数据结构-线性表
数据结构 线性表

第1讲线性表本章主要掌握如下内容:线性表的定义和基本操作,线性表的实现,线性表的顺序存储结构及链式存储结构,线性表的应用。
知识点分析(一)线性表的定义和基本操作1.线性表基本概念1)定义:是由相同类型的结点组成的有限序列。
如:由n个结点组成的线性表(a1, a2, …, a n)a1是最前结点,a n是最后结点。
结点也称为数据元素或者记录。
2)线性表的长度:线性表中结点的个数称为其长度。
长度为0的线性表称为空表。
3)结点之间的关系:设线性表记为(a1,a2,…a i-1 , a i, a i+1 ,…a n),称a i-1是a i的直接前驱结点....(简称前驱),a i+1是a i的直接后继结点....(简称后继)。
4)线性表的性质:①线性表结点间的相对位置是固定..的,结点间的关系由结点在表中的位置确定。
②如果两个线性表有相同的数据结点,但它们的结点顺序不一致,该两个线性表也是不相等的。
注意:线性表中结点的类型可以是任何数据(包括简单类型和复杂类型),即结点可以有多个成分,其中能唯一标识表元的成分称为关键字(key),或简称键。
以后的讨论都只考虑键,而忽略其它成分,这样有利于把握主要问题,便于理解。
『经典例题解析』线性表的特点是每个元素都有一个前驱和一个后继。
( )【答案】错误。
【解析】线性表的第一个数据元素没有前驱,最后一个元素没有后继。
其余的所有元素都有一个前驱和后继。
2.线性表的抽象数据类型线性表是一个相当灵活的数据结构,其长度可以根据需要增加或减少。
从操作上讲,用户不仅可以对线性表的数据元素进行访问操作,还可以进行插入、删除、定位等操作。
1)线性表的基本操作假设线性表L有数据对象 D={ai | ai∈ElemSet,i=1,2,3,…,n,n>=0},数据元素之间的关系R={<ai-1,ai>|ai-1,ai∈D,i=1,2,…,n},则线性表L的基本操作如下所示:●InitList(&L):其作用是构造一个长度为0的线性表(空线性表);●DestoryList(&L):其作用是销毁当前的线性表L;●ClearList(&L):清空线性表L,使之成为空表;●ListLength(L):返回线性表L的长度,即线性表中数据元素的个数;●ListEmpty(L) :判断线性表L是否为空表,是则返回True,否则返回False;●GetElem(L,i,&e):将线性表L中第i个数据元素的值返回到变量e中;●LocateELem(L,e,compare( )) :判断线性表L中是否存在与e满足compare()条件的数据元素,有则返回第一个数据元素;●PriorElem(L,cur_e,&pri_e):返回线性表L中数据元素cur_e的前驱结点;●NextElem(L,cur_e,&next_e):返回线性表L中数据元素cur_e的后继结点;●ListInsert(&L,i,e):向线性表L的第i个位置之前插入一个数据元素,其值为e;●ListDelete(&L,i,&e):删除线性表L的第i个数据元素,并将该数据元素的值返回到e中;●ListTraverse(L,visit()):遍历线性表中的每个数据元素。
数据结构第1讲---线性表

34F2 地址 被释放,变 量P与地址 34F2没有关 系
p1^
200 34F2
34F2
new(p1) ——向计算机申请内存地址 p1^:=200 ——给p1指向的单元赋值 dispose(p1) ——释放存储单元
链式结构——什么是指针
Type p=^integer; arr=array[1..4] of char; arrp = ^arr; Var p1:p; p2:arrp;
线性结构 数据的逻辑结构 数 据 结 构 树形结构 图形结构 数据的存储结构 顺序存储
链式存储
数据结构的基本运算 :查找、插入、删除等
三、线性结构——线性表
1、线性表的概念
线性表是由n(n≥0)个具有相同特性数据元素(结点)
a1,a2,…,an组成的有限序列。
线性表的长度:所含元素的个数,用n表示,n>=0。
在我们生活中有哪些属于线性表的例子,列举几个。 1、英文字母表(A,B,…,Z)是线性表, 表中每个字母是一个数据元素(结点)
2、学生成绩表中,每个学生及其成绩是一
个数据元素,其中数据元素由学号、姓名、
各科成绩及平均成绩等数据项组成。
4、线性表的顺序存储
