可靠的长期密封性,一般对胶料的压缩永久变形都有严格的要求。
本文选用了几种常用作密封制品的橡胶作为综述对象,浅述了目前对此类橡胶压缩永久变形的研究概况。
前言:压缩永久变形是橡胶制品的重要性能指标之一,与橡胶密封制品的密封性能密切相关,因此技术人员在设计配方时总是希望能够尽可能地降低压缩永久变形,以达到最佳的密封效果。
硫化橡胶压缩永久变形的大小,涉及到硫化橡胶的弹性与恢复。
有些人往往简单地认为橡胶的弹性好,其恢复就快,永久变形就小。
这种理解是不够的,弹性与恢复是相互关联的两种性质。
但有时候,橡胶的本质没有发生根本的变化,永久变形的大小主要是受橡胶恢复能力的变化所支配。
影响恢复能力的因素有分子之问的作用力、网络结构的变化、分子间的位移等【1】。
当橡胶的变形是由于分子链的伸张引起的,它的恢复(或永久变形的大小)主要由橡胶的弹性所决定,如果橡胶的变形还伴有网络的破坏和分子链的相对划移,这部分可以说是不可恢复的,它是与弹性无关的。
所以,凡是影响橡胶弹性与恢复的因素,都是影响硫化橡胶压缩永久变形的因素。
当然橡胶压缩变形的测试方法一定意义上决定了所测数值的大小。
如杨红卫等人【2】根据对不同形状的试样进行研究,发现由于B型试样截面直径较小,而相反它的曲率半径较大,顶部受压缩的程度也就越严重,且在相同体积下,B型试样与空气接触面积是A型试样的2.2倍,这就是说在实验过程中,B型试样的老化机会要大于A型试样,因此B型试样的压缩永久变形大于A型,同时橡胶的热空气老化是由表及里的,试样越大,内部的老化就会越慢,这也是A型试样的压缩永久变形小于B型试样的一个因素。
而对于10×10mm试样,因为是在室温下恢复,此时的橡胶分子活性较低,难以充分恢复,因此压缩变形相对于A型、B型的高温下恢复而较大。
因此,按GB/T 7759—1996进行试验,B型试样的压缩永久变形大于A型试样;按GB/T7759—1996对B型试样进行试,按GB/T 1683—1981对10×l0mm 试样进行试验,10×l0mm试样的压缩永久变形大于B型试样。
三元乙丙橡胶力学及压缩永久变形性能研究

三元乙丙橡胶力学及压缩永久变形性能研究硫化胶力学性能越好,但耐老化性能差;蒙脱土和纳米凹凸棒粒径越小,硫化胶力学性能和耐老化性能越好,但压缩永久变形性能差;BaSO_4粒径越小,硫化胶力学性能和耐老化性能越好,压缩永久变形性能先增加后减小。
最后,本文通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)等手段,对填料的微观形貌、结构和化学性质进行了表征和分析,为填料的选择及应用提供了理论和实验依据。
4.3 结果与讨论4.3.1 硫化特性在本研究中,我们使用了两种不同的硫化系统,即常规硫化系统和高效硫化系统,并对其进行了比较。
结果表明,使用高效硫化系统可以显著提高硫化速率和交联密度,从而改善EPDM的硬度和强度。
此外,我们还研究了硫化剂种类和用量对硫化特性的影响。
结果表明,使用过量的硫化剂会导致硫化密度过高,从而降低EPDM的拉伸性能。
4.3.2 力学性能我们测试了EPDM的拉伸强度、断裂伸长率、硬度和抗撕裂性能,并比较了不同硫化条件下的结果。
结果表明,使用高效硫化系统可以显著提高EPDM的拉伸强度和硬度,但对断裂伸长率和抗撕裂性能的影响不大。
此外,我们还研究了填料对EPDM力学性能的影响。
结果表明,添加适量的填料可以显著提高EPDM的强度和硬度,但过量的填料会导致EPDM的断裂伸长率和抗撕裂性能下降。
4.3.3 耐老化性能我们使用热氧老化试验和紫外线老化试验来研究EPDM的耐老化性能,并比较了不同硫化条件下的结果。
结果表明,使用高效硫化系统可以显著提高EPDM的耐热老化性能和耐紫外线老化性能。
此外,我们还研究了填料对EPDM耐老化性能的影响。
结果表明,添加适量的填料可以显著提高EPDM的耐老化性能,但过量的填料会导致EPDM的老化速度加快。
