立体几何中的轨迹判断问题(学案)

合集下载

202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析

202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析

第四节直线、平面平行的判定及其性质课标要求考情分析1。

以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.2.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.知识点一直线与平面平行的判定定理和性质定理应用判定定理时,要注意“内”“外"“平行”三个条件必须都具备,缺一不可.知识点二平面与平面平行的判定定理和性质定理1。

平面与平面平行还有如下判定:如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.2.平面与平面平行还有如下性质:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a与平面α内无数条直线平行,则a∥α。

(×)(3)若直线a∥平面α,P∈平面α,则过点P且平行于a 的直线有无数条.(×)(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)2.小题热身(1)如果直线a∥平面α,那么直线a与平面α的(D) A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交(2)下列命题中正确的是(D)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α(3)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)如图,在正方体ABCD。

立体几何中的轨迹交汇问题解析

立体几何中的轨迹交汇问题解析

立体几何中的轨迹问题以立体图形为载体的轨迹问题,将立体几何和解析几何巧妙地整合在一起,立意新颖,综合性强,是新课程高考命题的一大趋势。

解答这类问题的关键是把空间问题转化为平面问题,一般可从两个方面考虑:一是利用曲线的定义,二是用解析法求出轨迹方程。

例1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A. 一个圆B. 两条平行直线C. 四个点D. 两个点简析:如图1,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4。

在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上。

又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。

因此所求点的轨迹是四个点,故选C 。

例2. 如图2,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB 。

所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B 。

例3 (04年北京高考题)在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 与直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )A . 直线B .圆C .双曲线D .抛物线 分析 如图1,由C D 11⊥平面BB C C 11,得1PC ⊥C D 11,所以1PC 就是点P 到直线C D 11的距离,因此条件转化为点P 到BC 的距离等于点P 到点1C 的距离.根据抛物线的定义,点P 的轨迹所在的曲线是抛物线.选D .变式1:. 已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线 B. 双曲线C. 椭圆 D. 直线简析:以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系。

高考数学核心考点必备专题8-1 立体几何中的轨迹问题-(解析版)-2023年高考数学

高考数学核心考点必备专题8-1  立体几何中的轨迹问题-(解析版)-2023年高考数学

专题8-1 立体几何中的轨迹问题目录一、热点题型归纳 (1)【题型一】由动点保持平行求轨迹 .................................................................................................................. 1 【题型二】由动点保持垂直求轨迹 .................................................................................................................. 2 【题型三】由动点保持等距(或定长)求轨迹 .............................................................................................. 4 【题型四】由动点保持等角(或定角)求轨迹 .............................................................................................. 5 【题型五】投影求轨迹 ...................................................................................................................................... 6 【题型六】翻折与动点求轨迹 .......................................................................................................................... 7 二、最新模考题组练 .. (8)【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC 中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( ) A .点1B B .线段1B C C .线段11B C D .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ∥点P 可以是棱1BB 的中点;∥线段MP 的最大值为34;∥点P 的轨迹是正方形;∥点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( ) A .直线 B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6πD .3π3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ∥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。

立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。

高考立体几何中的轨迹问题

高考立体几何中的轨迹问题

高考立体几何中的轨迹问题作者:熊琴来源:《读写算·教研版》2013年第19期摘要:高考是检验学生知识水平的一场最重要的考试,是许多学生的命运转折点,也是决定着以后发展方向的转折点。

虽然现在高考对于人才选拔的作用较之过去有些衰减,但是就现在的教育制度来说,高考依旧是当今人才选拔的重要工具。

数学是高考中最重要的三大主科之一,主要是考察学生的逆向思维能力,推理能力,逻辑能力,平面图形认知和应用典型平面图形的能力,以及空间思维能力等,可以说数学因其独特的思维方式在高考以及现实生活当中,都有着其他学科无法超越的优越性和不可替代性。

本文从高考中的立体几何入手,着重讲解其中的一些基本的思维方式和解题方法,解开几何当中轨迹问题的神秘面纱。

关键词:高考;抛物线,立体几何中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)19-115-01立体几何中的轨迹问题,作为一种新的题型在近几年的高考与高考模拟试题中多有出现。