顺序存储是线性表的一种最 简单的存储结构,存储方式是: 在内存中为线性表开辟一块连 续的存储空间。用数组来存放 每一个节点。
[例4-2] 法雷序列
[问题描述]对任意给定的一个自然数n(n<=100),将 分母小于等于n的不可约的真分数按上升次序排序,并 且在第一个分数前加0/1,而在最后一个分数后加1/1, 这个序列称为n级的法雷序列。 当n=8时序列为:0/1, 1/8, 1/7, 1/6,1/5, 1/4,2/7,1/3,3/8, 2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4, 4/5,5/6,6/7,7/8, 1/1 。 编程求出n级的法雷序列,每行输出10个分数。
数据结构第二章:线性表

实现:可用C 实现:可用C语言的一维数组实现
6
V数组下标 0 1
内存 a1 a2
元素序号 1 2
typedef int DATATYPE; #define M 1000 DATATYPE data[M]; 例 typedef struct card { int num; char name[20]; char author[10]; char publisher[30]; float price; }DATATYPE; DATATYPE library[M];
4
{加工型操作 加工型操作} 加工型操作
ClearList( &L ) 初始条件:线性表 L 已存在。 操作结果:将 L 重置为空表。 PutElem( &L, i, &e ) 初始条件:线性表L已存在,1≤i≤LengthList(L)。 操作结果:L 中第 i 个元素赋值同 e 的值 ListInsert( &L, i, e ) 初始条件:线性表 L 已存在,1≤i≤LengthList(L)+1。 操作结果:在 L 的第 i 个元素之前插入新的元素 e,L 的长度增1。 ListDelete( &L, i, &e ) 初始条件:线性表 L 已存在且非空,1≤i≤LengthList(L)。 操作结果:删除 L 的第 i 个元素,并用 e 返回其值,L 的长度减1。 }ADT LIST
3
PriorElem( PriorElem L, cur_e, &pre_e ) 初始条件:线性表 L 已存在。 操作结果:若 cur_e 是 L 中的数据元素,则用 pre_e 返回 它的前驱,否则操作失败,pre_e 无定义。 NextElem( NextElem L, cur_e, &next_e ) 初始条件:线性表 L 已存在。 操作结果:若 cur_e 是 L 中的数据元素,则用 next_e 返 回它的后继,否则操作失败,next_e 无定义。 GetElem( GetElem L, i, &e ) 初始条件:线性表 L 已存在,1≤i≤LengthList(L)。 操作结果:用 e 返回 L 中第 i 个元素的值。 LocateElem( LocateElem L, e, compare( ) ) 初始条件:线性表 L 已存在,compare( ) 是元素判定函数。 操作结果:返回 L 中第1个与 e 满足关系 compare( ) 的元 素的位序。若这样的元素不存在,则返回值为0。 ListTraverse(L, visit( )) ListTraverse 初始条件:线性表 L 已存在,visit( ) 为元素的访问函数。 操作结果:依次对 L 的每个元素调用函数 visit( )。 一旦 visit( ) 失败,则操作失败。
03、1数据结构第一部分--线性表-树与二叉树

数据结构(一)目录第1章序论 (1)1.1 什么是数据? (1)1.2 什么是数据元素? (1)1.3 什么是数据结构及种类? (1)1.4 数据的逻辑结构 (1)1.5 数据的物理结构 (1)1.6 算法和算法分析 (1)1.7 算法的五个特性 (1)1.8 算法设计的要求 (2)1.9 算法效率的度量 (2)第2章线性表 (3)2.1 线性表举例 (3)2.2 线性表的存储 (4)2.3 线性表-栈 (4)2.4 队列 (4)2.5 双端队列 (6)第3章树和二叉树 (6)3.1 树 (6)3.1.1 树的基本概念 (6)3.1.2 树的常用存储结构 (6)3.1.3 树的遍历 (7)3.2 二叉树 (7)3.2.1 二叉树的基本概念 (7)3.2.2 二叉树与树的区别 (7)3.2.3 树及森林转到二叉树 (7)3.2.4 二叉树的性质 (8)3.2.5 满二叉树 (8)3.2.6 