基于Volterra模型的非线性传感器补偿研究_英文_庄哲民
一种改进的扬声器Volterra模型研究

me s rme ts s m sd frme s r gteis n ipa e n f h ip rg w sb i .I e t,teds lc me t f au e n yt u e au i h t t s lcme to eda ha m a ul nts e o n n a d t t s h ipa e n o
级数 引入 了 扬 声 器 的大 信 号 建 模 。此 后 , l p l 扬 Ki e 将 p
幅度激励 信 号 下 输 出误 差 显 著 增 大 。 因此 , 些 基 于 一 扬 声器 V lr 模 型 的应 用 在 小 信 号 输 入 下 的效 果 要 oer t a
优于大信号输入的结果 , 这些应用包 括扬声器参数辨 识、 非线 性失 真补偿 等 j 。针对 效 电路可建 立如 下微 分方程 :
= ) , x (d1 +( 些 d x) + 矗 + )(
8 = 咖枷 警 警+,2 l ( ( F( )
其 中 ,, 电磁 驱 动 力 E , F是 6 由随 位 移 变 化 的 电感 产 生 , ]
其 表达式 为 :
一
l lh( ,)(一 1 (一2dd + 2 12 ) )tt t 12 J J h( ,,)(一1 (一2“f fddd + I J 3ff uf ) )(—3 ttt 123 M ) 123
∞ J一 ∞ J 一 ∞
…
这些参数称为大信号参数。将扬声器线性模型 中的相
关 参数替 换 为 大信 号 参 数 后 , 以得 到如 图 1所 示 的 可 大 信号 等效 电路 。
L ) 啾
—
() 7
其 中 : t为激 励信 号 ,() () Y 为非线 性 系统 的响应 , h表 示 系统 的 1阶 核 函数 即线 性 冲激 响 应 , h分 别 表 h与 示 系统 的 2阶和 3阶核 函数 ,() u t为输 入 。
一种基于间接Volterra学习算法的前置补偿器

摘 要 :非 线 性补 偿 技 术对 于的 非 线 性 通 过 补偿 信 道 的 非 线 性 特 性 来 提 高通 信 信 道 的 性 能 越 来 越 重 要 , 线 性 补 偿 器 非 可分 为 2大 类 : 衡 器 和前 置补 偿 器 。前 者 位 于 非 线性 信 道 的输 出端 而后 者 则 位 于 非 线 性 信道 的输 入 端 。在 前 置 补偿 器 的基 均 础上 , 出一种 新 的基 于 V hr 级 数 前 置补 偿 器 , 提 oer a 它利 用 间接 学 习算 法 来 解 决 一 类 前 置 补偿 问题 — — 即信 道 的 特 性 预 先是 未 知 的 。这 一 点 P 阶 逆 算 法是 无 法做 到 的 , 然后 又 以正 交幅 度 调 制 信 号 (6 A 验 证 这 种 新 算 法 的性 能优 于 P 阶逆 算 法 。 1Q M)
维普资讯
工 程 实践及应 用技 术
一
种基于 问接 V lr 学 习算法的前置补偿器 oe a tr
张建 志 崔 霞 霞 ,
( .空军驻石 家庄 地 区军代表 室, 1 河北 石 家庄 00 8 ; 50 1 2 中国电子科技 集 团公 司第五十 四所 , . 河北 石 家庄 0 0 8 ) 50 1
Ab t a t No ln a o e s t n tc nqu sa e b c migmo ea d mo ei o tn o mpo ig t e fr n eo ee o sr c : n ie rc mp n ai e h i e r e o n r n r mp ra tfri rvn he p ro ma c ftlc mmu iain o nc to c a nes b o e n aig frc ame o ie rt s.No ln a o e s tr a e ca sf d it woc tg re :e u lz r n r dso e , h n l y c mp s t h r ln n n a i n o l i e n ie rc mp n ao sc nb ls ie not ae o s q aie a dp e itr r i i s ts lc td rs e tv l f ro eo e te n n ie rc ame . Bae n p e so e , a n w l ra prdso e s po o e o ae e p ciey at r b fr h o ln a h r 1 e s d o rditr r e Vot r e itr ri rp s d, whc tl e h t e t ih u iz st e i id rc etd wi rdso e ,t ti, te d sr d o t u sn t n wn i d a c n ie tla nn lo h t ov lsia rbe a s cae t pe itr r ha s h e ie u p ti o k o n a v n e、T e i h t h
