(整理)传感器非线性误差的修正

(整理)传感器非线性误差的修正
(整理)传感器非线性误差的修正

传感器非线性误差的修正摘要:传感器在采集数据时存在一定的非线性误差。要使系统的性能达到最佳,必须对传感器的非线性误差进行分析和处理。本文讨论了传感器非线性误差的几种处理方法,并对各种方法作了比较。

关键词:

非线性误差,硬件电路校正,查表法,插值法,最小二乘法,频域修正法

一、引言

在工业过程控制中,由于传感器的非线性输出特性和同种传感器的输出存在一定的分散性,测量结果会产生一定的误差。为此,我们需要对传感器的特性进行校正和补偿,以提高测量的精度,并且使传感器输出线性化和标准化。对非线性误差的矫正和补偿可以采用硬件电路或者软件的方法来实现。

二、采用电路进行非线性误差的矫正

采用硬件电路对非线性误差进行矫正,优点是速度快;缺点是价格高,拟合程度不好。

通常我们采用以下几种电路进行校正:

1、算术平均法

算术平均法的基本原理是通过测量上下限的平均值,找到一条是原传感器输出非线性特性得以改善的拟合曲线。

对电阻传感器基本电路如作图所

示。设温度变化范围为a~c,平均温度:

b=(a+c)/2,传感器对应的输出阻值分别

为R a,R b,R c,由于传感器的非线性,

R b≠(R a+R c)/2。为了使三个点的电路

输出为线性,则应满足并联电阻

R pb=(R pa+R pc)/2。其中R pa,R pb,R pc分别

为温度在a,b,c时的并联电阻。通过计

算可得:

b R R 2R R R 2R -)R (R R

c a c

a c a

b -++=

2、 桥路补偿法

该方法的基本原理是利用测量桥路的非线性来校正传感器的非线性。

电路如右图所示。取R 1=R 2,桥路输出)//21(33t

B R R R R V +-=ε 设于三个不同的温度点a,b,c 相适

应的R t 与V 分别为R a 、V a 、R b 、V b 、

R c 、V c ,代如上式得到方程组:

)//21(33a

b a R R R R V +-=ε )//21(33b

b b R R R R V +-=ε )//21(33c

b c R R R R V +-=ε

解此方程组可得到满足要求的R3、R B 、ε。

小结:

以上两种方法,原理和电路非常简单,但线性关系只是在三个特定的点严格成立,其他各点仅得到不同程度的改善,因此适用于非线性度不严重,或测量范围小的情况。

三、 采用查表法修正

在高速数据采集及处理系统中, 为满足实时控制的要求, 一般采用查表法进行传感器的非线性补偿。即预先将一张表明频率值f 与距离值h 的关系表格写入微机的ROM 中,单片微机在每次采集到频率信号后,查表得到对应的距离值h , 以实现传感器特性线性化的目的。

与传统的方法相比,查表校正法更注重单个传感器的实际测量转换特性,而不再采取理想测量转换特性简单近似的代替实际测量转换特性的做法。具体方法分3步进行:

1、 校正、制造标准表格

用标准信号源作被测对象,对传感器进行校正测量。将测量值与标准信号源的准确值按一定方法制成表格,并给出相应的查表方法。

2、 表格存储

将表格内容写入ROM 区域内,形成固化的测量转换特性表。

3、 测量、查表

测量实际被测量对象,将实际测量值作为查表参数,按给定的查表方法查表,到对应的ROM 单元中取出预先存入的准确值作为测量转换值。

由于采取传感器与表格一一对应形成,可以消除因传感器测量转换特性的离散性带来的误差。

在查表校正方法中,实际测量值做查表参数时,可由两种不同的方案。

一种是以实际测量值做ROM表格地址参数,按地址查表。在这种方法中,ROM 表格内容与实际测量值无关,而与左脚征用的标准信号源有关,将信号源的准确值按递增关系直接写入ROM内。ROM表格的地址形成则与实际测量值有关,有实际测量值经相应运转后,形成查表地址,按地址查ROM表格内容,作测量输出值。

另一种是以实际测量值做ROM表格内容参数,按内容查表。在这种方法中,ROM 表格内容为实际测量校准值,ROM地址与实际测量值无关,为标准信号源的准确值的递增运算表达式。按ROM内容查表,当实际测量值与ROM区域中某单元内容一致时,将其对应单元地址单元经运算后,作测量输出值。