4.3.4 压缩永久变形性能我们测试了EPDM的压缩永久变形率,并比较了不同硫化条件下的结果。
结果表明,使用高效硫化系统可以显著降低EPDM的压缩永久变形率。
橡胶压缩永久变形标准

橡胶压缩永久变形标准
橡胶是一种常见的弹性材料,广泛应用于汽车制造、建筑工程、电子产品等领域。
然而,橡胶制品在使用过程中可能会出现压缩永久变形的情况,这对产品的质量和可靠性都会造成影响。
因此,制定橡胶压缩永久变形标准具有重要意义。
首先,橡胶制品的压缩永久变形是指在一定温度、一定时间的条件下,橡胶制品在受到压缩后,无法完全恢复原状的现象。
这种变形会导致橡胶制品的尺寸稳定性下降,影响其正常使用。
因此,制定橡胶压缩永久变形标准可以帮助生产厂家和用户更好地评估产品质量,提高产品的可靠性和耐久性。
其次,橡胶压缩永久变形标准应包括以下内容,首先是测试方法,即确定测试温度、测试时间和测试压力等参数,以保证测试结果的准确性和可比性。
其次是标准数值,即规定橡胶制品在特定条件下的压缩永久变形限值,通常以百分比表示。
最后是评定标准,即根据测试结果对橡胶制品的压缩永久变形进行等级评定,以便用户选择和使用。
在制定橡胶压缩永久变形标准时,需要考虑以下因素,首先是橡胶材料的种类和用途,不同种类的橡胶在受压后的变形特性可能有所不同,因此需要针对不同的应用领域进行标准制定。
其次是环境因素,如温度、湿度等环境条件对橡胶制品的压缩永久变形也会产生影响,因此需要在标准中对环境因素进行考虑。
最后是用户需求,不同用户对橡胶制品的要求也会有所不同,因此标准制定过程中需要充分考虑用户的实际需求。
总之,制定橡胶压缩永久变形标准对于保障产品质量、提高产品可靠性具有重要意义。
通过科学、严谨的标准制定,可以有效地评估和监控橡胶制品的压缩永久变形性能,为用户提供更加可靠和耐用的产品,推动橡胶制品行业的健康发展。
ASTMD395-2003压缩永久变形中文版

ASTMD395-2003压缩永久变形中文版编号:D 395-03橡胶性能的标准试验方法----------压缩永久变形1此项标准在固定编号B 117下发布,紧随编号的数字表示标准采纳的年度,如果是修正,数字表示最后一次修正的年度。
在括号内的数字表示最后一次重申批准的年度。
上标表示自最后一次修正或重申批准以来的编辑改动。
此项标准已被批准供美国国防部下属机构使用。
1范围1.1本测试方法测试应用中会在气体或液体媒介中承受压力的橡胶。
本测试方法特别适用于在机械固定器件,减震器,封条中使用的橡胶。
本测试方法包含以下两种方法:1.2测试方法可以选择,但是应考虑用于与测试结果关联的实际情况下使用的橡胶的性质。
除非在具体的规范中有其他规定,应使用测试方法B。
测试方法B不适用于硬度大于90IRHD的硫化橡胶。
以国际单位(SI)为单位的数值应被认为是标准。
在括号内的数值起参照作用。
此项标准不包括与其应用有关的所有的安全隐患。
此项标准的使用者有责任在使用前建立合适的安全健康规范以及决定法规限制是否适用2 参考文件ASTM标准2:D1349 橡胶规范---测试的标准温度D 3182D 3183D 3767D 4483E 145---------------------------------------1此测试方法属于ASTM D 11橡胶委员会的工作范围,是其下属物理测试子委员会的直接责任。
目前的版本在批准,出版。
原始的版本在1934年批准。
上一个版本在2003年批准,编号为D395-03.2如需参照ASTM 标准,访问ASTM网站,. 如需要《ASTM标准年鉴》的内容信息,浏览ASTM网站的标准索引页。
3 测试方法概要用挠力或规定的力压缩试样,并在规定的温度下保持规定的时间。
在试样在合适的装置内,在规定的条件下经过特定时间的压缩变形后,取出试样,等待30分钟,测量试样的残留变形。
在测量残留变形后,根据Eq1和Eq2计算压缩永久变形。
橡胶制品压缩永久变形测试