完全二叉树 (8)3.2.7 完全二叉树的性质 (9)3.2.8 二叉树的四种遍历 (9)3.2.9 二叉排序树 (10)3.2.10 平衡二叉树 (11)3.2.11 m阶B-树 (11)3.2.12 最优二叉树 (11)3.2.13 二叉树的存储结构 (12)3.3 广义表 (13)3.4 矩阵的压缩存储 (14)3.4.1 特殊矩阵 (14)3.4.2 压缩存储 (14)第4章历年真题讲解 (15)4.1 2009年上半年 (15)4.2 2009年下半年 (15)4.3 2010年上半年 (15)4.4 2011年上半年 (16)4.5 2011年下半年 (16)4.6 2012年上半年 (17)4.7 2012年下半年 (17)4.8 2013年上半年 (18)4.9 2013年下半年 (18)4.10 2014年上半年 (18)4.11 2014年下半年 (19)4.12 2015年上半年 (19)4.13 2015年下半年 (19)4.14 2016年上半年 (20)第1章序论什么是数据?所有能输入到计算机中并能够被计算机程序处理的符号的总称,它是计算机程序加工的原料。
02331自考数据结构 第二章 线性表

return ;
}
if ( L -> length >= ListSize ){
printf (" overflow ");
return ;
}
for ( j - L -> length -1; j >= i -1; j --)
L ->data [ j +1]= L -> data [ j ]; //从最后一个元素开始逐一后移
线性表的基本运算
上述运算仅仅是线性表的基本运算,不是其全部运 算。因为对不同问题的线性表,所需要的运算可能不同。 因此,对于实际问题中涉及其他更为复杂的运算,可用 基本运算的组合来实现。
线性表的基本运算
【例2.1】假设有两个线性表 LA 和 LB 分别表示两个 集合 A 和 B ,现要求一个新集合 A = A∪B 。
线性表的逻辑定义
数据元素“一个接一个的排列”的关系叫做 线性关系,线性关系的特点是“一对一”,在计 算机领域用“线性表”来描述这种关系。另外, 在一个线性表中数据元素的类型是相同的,或者 说线性表是由同一类型的数据元素构成的,如学 生情况信息表是一个线性表,表中数据元素的类 型为学生类型;一个字符串也是一个线性表:表 中数据元素的类型为字符型等等。
,
a2
i
,…,
ai-1
,
a.aii++1.1 , .…,
an
)
an
线性表n的-1逻辑结an构和存储结构都发…生了相应的变化, 与插入运算相反,插…入是向后移动元素,而删除运算则
是向前移M动AX元-1 素,除非i=n 时直接删除终端元素,不需移
动元素。
删除前
删除后
数据结构线性表

数据结构线性表一、引言数据结构是计算机存储、组织数据的方式,它决定了数据访问的效率和灵活性。
在数据结构中,线性表是一种最基本、最常用的数据结构。
线性表是由零个或多个数据元素组成的有限序列,其中数据元素之间的关系是一对一的关系。
本文将对线性表的概念、分类、基本操作及其应用进行详细阐述。
二、线性表的概念1.数据元素之间具有一对一的关系,即除了第一个和一个数据元素外,其他数据元素都是首尾相连的。
2.线性表具有唯一的第一个元素和一个元素,分别称为表头和表尾。
3.线性表的长度是指表中数据元素的个数,长度为零的线性表称为空表。
三、线性表的分类根据线性表的存储方式,可以将线性表分为顺序存储结构和链式存储结构两大类。
1.顺序存储结构:顺序存储结构是将线性表中的数据元素按照逻辑顺序依次存放在一组地质连续的存储单元中。
顺序存储结构具有随机访问的特点,可以通过下标快速访问表中的任意一个元素。
顺序存储结构的线性表又可以分为静态顺序表和动态顺序表两种。
2.链式存储结构:链式存储结构是通过指针将线性表中的数据元素连接起来,形成一个链表。
链表中的每个节点包含一个数据元素和一个或多个指针,指向下一个或前一个节点。
链式存储结构具有动态性,可以根据需要动态地分配和释放节点空间。
链式存储结构的线性表又可以分为单向链表、双向链表和循环链表等。
四、线性表的基本操作线性表作为一种数据结构,具有一系列基本操作,包括:1.初始化:创建一个空的线性表。
2.插入:在线性表的指定位置插入一个数据元素。
3.删除:删除线性表中指定位置的数据元素。
4.查找:在线性表中查找具有给定关键字的数据元素。
5.更新:更新线性表中指定位置的数据元素。