基于Volterra滤波器的混沌背景弱信号检测1

Z −τ
Z −τ
Z −τ
Z −1
x(n +1)
Volterra滤波器
x(n
+ 1)
+
×
门限检测
H1
−
H0
图 1 Volterra 检测器
2 仿真实验及结果分析
为验证本文提出的预测检测算法,本文以 Lorenz 流 x 分量为例进行仿真研究。Lorenz 流用四阶 Runge-Kutta 算法积分,
x(n +1)
x(n +1−τ )
"
x(n +1− (m −1)τ )
x 2 (n +1)
volterra级数模型的非线性压缩测量辨识算法

(1.NationalSpaceScienceCenter,ChineseAcademyofSciences,Beijing100190,China; 2.UniversityofChineseAcademyofSciences,Beijing100049,China)
关键词:系统辨识;非线性系统;压缩感知;Volterra级数;正交匹配追踪 中图分类号:TN95 文献标志码:A 文章编号:1001-2486(2020)01-125-08
Nonlinearcompressedmeasurementidentification basedonVolterraseries
Volterra级数模型的非线性压缩测量辨识算法
邱 棚1,2,姚旭日1,李鸣谦1,2,翟光杰1
(1.中国科学院国家空间科学中心,北京 100190;2.中国科学院大学,北京 100049)
摘 要:针对非线性系统的辨识问题,提出了非线性压缩测量辨识算法,且推导出了一种符合压缩感知 测量准则的测量模型。相比递归最小二乘法,该方法极大地减少了所需的测量数,使得高阶 Volterra级数辨 识成为可能。此外,还分析了实际应用中的各项因素对辨识准确性的影响,如信号稀疏度、测量噪声、测量矩 阵形式等。
第 42卷 第 1期 2020年 2月
国 防 科 技 大 学 学 报 JOURNALOFNATIONALUNIVERSITYOFDEFENSETECHNOLOGY
Vol.42No.1 Feb.2020
doi:10.1188.nudt.edu.cn
Abstract:Fortheidentification problem ofnonlinearsystems, theaccuracyand stabilityofthenonlinearcompression measurement identificationalgorithm wereprovedinthesimulationexperiment,andthecompletesignalwasobtainedaccuratelyonlybyusingconstantmultiple measurementtimesofthesignalsparsity.Comparedwiththeleastsquaremethod,theproposedalgorithm hasgreatlyreducedtheneeded measurements,therefore,itispossiblefortheidentificationofhighorderVolterraseries.Furthermore,theinfluenceofallfactorsontheaccuracy ofsystem identificationwasanalyzed,suchassignalsparsity,measurementnoise,measurementmatrixform,etc.
基于非线性Volterra核辨识的转子裂纹故障诊断方法研究

基于非线性 V lr 核辨识的转子裂纹故障诊断方法研究 oe a tr
蒋静 , 李志农 ,唐 高松
(.南 昌航 空 大学无损检 测技 术教 育部 重点 实验 室,江 西南 昌 306 ; 1 303 2 .郑 州大 学机械 工程 学 院,河南郑 州 400 ) 50 1
摘要 :V hr 级数模型是一类能够完全描述 系统 的非线性传递特性 的模 型。将 V l r 核 的辨识应 用于转子裂纹的故 oea r ot a e 障诊 断 ,提 出一种基于 V h r 核 的转子系统故障诊断方法 。该方法利用 系统 的输 入输 出同步采样 信号 ,采用 R S算 法进 oer a L
T e p p s d me h d Wa ei e y te e a l o oma oo n r c e oo .T e e p r n e u t s o a h r p s d h r o e to s v r d b x mp ef rn r l tra d c a k d r tr h x e me tr s l h w t ti t e p o e o i f h r i s h n o