这类问题作为解析几何与立体几何的交汇点,由于新颖,综合性强,倍受命题者青睐,在高考复习过程中应给予重视。

本文结合几个实例,对这类问题的常见解题思路进行归纳。

【解析】点P到直线的距离即为点P到点的距离,故在平面中,点P到定点的距离与到定直线BC的距离相等,由抛物线定义知其轨迹为抛物线,故选D。

【方法归纳】以考查圆锥曲线为背景的轨迹问题,常通过距离的转化,利用圆锥曲线的定义分析轨迹类型。

【要点】定义法要求学生了解定义的基本原理,并能够简单应用到题目当中,对于一些难度稍大的综合性比较强的题目,要培养学生的知识延伸的能力和思维空间等想象能力。

这类题型要逐步培养学生挖掘一些隐含条件中对于定义的把握,只有真正的把握好定义,才能对于这类题型得心应手,才能事半功倍。

【解析】在空间,过定点与垂直的动直线系构成:过点A且与直线垂直的平面。

又由动点C在平面内,所以动点的轨迹是平面与平面的公共部分,即一条直线。

立体几何和圆锥曲线的珠联壁合之——空间轨迹问题

立体几何和圆锥曲线的珠联壁合之——空间轨迹问题

立体几何和圆锥曲线的珠联壁合之——空间轨迹问题【考点解析】立体几何中的轨迹问题因立意新颖,综合性强,而倍受高考命题者的青睐。

正方体是空间图形中既简单熟悉、又重要的几何体,它具有丰富的内涵,而在正方体中所涉及的轨迹问题,更是别具一格。

求解此类问题的的关键是要把相关的平行与垂直的位置关系,以及距离与角度的数量关系化归转化为平面问题来解决。

通常有以下三种解题策略。

一、阿波罗尼法2000多年前,古希腊数学家最先研究圆锥曲线,并获得了大量的成果。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到与圆锥的母线平行时,得到的是抛物线;继续倾斜得到的是双曲线。