对应两种不同的ROM表格,查表校正法在硬件结构上没有差别,但在软件实现查表时,有很大不同。

这两种方案均可有效消除因传感器测量转换特性的离散性及非线性行所带来的测量误差,但从执行效果看,两种方案各有特色。

按地址查表法属直接查表法,对应不同传感器,ROM的内容是一致的,且与具体传感器无关,实时性好。

按内容查表法属间接查表法,对应不同传感器,ROM的内容各不相同,且与具体传感器有关,但精度高。

小结:在工业化的批量生产中,查表校正法与其他校正法相比,具有以下特点:

1)校正方法简单,适合于非专用芯片构成的仪器、仪表的批量生产。

2)校正精度高。校正精度仅与ROM容量有关,当校正精度提高时,只需相应增加

ROM容量即可。

3)校正速度快,实时性好。由于采用构造硬件校正标的方法进行硬件查表操作,与软

件校正方法相比较,校正速度快,适合于应用在对实时性要求较高的仪器、仪表中。

4)电路简单,通用性好。采用ROM做校正表,与CPU的接口简单,且造表方法与

传感器种类无关,只要配以适当的传感器接口,即可方便的于各种传感器杰在一起,具有极强的通用性。实际工作中,亦可用EPROM,E2PROM做校正表。

四、采用插值法进行曲线拟合

前述的几种方法只是对有限的离散点修正较好,但是对其它的各点,修正度不能令人满意。由此,必须得出一个连续的曲线,使曲线上的点尽量符合实际。采用插值法可以较好的解决这个问题。所谓插值法就是由测量的几个点得到一个函数,使这几个点都在函数上。插值法有拉格朗日插值法、牛顿插值法、样条插值法等。

有些传感器的特性,在整个测量范围内,可以用一个借此不太高的多项式来拟合。

假定已知函数f(x)在n+1个点:

x0

处的函数值为:

f(x0)=y0,f(x1)=y1,……,f(x n)=y n

我们如果用一个次数不超过n的函数:

P n(x)=a n x n+a n-1x n-1+……+a1x1+a0

在以后的计算时,我们可以近似的用P(x)在区间[x0,x]代替f(x)。

由于多项式P n(x)中的未知系数有n+1个,而他做应满足的条件也有n+1个,因此系数a n,……,a1,a0应满足的方程组为:

???????=++++=++++=++++------n n n n n n n

n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01111011111100011010............

............ 这是一个含n+1个未知数a n 、a n-1、……a 1、a 0的线性方程组,我们只要对已知的x i 和y i (i=0~n)求解方程组,就可以求出a i (i=0~n),从而可以得到P n (x),也就可以近似的实时计算f(x)≈P n (x)。

在拟合n 次多项式时,值得提出的是:

1. 根据所需要的逼近精度来决定多项式的次数。决定多项式次数N 后,应选择N+1

个自变量x 和函数值y ,然后计算机经运行后,输出N+1个多项式系数,最后进入校验程序,输入其他各个点的值,比较计算出来的值和实际值的误差。

2. 插值节点的选择和多项式的误差大小有很大关系。在非线性度大处应加大取值密

度,直到通过校验,误差满足要求为止。

小结:插值修正在节点处能做到与实际完全吻合,但在其它点处会有误差。对于非线性度较高的曲线,可以适当加大多项式的次数。但是次数过高会导致震荡加剧,精度反而下降。

五、 分段插值修正

应用插值多项式能逼近各种函数,增多插值节点和多项式次数,能提高逼近精度,但是它是有局限的。自变量的允许取值范围越少,达到同样精度时所需的插值多项式的次数也越低,所以我们把自变量的取值范围分成若干段来进行插值,这样每段的次数比整体一起插值的次数可大大降低。它适于难以进行一次性插值的函数,特别是对于分段函数,更要用分段插值的方法。这是可以把非线性段用一个N 此多项式来逼近,而线性段用一次多项式来逼近,有些函数如果进行一次性插值时,需要使用高次多项式也应该用分段插值,不然会使计算时间延长,误差增大。

六、 采用最小二乘法进行曲线拟合

最小二乘法与插值法不同之处在于:插值法在各个样本点处是吻合的,而最小二乘法却不一定;插值法在其它各点处的误差可能会比较大,但是最小二乘法的宗旨就是使各个点处的误差的绝对值的平方和最小,从而使总的误差降低。

设校正多项式为

a 0+a 1x+……+a m x m =y

令∑∑∑∑====-=-==n i m j j i j n i i i n i i

x a Yi x P Y R 020020][)]([φ (1)

由于x i 、y i 为已知的实验值,故φ可以看作a j (j=0,1…,m)的函数,对于不同的多项是有不同的系数a j ,也既有不同的φ值,φ=φ(a 0,a 1,…,a m ),要使φ为极小值的系数,必须满足方程:

0=??k

a φ (k=0,1,2,…,m) (2)

通过(1)、(2)变换可得:

)(20k m j k j j k d s a a -=??∑=+φ (3)

式(3)中:∑∑==++==n

i k i k n i k j i k j X d X

s 00; 由式(2),(3)可得方程组:

???????=+++=+++=++++++m

m m m m m m m m m d a s a s a s a s d a s a s a s a s d a s a s a s a s 222110112312010221100......