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*橡胶制品压缩永久变形测试1.定义和方法橡胶压缩永久变形,是指压缩橡胶试样在完全去掉引起其压缩形变的力之后所剩余的变形。
其用于判定橡胶材料的交织密度,受力状况下的物性。
试验方法通常有三种:1)方法A:在恒定压力作用下,空气中作压缩试验2)方法B:在空气中恒定形变压缩试验3)方法C:在空气(气体)或液体中,恒定形变压缩试验在方法的选择中一般选用B,但是方法B、C不适合于IRHD>90℃的硬度胶料中。
以上三种方法可以做常温、高温、低温或溶液中的形变测试。
2.简单的测试步骤如下:1)按照要求制作压缩永久变形的试块或直接用产品或部分产品(如O-ring,Washer,Disc等);2)用夹具将试块固定并压缩到一定的压缩量(压缩率),在一定试验条件(通常是一定温度和时间,有时会浸泡在溶液中测试)后取出;3)在2的操作过程中记录相应数据,同时记录取出的产品在室温下放置30分钟后的数值(有些客户要求不松开夹具放置30分钟,后松开30分钟后测量);4)按照压缩永久变形的公式计算在要求温度时间和变形量的前提下的压缩永久变形。
3.压缩永久变形CS的计算方法:CS=(h0-h2)/(h0-h1)h0:压缩前试样的高度,mmh1:限制器的高度,mmh2:试样恢复后的高度,mm4.结果判定:在压缩永久变形中,对于所测的每一个样品,都要在标准内,否则视为不合格。
在每一个数据都在标准内时,一般测三个样品的试验,最后数值以平均值记录,如果五个样品,一般去掉最大和最小的数值,其余求平均值一般测试需要4-5样品。
5. 压缩永久变形的影响因素:1)橡胶配方,此决定压缩永久变形好坏的最大关键;如过氧化物硫化的EPDM压缩永久变形比硫磺硫化的小非常多,而且可以通过更高温度的测试;2)加硫程度,取决于橡胶成型三大因素-温度,时间,压力。
正常的橡胶随加硫程度的增加而压缩永久变形变小,到最低值后就开始变大,这时意味着橡胶产品开始过硫化了;特别需要说明的是硫磺硫化的NBR,EPDM等,一次加硫和二次加硫均对此影响非常大(尤其是温度);而过氧化物硫化的NBR,EPDM,一次成型的温度尤其重要,建议在180摄氏度以上,如果一次加硫不足,二次加硫的补足有限;3)测试样品的形状和测试夹具,量具和试验设备的精密性均会影响最后的结果,但不是橡胶压缩永久变形的真因。
ASTM_D395_2003压缩永久变形中文版

编号:D 395-03橡胶性能的标准试验方法----------压缩永久变形1此项标准在固定编号B 117下发布,紧随编号的数字表示标准采纳的年度,如果是修正,数字表示最后一次修正的年度。
在括号的数字表示最后一次重申批准的年度。
上标 表示自最后一次修正或重申批准以来的编辑改动。
此项标准已被批准供美国国防部下属机构使用。
1围1.1本测试方法测试应用中会在气体或液体媒介中承受压力的橡胶。
本测试方法特别适用于在机械固定器件,减震器,封条中使用的橡胶。
本测试方法包含以下两种方法:1.2测试方法可以选择,但是应考虑用于与测试结果关联的实际情况下使用的橡胶的性质。
除非在具体的规中有其他规定,应使用测试方法B。
1.3测试方法B不适用于硬度大于90IRHD的硫化橡胶。
1.4以国际单位(SI)为单位的数值应被认为是标准。
在括号的数值起参照作用。
1.5此项标准不包括与其应用有关的所有的安全隐患。
此项标准的使用者有责任在使用前建立合适的安全健康规以及决定法规限制是否适用2 参考文件2.1 ASTM标准2:D1349 橡胶规---测试的标准温度D 3182 混合标准化合物及制备标准硫化橡胶薄片用橡胶材料、设备及工序的标准实施规程D 3183 橡胶实施规---从橡胶制品中制备试验目的用试片D 3767 橡胶的标准规程----尺寸测量D 4483 评定橡胶和炭黑制造工业试验方法标准的精度的实施规程E 145 重力对流式和强制通风式烘炉的规---------------------------------------1此测试方法属于ASTM D 11橡胶委员会的工作围,是其下属D11.10物理测试子委员会的直接责任。