i e t c t n w s u e ot e f utd a n ss o oo rc d n i ai a s d t h a l ig o i fr trca k, a d a fu tda n ssmeh d o oo r c a e n Votra k r es W i f o n a l ig o i t o frt rca k b s d o l e e l a n s p o o e .I h t o ,t ei p t n u p ts n l w r y c r n u l a ld a d u e e t y V l ras r s mo e f o l - rp s d n te meh d h n u d o t u i a s e es n h o o sys mp e n s d t i n i o t e e d l ni a g od f e i on n
基于修正Volterra级数的记忆非线性功放行为建模

0 引言
在广播数字 电视 的发射 系统 中 , 高功 率放 大器是其 中的关键模 块 , 其性能的优劣对通信的质量与效率有着重 要 的影响 , 然而高功率放 大器的非线性 失真难 以避免… 。
I … f ( … ) (一i 一 : nu 7d t )
() 1
式 中:Y () xt ]是 非 线 性 系 统 的 第 k 阶 输 出,
h( : 称为 k V l ̄ 核或 k阶冲激响应 。从 r …r ) 阶 oe a t
V l ̄ 级数的离散截断形 式为 t 模型_ , 3 能够清晰准确地对系统物 理意义进行 描述 , ] 并能 而可推出 ,o e a
h ste me i o x l i p y ia infc n e a d hg rcso . Bu h d e e ur slrea un fc mp tto a h rt fe pi t h sc lsg i a c n ihp e iin c i ttemo lrq ie ag mo to o uain.a d i i o utbefrr a-i n t sn ts i l o e tme a l
文 章编号 :02 8 9 (0 )3- 4 - 3 10 -6 2 2 1 2 -0 8- 1 0 0
基于修正 V l ra级数的记忆非线性功放行为建模 o er t
肖 鑫, 张晓林 , 李 铀
( 北京航 空航天大学 电子信 息工程学院, 北京 10 9 ) 0 11
【 摘 要】提出了一种利用 Lgnr 正交多项式简化 Vh r 级数模型的建模方法( eed oe a e e,V ) eede oe a r Lgnr V lr r sL S 。传统 V lr e trS i oe t- r 模 型具有高精度 和物理 意义明确 的优 点, a 但其缺 点在 于计算 量大 , 对硬 件 资源 的消耗 比较 大 , 而且不 利 于对信 号进行 实 时处 理, 该模型很大程度上减少 了运算量, 同时也保持 了 传统 V hr 模型的优点。 oe a r 【 关键词】L S 功放非线性;oe a建模 V; V lr ; tr 【 中图分类号】T 806 N 3. 【 文献标识码】A
基于Volterra级数分析的半导体激光器非线性模型

t e c s a i g r lto hi e n ln a y t m s Th e o d n h r o d rham o c d so to h a c d n e ai ns p oft on i e rs se h e s c n —a d t id— r e r ni it ri n
第4 0卷 第 2期
21 0科
学版 )
Vo . 0 No 2 14 .
M a.2 0 r 01
J oURNAL OF S OUTHEAS UNI T VERSI TY Na rl ce c dt n ( t a S i eE io ) u n i
间 的误 差 随输 入信 号 功率 的变 化 趋 势 可看 出 V l r ot r 型 更 加适 用 于 分 析 弱 非 线性 系 统. 建 e a模 所
立 的模 型有 助 于半 导体 激 光器 的器件 表 征 与射频 光传 输 系统 的设 计. 关键 词 : 导体 激 光器 ; l r 半 Vot r 数 ; 线性 e a级 非 中图 分类 号 : N 4 . T 2 84 文 献标 志码 : A 文 章编 号 :10 0 0 ( 0 0 0 -2 30 0 1— 5 5 2 1 ) 20 5 -5
.
.
SC l s ra d p r stc n t r I a e n a a i e wo k.Th o ln a r n f rf ci n e i ti sc l s ra e d rv d f i e n n i e rta se un to soft n rn i a e r e e mm h i
t ae e ai nsb h a m onc i pu eh her t qu t o yteh r i n tm t od The n n i e rnse u c i so a a ii e. o ln a ta f rf n t r on ft p he r stc n t .