记锥轴为m ,母线为l , 切割圆锥的平面为α,令m 与l 所成的轴线角为θ,m 与平面α所成路的轴面角为ψ,则当0≤ψ<θ时,所截得的曲线是双曲线;当ψ=θ时,所截得的曲线是抛物线;当θ<ψ≤π2时,所截得的曲线是双曲线.例1.(1)如图,AB 是平面α的斜线段,点A 是斜足,若点P 在平面α内运动,且△ABP 的面积为定值,则动点P 的轨迹为( ) A .圆 B.椭圆 C.一条直线 D.两条平行线答案 B解析:∵AB 的长是定的,∴ S △ABP =12 |AB |×d p -l 为定值,即点P 到AB 的距离d p -l 为定值. ∴动点P 的轨迹是平面α截圆柱面所得的曲线,即为椭圆.(2)如图,设B ,C 为定点,且均不在平面α上,动点A 在平面α上,且sin ∠ABC =12 ,则动点A 的轨迹为( )A .圆或椭圆 B.抛物线或双曲线 C. 椭圆或双曲线 D.以上均有可能 答案 D解析:∵sin ∠ABC =12 ,∴AB 和BC 的夹角是π6,即轴线角θ为300,设BC 与平面α所成的轴面角为ψ,则0≤ψ≤π2,∴0≤ψ<π6,ψ=π6,π6<ψ≤π2均有可能,故选D.【变式1】平面α的斜线AB 交α点B 且与α成π3角,平面α内一动点C 满足∠BAC =π6,则动点C 的轨迹为( )A .一条直线 B. 一个圆 C. 一个椭圆 D.双曲线一支 答案 C解析:∵AB 是圆锥的轴,AC 是圆锥的母线,动点C 满足∠BAC =π6,∴轴线角θ为π6,∵平面α的斜线AB 交α点B 且与α成π3角,∴轴面角ψ为π3,∴ψ>θ,∴动点C 的轨迹为椭圆【变式2】平面α的斜线AB 交α点B 且与α成θ角,平面α内一动点C 满足∠BAC =π6,若动点C 的轨迹为椭圆,则θ的取值范围是 . 答案 π6<θ<π2解析:轴线角为π6,轴面角为θ,∵动点C 的轨迹为椭圆,∴θ>π6 ,又AB 是平面α的斜线,∴θ<π2.例2.(1)已知点P 在正方体ABCD -A 1B 2C 3D 4的侧面BB 1C 1C 中,且满足∠PD 1D=∠BD 1D ,则动点P 轨迹所在曲线为( )A .圆 B.椭圆 C.双曲线 D.抛物线 答案 C解析:∵轴线角θ=∠PD 1D=∠BD 1D ,∴tan θ= 2 ,∵D 1D ∥面BB 1C 1C ,∴轴面角ψ=0,∴ψ<θ, ∴动点P 轨迹所在曲线为双曲线.【变式1】若改成P 在平面ABC 1D 1上,动点的轨迹是什么? 答案 C解析:∵轴线角θ=∠PD 1D=∠BD 1D ,∴tan θ= 2 ,∵D 1D 与面ABC 1D 1所成的轴面角ψ满足tan ψ=1,∴ψ<θ, ∴动点P 轨迹所在曲线为双曲线. 【变式2】你还可以怎么出题?还可以变轴,如将条件置换为∠PD 1C=∠BD 1C ,此时轴线角θ满足tan θ=22,此时D 1C 与面BB 1C 1C 所成的轴面角ψ满足tan ψ=1,∴ψ>θ, ∴动点P 轨迹所在曲线为椭圆. 二、定义法运用解析几何中曲线定义,来识别动点轨迹的曲线类型. 例3(1)在正方体ABCD -A 1B 2C 3D 4中,点P 在面A 1BCD 1内运动,且点P 到直线AB 1和BC 的距离相等,则动点P 的轨迹为( ) A .圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分 答案 D解析:设AB 1∩A 1B =O ,易证AB 1⊥面A 1BCD 1,∴AB 1⊥OP ,∴点P到直线AB 1的距离为|OP|,∴|OP|=d P -BC ,且定点O 不在定直线BC 上,∴动点P 的轨迹为抛物线的一部分【变式1】若将“P 到直线AB 1和BC 的距离相等”改为“P 到直线AB 1和BC 的距离之比为12”,则动点P 的轨迹所在的曲线是 . 解析:由圆锥曲线的统一定义得该曲线的离心率是12,故动点P 的轨迹是椭圆的一部分.【变式2】若将“P 到直线AB 1和BC 的距离相等”改为“P 到直线AB 1和BC 的距离之比为2”,则动点P 的轨迹所在的曲线是 .解析:由圆锥曲线的统一定义得该曲线的离心率是2,故动点P 的轨迹是双曲线的一部分.例3(2)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(3) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 .(4) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 .(5) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为 2 的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为 2 的点的集合”改为“在正方体表面上与点A 距离为 2 的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .(6)已知正方体ABCD —A 1B 1C 1D 1的棱长为6,长为4的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 课后作业1、如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是( )2.若三棱锥A BCD -侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成图形可能是 ()CC 1A1A1A A1A 1(2)(3)(4)(5)C D CD CA .B .C .D .A .B .C .D .3.四棱锥P ABCD -底面为正方形,侧面PAD 为等边三角形,且侧面PAD ⊥底面ABCD ,点M 在底面正方形ABCD 内运动,且满足MP MC =,则点M 在正方形ABCD 内的轨迹一定是( )A. B.C. D.4.在棱长为4的正方体1111D C B A ABCD -中, ,E F 分别是AD ,11A D 的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面1111A B C D 上运动,则线段MN 的中点P 的轨迹(曲面)与二面角111A A D B --所围成的几何体的体积为 ( ) A.43π B. 23π C. 3π D. 6π5.四棱锥P ABCD -中,AD ⊥面PAB ,BC ⊥面PAB ,底面ABCD 为梯形,4AD =,8BC =,6AB =,APD CPB ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是 ( )A. 圆的一部分B. 椭圆的一部分C. 球的一部分D. 抛物线的一部分6.在空间直角坐标系O -xyz 中,正四面体P —ABC 的顶点A ,B 分别在x 轴和y 轴上移动.若该正四面体的棱长为2,则|OP |的取值范围是( )A .[3-1,3+1] B. [0, 28] C. [3-1,2] D.[1,3+1]。