目前的版本在2008.3.1批准,2008.07出版。
原始的版本在1934年批准。
上一个版本在2003年批准,编号为D395-03.2如需参照ASTM 标准,访问,或联系ASTM客户服务. 如需要《ASTM标准年鉴》的容信息,浏览ASTM的标准索引页。
橡胶压缩永久变形率测定常用标准分析与解读

橡胶压缩永久变形率测定常用标准分析与解读橡胶是一种具有良好性能和灵活性的多功能材料,由于其变形性能良好,可以用于制造适用于汽车、机器人、海洋平台和机器臂等各种复杂结构的组件。
但是,由于橡胶的变形特性受到温度、湿度和外力的影响,因此在设计过程中,精确测定橡胶的变形特性是非常必要的。
因此,本文将聚焦于橡胶压缩变形率测定,并全面分析、解读常用的测定方法和标准。
首先,介绍一般正常温度下橡胶压缩变形率测定的基本原理,包括其变形机理、测试仪器设备、测试手段、计算数据以及主要参数的确定。
其次,系统地介绍国际、国家和行业标准对橡胶压缩变形率的要求,以及根据不同标准的不同测试方法及其特点进行详细分析。
接下来,从技术角度讨论橡胶压缩变形率测定的常见问题,如变形温度、载荷变化速率、变形容量有限性等,并针对各种材料和应用场景提出改进方案。
最后,介绍橡胶压缩变形率测定可能会遇到的不确定性和误差,并从统计学的角度介绍测试结果的评估方法及其应用。
总之,本文从宏观上介绍了橡胶压缩变形率测定的基本原理、常用标准、常见问题及其解决方案,以及变形测试结果的评估方法,旨在为橡胶压缩变形率测定提供较为完整的依据和解读,为橡胶材料的研制及其应用提供有力的技术支持。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于橡胶压缩永久变形测试标准的文章橡胶压缩永久变形测试标准
橡胶是一种常见的材料,具有优异的弹性和耐磨性。
然而,长期使用或受到压力的橡胶制品可能会出现压缩永久
变形的问题。
为了确保橡胶制品的质量和可靠性,压缩永
久变形测试标准被广泛应用于橡胶制品的生产和质量控制
过程中。
压缩永久变形是指橡胶在受到持续压力后无法完全恢复
到原始形状和尺寸的现象。
这种变形可能会导致橡胶制品
在使用过程中失去原有的弹性和功能,从而影响其性能和
寿命。
因此,对于需要长期承受压力或重复加载的橡胶制品,如密封圈、垫片、管道等,进行压缩永久变形测试是
至关重要的。
在进行压缩永久变形测试时,需要遵循一系列标准和规范。
其中最常用的标准是ASTM D395-03(2018)《Standard Test Methods for Rubber Property—Compression Set》。
该标准规定了测试样品的准备、测试条件、测试方法和结
果评估等方面的要求。
首先,测试样品的准备非常重要。
样品应该是充分固化
和成型的橡胶制品,具有一定的尺寸和形状。
在进行测试
之前,样品应该经过一段时间的恢复,以确保其处于稳定
状态。
其次,测试条件也需要严格控制。
根据ASTM D395-
03(2018)标准,测试温度通常为70℃或100℃,并且需要
在一定的压力下进行。
这些条件可以根据实际应用需求进
行调整。
在进行测试时,需要将样品置于特定的试验装置中,并
施加一定的压力。
通常情况下,压力会持续施加一段时间,然后释放并观察样品恢复程度。
通过测量样品在释放后的
高度或厚度变化,可以计算出压缩永久变形率。
最后,在得到测试结果后,需要对其进行评估和分析。
通常情况下,压缩永久变形率应该控制在一定范围内,并与产品设计要求相匹配。
如果测试结果超出了规定范围,则需要对橡胶材料或制造工艺进行调整。
总之,橡胶压缩永久变形测试标准是确保橡胶制品质量和可靠性的重要手段。
通过遵循相关标准和规范,可以有效评估橡胶材料的性能,并为产品设计和制造提供参考依据。
这将有助于提高橡胶制品的使用寿命和性能,满足用户的需求。