基于多小波展开的Volterra级数非线性系统建模方法

基于多小波展开的Volterra级数非线性系统建模方法陈森林;高正红【摘要】Volterra series is powerful for nonlinear system modeling and has gained great interest of scientists across many disciplines for its theory foundation, brief formulation, and precise physics.The main difficulty of engineering application of Volterra series is the identification of Volterra kernels because the number of parameters need to identify increases exponentially with the order of the kernel.To reduce the number of estimated parameters, this paper expands the first kernel and the second kernel with piecewise quadratic multiwavelet basis function and turns the problem into the solution of a few expansion coefficients.The result of the demonstration on a prototypical nonlinear oscillator is shown that the identified kernels match with the analytical kernels very well and they can accurately predict the responses of the system to different inputs.Besides, for the common input cannot include the nonlinear effect of the interaction of different frequency in a nonlinear system, the paper designs input called two dimension chirp suited for identification of the second order Volterra pared with the commonly used chirp inputs, numerical experiment verifies that this input can excite the nonlinear characteristics of the system better.%Volterra级数作为一种非线性系统模型,因其具有坚实的理论基础、简洁的表示形式和明确的物理意义,在许多领域引起了广泛的研究兴趣.Volterra级数实际应用的难点在于Volterra核的辨识,随着核阶次的增加待辨识参数的数量呈指数增长.为了减少待辨识参数,文章以分段二次多小波为基函数将Volterra一阶核和二阶核展开,将问题转化为少数展开系数的估计问题.通过典型的非线性振荡器进行验证,结果表明Volterra核的辨识结果非常接近于理论值,同时由Volterra级数能准确计算系统在不同输入下的响应.此外,针对常用的输入信号无法反映非线性系统中不同频率相互作用产生的非线性影响,文中设计了一种适合于二阶核辨识的输入,称为二维扫频,与常用扫频信号相比,试验结果表明这种输入明显能更好地激励系统的非线性特性.【期刊名称】《西北工业大学学报》【年(卷),期】2017(035)003【总页数】7页(P428-434)【关键词】Volterra级数;非线性系统建模;非线性系统辨识;多小波;输入设计【作者】陈森林;高正红【作者单位】西北工业大学航空学院, 陕西西安 710072;西北工业大学航空学院, 陕西西安 710072【正文语种】中文【中图分类】TP206Volterra级数[1]作为一种描述非线性时不变系统的数学模型,对于任意有限记忆时间系统总能由Volterra级数以任意阶精度逼近[2],目前已经在许多领域得到了应用,如气动弹性[3]、电子工程[4]、机械工程[5]等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Southeast University (English Edition) Vol.20 No.3 Sept. 2004ISSN 1003 7985Adaptive Volterra series model for nonlinear sensor compensationZhuang Zhemin 1Zhang Jing 2Huang Weiyi3(1Department of Electronics Engineering,Shantou University,Shantou 515063,China)(2Department of Electrical En g ineering,Southeast Universi ty,Nanjing 210096,China)(3Department of Instrument Science and T echnology,Southeast Uni versity,Nanjing 210096,China)Abstract:A novel perfor mance enhancement method of nonlinear sensor based on the Volterra series model is proposed.The Volterra serie s model,which is c onsidered a nonlinear filter that can reduce sensor noise,pre sents an effective way for modeling and compensating a nonlinear sensor.In the experiment,the lo w acc uracy pressure sensor MPX10was used as the actual object,and higher accuracy se nsor MPX2010was used as the reference to provide the necessary teaching data for training the Volterra model.The si mulation shows that the accuracy of MPX10changes from 0.354-0.42to 0.041-0.053after the Volte rra filter ha s been applied.Obviously this sche me can effec tively improve the sensor performance.Moreover,the sc heme provide s greater accuracy and environme ntal suitability for a nonlinear sensor.Key words:sensor;Volterra model;non -linearityReceived 2004-05-12.Foundation item:The Natural Science Foundation of Guangdong Province (No.032030).B iograp hy:Zhuang Zhemin (1965 ),male,doctor,as sociate profess or,z mz huang@s .In modern applications,greater demands are madeon sensor performances.Unfortunately,sensors inherently suffer from imperfections,such as non -linearity,cross -sensitivity,crosstalk,noise,e tc.Improving sensor performance via better materials,new technologies and advanced design is generally e xpensive and limited.Another solution is the so -called soft or intelligent sensor design.Monitored correction (sensor -within -sensor)and tailored correction (using mult-i dimensional look -up -tables