高中数学立体几何中动点的轨迹问题公开课教学课件

高中数学立体几何中动点的轨迹问题公开课教学课件

3 2
B .
2
13 5
FE
A
D
C
.m
3 2
m
3
2 2
D.m 2
13 5
m
3 2
B
C
例2. 在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内 一动点,若P到直线BC与直线C1D1的距离相等,则动 点P的轨迹所在的曲线是 ( )
A.直线
B.圆
C.双曲线 D.抛物线
空间动点问题策略二: 空间问题平面化
常见的解题策略有: (1)动态问题静态化
(2)空间问题平面化 转化思想
(3)动态问题坐标化
批评指正
思考.已知直线l与平面α成60°角,平面α外的点A在直 线l上, B点在平面α上,且直线AB与直线l成60°角, 则点B的轨迹是
A.一条直线 B.抛物线 C.椭圆 D.双曲线
D1 A1
E D
A
C1
B1 F
C
B
练 习1.如 图 正 方 体ABCD A1B1C1D1中, E为 棱DD1上 的
一 点, DE
1 3
DD1,F为 侧 面CDD1C1上 的 动 点,且
B1F 平 面A1BE ,则B1F与 平 面CDD1C1所 成 角 的 正
切值构成的集合为
A1
D1
B1
C1
A.
A.圆 的 一 部 分
B.椭 圆 的 一 部 分
C.双 曲 线 的 一 部 分 D.抛 物 线 的 一 部 分
D1
C1
探究:
A1
B1
条件变一变, 得到其他选项
A
DP
C
B
练习4.(2008浙江)如图AB是平面α的斜线段,A为 斜足,若点P在平面 α内运动,使得△ABP的面积 为定值,则动点P的轨迹是

高考专题 立体几何中轨迹、翻折、探索性问题

高考专题 立体几何中轨迹、翻折、探索性问题
返回导航
12
解析:如图所示,连接 AC1 交平面 A1BD 于 O,连接 EO, 由题意可知 AC1⊥平面 A1BD, 所以∠AEO 是 AE 与平面 A1BD 所成的角,所以∠AEO=α.
返回导航
13
由 sin α=255可得 tan α=2,即AEOO=2. 在四面体 A-A1BD 中,BD=A1D=A1B=2 6, AB=AD=AA1=2 3,所以四面体 A-A1BD 为正三棱锥,O 为△BDA1 的重心,
返回导航
17
∴平面 BCE∥平面 MND,即平面 MND 为平面 α, 则点 G 到平面 DMN 的距离 d 即为点 G 到直线 DQ 的距离, ∵D→G=0, 33,- 36,D→Q=(0,-2 3,- 6), ∴D→G·D→Q=-2+2=0,即 DG⊥DQ, ∴点 G 到直线 DQ 的距离 d=|D→G|=1, ∴截面圆的半径 r= 22-12= 3,∴球被平面 α 截得的截面圆周长为 2πr=2 3π, 即平面 α 截点 P 的轨迹所形成的图形的周长为 2 3π.
返回导航
19
解: (1)证明:在△ABD 中,由余弦定理得,BD= AB2+AD2-2AB·ADcos A= 4+1-2×2×1×12= 3,
∴AD2+BD2=AB2,得 AD⊥DB,翻折后有 A′D⊥DB, 又平面 A′BD⊥平面 BCD,且平面 A′BD∩平面 BCD=DB, 根据平面与平面垂直的性质定理可得 A′D⊥平面 BCD, 又∵BC⊂平面 BCD,∴A′D⊥BC. 在平行四边形 ABCD 中,AD⊥DB,BC∥AD,∴BC⊥DB, ∵A′D∩DB=D,∴BC⊥平面 A′DB, ∵BC⊂平面 A′BC,∴平面 A′BC⊥平面 A′BD.
返回导航
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的轨迹判断问题
1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为2
9
的点的轨迹是( ) A. 一个圆
B. 两条平行直线
C. 四个点
D. 两个点
2.已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )
A .一个圆 B.两条直线 C.两个点 D.四个点
3.如图2,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点
B. 一个圆,但要去掉两个点
C. 一个椭圆,但要去掉两个点
D. 半圆,但要去掉两个点
4.在正方体
中,P 是侧面
内一动点,若P 到直线BC 与直线
的距离相等,则动点P 的轨迹所在的曲线是( )
A . 直线
B .圆
C .双曲线
D .抛物线
5.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线 B. 双曲线 C. 椭圆 D. 直线
6.如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是:
(A)圆 (B)椭圆 (C)一条直线 (D)两条直线
7.已知正四面体S-ABCD ,点P 为侧面SBC 内的一个动点,且点P 与定点S 的距离等于点P 到平面ABC 的距离,那么动点P 的轨迹是某曲线的一部分,则该曲线是 (A)、圆 (B)、椭圆 (C)、双曲线 (D)、抛物线
8.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A. 圆 B. 不完整的圆 C. 抛物线 D. 抛物线的一部分
9.若三棱锥BCD A -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与三角形ABC 组成图形可能是()
B C A A B C A
B B
C A
C
B
C
A
D
10、如图5,动点P 在正方体1111D C B A ABCD -的对角线1BD 上.过点P 作垂直于平面
D D BB 11的直线,与正方体表面相交于M 、N .设BP=x ,MN=y ,则函数y=f(x)的图象大致
是( )。