6.销毁:释放线性表所占用的空间。
7.遍历:遍历线性表中的所有数据元素,进行相应的操作。
8.排序:对线性表中的数据元素进行排序。
9.合并:将两个线性表合并为一个线性表。
五、线性表的应用1.程序语言中的数组:数组是一种典型的顺序存储结构的线性表,常用于存储具有相同类型的数据元素。
数据结构 线性表

(9) Status NextElem_Sq(SqList L, ElemType cur_e, ElemaType &next_e)
//若cur_e是线性表L的元素且不是最后一个,返回它的后继 { for (i=0; i<L.length-1; i++) if (cur_e==L.elem[i]) { next_e=L.elem[i+1]; return OK; } return ERROR; }//NextElem_Sq O(n)
抽象数据类型 唯 一 数据的逻辑结构 确 操作的定义 定
集合 *
线性表
特殊线性表 扩展线性表
线性结构
树形结构 图形结构
灵 活 数据的存储结构 操作的实现 设 计
顺序存储 链式存储 散列(哈希)存储
数据的基本操作:针对结构、针对元素、针对状态
数据结构---第二章 线性表 1
第二章 线性表
2.1 2.2 2.3 2.4
数据结构---第二章 线性表
9
2.2 线性表的顺序存储结构(顺序表)
起始地址为b、最多可容纳maxlen个元素的线性表
下标 存储地址
0
1
b b+c
b+(i-1)c
a1 a2
ai
c个存储单元
i-1
LOC(ai)=LOC(a1)+(i-1)c LOC(ai)=LOC(ai-1)+c
n-1
b+(n-1)c
n-1
int LocateElem_Sq(SqList L, ElemType e, (7) Status (*compare)(ElemType,ElemType) ) //在线性表L中查找第1个值与e满足 //compare()的元素的位序 { for (i=0; i<L.length; i++) L.elem[i]==e if ( (*compare)(L.elem[i],e) ) return i+1; return 0 ; //作为未找到的特殊标记 } // LocateElem_Sq O(n) P25-2.6
数据结构课件第2章线性表

27
线性表的顺序存储结构适用于数据 元素不经常变动或只需在顺序存取设备 上做成批处理的场合。为了克服线性表 顺序存储结构的缺点,可采用线性表的 链式存储结构。
28
2.3 线性表的链式存储结构
线性表的链式存储表示 基本操作在单链表上的实现 循环链表 双向链表 线性表链式存储结构小结
2.3.1 线性表的链式存储表示 29
2.1.1 线性表的定义
6
一个线性表(linear_list)是 n(n≥0)个具有相同属性的数 据元素的有限序列,其中各元素有着依次相邻的逻辑关系。
线性表中数据元素的个数 n 称为线性表的长度。当 n = 0 时 该线性表称为空表。当 n > 0 时该线性表可以记为:
(a1,a2,a3,…,ai,…,an)
数据域 指针域
结点 data next
31
(2) 线性表的单链表存储结构
通过每个结点的指针域将线性表中 n 个结点按其逻辑顺序链 接在一起的结点序列称为链表,即为线性表 ( a1, a2, a3, …, ai, …, an ) 的链式存储结构。如果线性链表中的每个结点只有一个指针域, 则链表又称为线性链表或单链表 (linked list)。
17
(2) 算法编写
#define OK 1
#define ERROR 0
Int InsList ( SeqList *L, int i, ElemType e ) /*在顺序线性表 L 中第 i 个位置插入新的元素 e。*/ /* i 的合法值为 1≤i ≤L->last+2*/ {
int k; if ( i < 1) ||( i > L->last+2)) /*首先判断插入位置是否合法*/ { printf(“插入位置i值不合法”);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