for each sensor)are the main conventional solutions.However,there are several major drawbacks to these methods [1].Another widely used approach is to use compensating algorithms.In this approach,the sensor output is modeled using polynomial fitting techniques.The memory requirements are dramatically reduced because only the polynomial coefficients need to be stored.It has been found that such an approach is incapable of producing the required performance accuracy even when using high order polynomials.In an attempt to find a compromise between the memory requirements of the look -up table approac h and poor accuracy for the polynomial fitting method [1,2].This paper presents a novel approach for intelligent sensor design based on the Volterra series model.1 Basics of the Volterra Series ModelThe Volterra series model is an exact mathematicalapproach for description of causal time -invariant systems,where dynamic and nonlinear phenomena are presented simultaneously.According to this model,the output signal of the nonlinear system or sensor can be expressed as a series of Volterra functions,i.e.,by means of a series of mult-i dimensional convolution integrals [2,3].y ^(t)=h 0+i=1---h i ( 1, 2,, i )ij =1x (t -j )ij =1d j(1)where x (t )is the input signal,y ^(t )is the output signal,and h i ( 1, 2, , i )is the Volterra kernel of the i -th order.The discrete equivalent of the general formula is [3]y ^(n)=h 0+i =1m1m2mih i m1,m 2, ,miij=1x (n -m j )(2)where x (n )is the discrete input signal,y ^(n)is theoutput sequence,and h i m 1,m 2, ,m i is the element of the i -th order Volterra kernel.Eq.(2)is the mathematical model of a Volterra series of infinite orders.In particular,the truncated model with a finite order M ,and a finite me mory of sa mples N +1is considered.y ^(n)=h 0+M i=1N m1Nm2Nmih i m1,m 2, ,miij=1x (n -m j )(3)I t is sufficient for the purpose here to consider thesecond -order Volterra model with finite memory N in Eq.(3).y^(n)=h0+ N i=0h1(i)x(n-i)+Nj=0 Nk=0h2(j,k)x(n-j)x(n-k)(4)The optimization problem is to minimize the following cost function:J= n i=1 n-i e(i)2(5) where e(n)is defined ase(n)=y^(n)-y(n)(6) And,the forgetting factor chosen here has the following constraint:0< 1(7)The forgetting factor ensures that the data in the distant past are forgotten,in order to allow the possibility of tracking statistical variations in the observable data, especially when the signal to be modeled in nonstationary.Using the steepest decent rule,the Volterra kernel neurons are updated by Eqs.(8)to(14)[4-6].h0(n+1)=h0(n)+ d h0(n)d t(8)where is the step size parameter.Simplifying,the gradient is updated usingd h0 d t (n)= (n)d h0d t(n-1)+2e(n)(9)And,h1(n+1)=h1(n)+ d h1(n)d t(10)The gradient can be updated usingd h1 d t (n)= (n)d h1d t(n-1)+2x(n)e(n)(11)And,h2(n+1)=h2(n)+ d h2(n)d t(12)Using a recursion rule,the gradient at the(n+1)-th instant can be updated usingd h2 d t (n)= (n)d h2d t(n-1)+2x(n)x(n)T e(n)(13)The forgetting factor is updated according to(n+1)= (n)+ d (n)d t(14) 2 Nonlinear Sensor Compensation Based onVolterra Series ModelWe consider the output of sensor as the input signal corrupted by the sensor s noises,and a way to improve the accuracy is to employ an adaptive filter to reduce the sensor s noises.Based on this idea,our sensorperformance or accuracy enhancement scheme is illustrated in Fig.1.The Volterra series model connects to the sensor in the series.The Volterra series model is e mployed to filter the noise from the original sensor. Referring to Fig.1,x(n)and y(n)represent the applied normalized sensor input and measured output, respectively.y(n)is used as the input to the Volterra series model which generates an output y^(n).If the Volterra series model is properly trained,y^(n) represents an accurate estimate of the applied sensor input.After sufficient training,the estimated outputs should become more and more accurate.Fig.1 Learning procedure of Volterra series modelAs this learning