11、四棱柱''''D C B A ABCD -中,底面ABCD 是为正方形,侧棱'
AA ⊥底面 ABCD ,AB =23,'
AA =6.以D 为圆心,DC ’为半径在侧面'
'C BCB 上画弧,当半径的端点完整地划
过 C
E '时,半径扫过的轨迹形成的曲面面积为 A .π469 B .π439 C .π269 D .π2
3
9
12、在正方体''''D C B A ABCD -中,E 、F 分别为棱'AA ,'
CC 的中点,则在空间中与三条直线'
'
D A 、EF 、CD 都相交的直线( )
()A 不存在 (B)有且只有两条 (C)有且只有三条 (D)有无数条
13、某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( ) A. 22
B. 32
C. 4
D. 52
14、如图,AB 是平面α的斜线段,A 为斜足,过点B 作直线l 与AB 垂直,则直线l 与平面α交点的轨迹是 ( )
α
A
B
A .圆 B.椭圆 C.一条直线 D.两条平行直线
15、如图,三角形PAB 所在的平面α和四边形ABCD 所在的平面β垂直,且
αα⊥⊥BC AD ,,AD=4,BC=8,AB=6,CPB APD ∠=∠,则点P 在平面α内的轨迹
是( )
A .圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分
16、如图,在棱长为6的正方体1111ABCD A BC D -中,长度为4的线段MN 的一个端点N 在1DD 上运动,另一个端点M 在底面ABCD 上运动,则MN 的中点P 的轨迹与其顶点D 的正方体的三个面所围成的几何体的体积是____________。

β
α
C
D
B
P
A
C
B
A
17.如图,在正方形ABCD 中,点F E ,分别为边AD BC ,的中点,将ABF ∆沿BF 所在直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中( )
A.点A 与点C 在某一位置可能重合
B. 点A 与点C 的最大距离为AB 3
C. 直线AB 与直线CD 可能垂直
D. 直线AF 与直线CE 可能垂直
18.如图,将四边形ABCD 中△ADC 沿着AC 翻折到C AD 1,则翻折过程中线段DB 中点M 的轨迹是( )
A. 椭圆的一段 B .抛物线的一段 C .一段圆弧 D.双曲线的一段
19.过正方体1111D C B A ABCD -棱1DD 的中点与直线1BD 所成角为40°,且与平面
11A ACC 所成角为50°的直线条数为( )
A .1
B .2
C .3
D .无数
1
A。

相关文档
最新文档