从以上例子可看出线性表 ( a1 ,… ,a i ,a i+1 , … , an )的逻辑特征是: 在非空的线性表,有且仅有一个开始结点a1,它没有 直接前趋,而仅有一个直接后继a2; 有且仅有一个终端结点an,它没有直接后继,而仅有 一个直接前趋a n-1; 其余的内部结点ai(2≤ i≤ n-1)都有且仅有一个直接 前趋a i-1和一个直接后继a i+1。 线性表是一种典型的线性结构。 线性表的长度可根据需要增长或缩短。 数据的运算是定义在逻辑结构上的,而运算的具体 实现则是在存储结构上进行的。 抽象数据类型的定义为:P19
// La和Lb均非空 bj);
++k, ai);
++k, bj);
数据结构 第二章 线性表
9
2.2 线性表的顺序存储结构
2.2.1 线性表 把线性表的结点按逻辑顺序依次存放在一组地址连 续的存储单元里。用这种方法存储的线性表简称顺序 表。 假设线性表的每个元素需占用l个存储单元,并以所 占的第一个单元的存储地址作为数据元素的存储位置。 则线性表中第i+1个数据元素的存储位置LOC( a i+1)和 第i个数据元素的存储位置LOC(ai )之间满足下列关系: LOC(a i+1)=LOC(a i)+l 线性表的第i个数据元素ai的存储位置为: LOC(ai)=LOC(a1)+(i-1)*l
数据结构 第二章 线性表
4
数据结构 第二章 线性表
5
…
}ADT list
数据结构 第二章 线性表
6
例2-1 利用两个线性表LA和LB分别表示两个集合A和B, 现要求一个新的集合A=A∪B。
void Union(List &La, List Lb) { // 算法2.1 // 将所有在线性表Lb中但不在La中的数据元素插入到La中 La_len = ListLength(La); // 求线性表的长度 Lb_len = ListLength(Lb); for (i=1; i<=Lb_len; i++) { GetElem(Lb, i, e); // 取Lb中第i个数据元素 赋给e if (!LocateElem(La, e, equal)) // La中不存在和e相同的 数据元素 ListInsert(La, ++La_len, e); // 插入 } } // union
数据结构 第二章 线性表
17
这里的问题规模是表的长度,设它的值为n。该算法的时间主要花费在循 环的结点后移语句上,该语句的执行次数(即移动结点的次数)是n-i+1。 由此可看出,所需移动结点的次数不仅依赖于表的长度,而且还与插入位 置i有关 当i=n+1时,由于循环变量的终值大于初值,结点后移语句将不进行;这是 最好情况,其时间复杂度O(1); 当i=1时,结点后移语句将循环执行n次,需移动表中所有结点,这是最坏 情况O(n),由于插入可能在表中任何位置上进行,因此需分析算法的平 均复杂度 在长度为n的线性表中第i个位置上插入一个结点,令Eis(n)表示移动结点的 期望值(即移动的平均次数),则在第i个位置上插入一个结点的移动次数 为n-i+1。故 Eis(n)= pi(n-i+1) 不失一般性,假设在表中任何位置(1 ≤ i ≤ n+1)上插入结点的机会是均等 的,则 p1=p2=p3=…=p n+1=1/(n+1) 因此,在等概率插入的情况下, Eis(n)= n/2 也就是说,在顺序表上做插入运算,平均要移动表上一半结点。当表长 n 较大时,算法的效率相当低。虽然Eis(n)中n的的系数较小,但就数量级而 言,它仍然是线性阶的。因此算法的平均时间复杂度为O(n)。 数据结构 第二章 线性表 18
数据结构 第二章 线性表
10
数据结构 第二章 线性表
11
由于C语言中的一维数组也是采用顺序存储表 示,故可以用数组类型来描述顺序表。用动态 分配的一维数组描述:
# define LIST_INIT_SIZE 100//线性表存储空间的初始 分配量 # define LISTINCREMENT 10 //线性表存储空间的分 配增量 typedef struct{ ElemType *elem; //存储空间基地址 int length; //当前长度 int listsize; //当前分配的存储容量 } Sqlist;
数据结构 第二章 线性表
8
while ((i <= La_len) && (j <= Lb_len)) { GetElem(La, i, ai); GetElem(Lb, j, if (ai <= bj) { ListInsert(Lc, ++k, ai); ++i; } else { ListInsert(Lc, ++k, bj); ++j; } } while (i <= La_len) { GetElem(La, i++, ai); ListInsert(Lc, } while (j <= Lb_len) { GetElem(Lb, j++, bj); ListInsert(Lc, } } // MergeList