proceeds,the error E(mean-square-error,MSE)progressively decreases and finally attains a minimum value.At this stage the Volterra series model becomes an ideal adaptive filter that can reduce the applied sensor s noise and enhance the performance or the accuracy of the sensor.This allows the nonlinear sensor error to be correc ted according to the model,as shown in Fig.2.F ig.2 Principle of error to be corrected by Volterra series model3 Simulation and ConclusionIn the simulation belo w,a second-order Volterra series model is chosen in sensor accuracy enhancement.It is observed that an MSE level of about-90dB is attained at2000iterations in300to350ms with a learning rate constant of0.21.Achievement of such a low value of MSE ensures that the output y^(t)is an accurate estimate of the high accuracy sensor s output.In the e xperiment,the low accuracy pressure sensor MPX10, which is fabricated by Motorola Co.,is considered as the actual object.Another higher accurac y sensor MPX2010 is used as the reference to provide the necessary teac hing data.The precision of the sensor can be defined by the ratio of the maximum error to full scale value as follows: =max y i- yY FS(15) where y i, y and Y F S are the measure value of the sensor, arithmetic mean value of the measure value,and the full scale value,respectively.Through our experiments,we know that the original precisions of MPX10and287Adaptive Volterra series model for nonlinear sensor compensationMPX2010are about 0.354-0.42and 0.032-0.043,respectively.The Volterra series model will gradually learn to reduce the sensor noise and this step is performed offline.Finally,according to the scheme of Fig.2,the precision of MPX10is enhanced to 0.041-0.053after Volterra series model filtering.The e xperimental results are shown in Fig.3,where the curve + denotes the precise behavior change of MPX10.Accordingly,we can conclude that the effective accuracy of the sensor isincreased.F ig.3 Dynamic behavior of sensor precisionThis paper presents a new approach to sensor accuracy enhancement.It is believed that this scheme can be of great value,when applied to the sensors in practical control and measure ment systems,because no extra hardware cost is needed.Ho wever,the c omputationburden will increase drastically.This tech -nique will be useful for other types of sensors possessing similar nonlinear response characteristics.It has a potential future in the field of instrumentation and measurement.References[1]Yeary M B,Gris wold N C.Adaptive IIR filter design for singlesensor applications [J].IEEE Transactions on Instrumentation and Measurement,2002,51(2):259267.[2]Mikulik Pavol,Saliga Jan.Volterra filtering for integratin gADC error correction based on an a priori error model [J].IEEE Transactions on Instrumentation and Measu remen t ,2002,51(4):870875.[3]Broersen Piet M T.Automatic spectral analysis with time seriesmodel [J ].IEEE Transactions on Instrumentation an d Measu remen t ,2002,51(2):211216.[4]Takeichi Kaichiro,Furukawa Toshihiro.A fast algori thm ofVolterra adapti ve fil ters [A ].In:IEEE International Con ference on Acoustics ,S p eech and Signal Processin g [C].Orlando,Florida,2002,4:41674171.[5]Fang Y W,Jiao L C,Zhang X D,et al.On the convergenceof Volterra filter equalizers using a p th -order inverse approach [J].IEEE Transactions on Signal Processing,2001,49(8):17341744.[6]Nemeth J G,Kollar I,Schoukens J.Identification of Volterrakernels using in terpolation [J ].IEEE Transactions on Instrumentation an d Measurement ,2002,51(4):770775.基于Volterra 模型的非线性传感器补偿研究庄哲民1 张 靖2 黄惟一3(1汕头大学电子工程系,汕头515063)(2东南大学电气工程系,南京210096)(3东南大学仪器科学与工程系,南京210096)摘要:提出了一种基于Volterra 系数模型,用于提高非线性传感器性能的新方法.Volterra 模型可作为一个非线性滤波器用于降低传感器的噪声,并可对传感器进行非线性补偿.在实验中,采用精度较低的压力传感器MPX10作为实验传感器,采用具有较高精度的传感器MPX2010产生构建Volterra 模型的训练学习数据.仿真实验表明,利用Volterra 模型进行滤波,传感器MPX10的精度由原来的0.354~0.42变为0.041~0.053.由此可见该方法可有效地提高传感器的性能与精度,并具有较高的环境适应能力.关键词:传感器;Volterra 模型;非线性中图分类号:TP212288Zhuang Zhemin,Zhang Jing,and Huang Weiyi。