数据结构 第二章 线性表
20
该算法的时间分析与插入算法相似,结点的移动次数也是由表长n 和位置i决定。 若i=n,则由于循环变量的初值大于终值,前移语句将不执行, 无需移动结点; 若i=1,则前移语句将循环执行n-1次,需移动表中除开始结点 外的所有结点。这两种情况下算法的时间复杂度分别为O(1)和 O(n)。 删除算法的平均性能分析与插入算法相似。在长度为n的线性 表中删除一个结点,令Ede(n)表示所需移动结点的平均次数,删 除表中第i个结点的移动次数为n-i,故 Ede(n)= pi(n-I) 式中,pi表示删除表中第i个结点的概率。在等概率的假设下, p1=p2=p3=…=pn=1/n 由此可得: Ede(n)= (n-I)/n=(n-1)/2 即在顺序表上做删除运算,平均要移动表中约一半的结点,平均时 间复杂度也是O(n)。
数据结构 第二章 线性表
13
2.2.2 顺序表上实现的基本操作 在顺序表存储结构中,很容易实现线性表的 一些操作,如线性表的构造、第i个元素的访问。 注意:C语言中的数组下标从“0”开始,因此, 若L是Sqlist类型的顺序表,则表中第i个元素是 l.data[i-1]。 以下主要讨论线性表的插入和删除两种运算。
ElemType *q = &(L.elem[i-1]); // q为插入位置 for (p = &(L.elem[L.length-1]); p>=q; --p) *(p+1) = *p; // 插入位置及之后的元素右移 *q = e; // 插入e ++L.length; // 表长增1 return OK; } // ListInsert_Sq
第二章
2.1 线性表的类型定义 2.2 线性表的顺序表示和实现 2.3 线性表的链式表示和实现 2.3.1 线性链表 2.3.2 循环链表 2.3.3 双向链表
线性表
数据结构
1
2.1 线性表的逻辑结构
线性表(Linear List) :由n(n≥ 0)个数据元素(结点)a1,a2, …an组 成的有限序列。其中数据元素的个数n定义为表的长度。当n=0时 称为空表,常常将非空的线性表(n>0)记作: (a1,a2,…an) 这里的数据元素ai(1≤ i≤ n)只是一个抽象的符号,其具体含义在 不同的情况下可以不同。 例1、26个英文字母组成的字母表 (A,B,C、…、Z) 例2、某校从1978年到1983年各种型号的计算机拥有量的变化情况。 (6,17,28,50,92,188)
2、删除 线性表的删除运算是指将 表的第i(1≦i≦n)结点删除, 使长度为n的线性表: (a1,…a i-1,ai,a i+1…,an) 变成长度为n-1的线性表 (a1,…a i-1,a i+1,…, an )
数据结构 第二章 线性表
19
Status ListDelete_Sq(SqList &L, int i, ElemType &e) { // 算法 2.5 // 在顺序线性表L中删除第i个元素,并用e返回其值。 // i的合法值为1≤i≤ListLength_Sq(L)。 ElemType *p, *q; if (i<1 || i>L.length) return ERROR; // i值不合法 p = &(L.elem[i-1]); // p为被删除元素的位置 e = *p; // 被删除元素的值赋给e q = L.elem+L.length-1; // 表尾元素的位置 for (++p; p<=q; ++p) *(p-1) = *p; // 被删除元素之后的元素左 移 --L.length; // 表长减1 return OK; } // ListDelete_Sq
数据结性表LA和线性表LB中的数据元素按值非 递减有序排列,现要求将LA和LB归并为一个新的线性 表LC,且LC中的元素仍按值非递减有序排列。 此问题的算法如下:
void MergeList(List La, List Lb, List &Lc) { // 算法2.2 // 已知线性表La和Lb中的元素按值非递减排列。 // 归并La和Lb得到新的线性表Lc,Lc的元素也按值非递减排列。 InitList(Lc); La_len = ListLength(La); Lb_len = ListLength(Lb);