...... 解出此线性方程组, 即可得P(X)的系数a j ,由此求传感器的拟合曲线问题就变成求解线性方程组的问题, 这样采用计算机解决是较方便的。

七、 频域修正法

在传感器动态特性研究中, 大多是将其近似为线性系统, 利用线性方法进行研究. 这在传感器非线性特性不明显或分析精度要求不高时是可行的. 但是, 如果传感器的非线性作用比较明显或对其有较高分析精度的要求时, 用线性分析方法就会带来不容忽视的误差。由此产生了频域修正法。

1. 频域判定

依据线性系统的频率保持性. 对传感器的输出信号作频谱分析, 其功率谱的频率分布应在输入信号频率分布以内. 若发现输出信号中含有输入频率分布以外的明显频率分布, 则系统可能存在非线性. 当输出信号的频谱中含有不明显的输入频率以外的频率分布, 采用频谱分析方法较难进行判断. 但是, 可以利用多组输入输出信号求得传感器的频率响应函数, 若其幅频特性曲线在输入频谱以外存在明显峰值, 且此处相干系数大于0.85, 相位发生突变, 表明此峰值不是由噪声引起, 则可判定传感器中存在非线性。

2. 二次非线性的频域估计方法

在频域估计非参数形式的非线性动态模型归结为线性传递函数和非线性传递函数的辨识问题。一般来说, 在传感器动态非线性中, 二次非线性占主要成分。在二次传递函数的求解中, 通常限定输入信号为高斯白噪声。这样, 其输入各频率之间不存在相关关系, 所有非线性关系均由非线性谐波引起, 求解方便。

传感器二次非线性动态模型为

∑∑≥=++=12

)1(,,)()(),()()()(1221212121f f f f f f f f X f X f f H f X f H f Y 其中:

)()

()(1f P f P f H xx yx =,)(*)()(*

f X f Y f P yx =,)(*)()(),(21*21f X f X f Y f f P yxx =,)()()(1*11f X f X f P xx =,)()()(2*22f X f X f P xx =。式中Y(f)是输出信号Y(t)的傅里叶变换,X(f)式输入信号X(t)的傅里叶变换,H 1(f)是一次传递函数,H 2(f)是二次传递函数,P(f)是功率谱。

所以,非线性系统的真实响应为

)]([)(1f Y F t Y -=

在高斯白噪声输入下,二次传递函数计算公式为

)]()(2/[),(),(2121221f P f P f f P f f H xx xx yxx

3.

计算步骤: 1)

根据多个输入信号分别求得系统的原始输出信号; 2)

对信号进行非线性分离(或滤波) , 求得系统线性输出; 3)

根据多组输入信号和对应的线性输出信号, 求得系统线性传递函数; 4) 对线性传递函数和输入信号傅里叶变换的乘积, 进行反傅里叶变换, 求得输出信号

线性估计;

5) 利用多组系统输入信号及相应原始输出信号, 求出系统二次传递函数;

6) 求得输出信号的非线性估计.

总结:

对非线性误差处理,在花费很小的情况下可以大大提高传感器的精度。

对传感器的非线性误差要做仔细的分析,对不同的场合,不同的需求使用不同的方案进行处理,从而使整个系统达到最佳状态。

误差修正模型实例(精)

一、误差修正模型的构造 对于yt的(1,1阶自回归分布滞后模型: 在模型两端同时减yt-1,在模型右端,得: 其中,,,。 记(5-5) 则(5-6) 称模型(5-6)为“误差修正模型”,简称ECM。 二、误差修正模型的含义 如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。 当yt和x t协整时,设协整回归方程为:

它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6) 中的是误差修正项,是 修正系数,由于通常 ,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差), > 0,两者的方向恰好相反,所以,误差修正是一个反向 调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: 短期波动模型: 三、误差修正模型的估计 建立ECM的具体步骤为: 1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性; 2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:

3.将e t-1作为一个解释变量,估计误差修正模型: 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: 此时,长期参数为: 协整回归方程和残差也相应取成: , (3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。如果存在长期趋势,则在ECM中加入趋势变量。如果存在自相关性,则在ECM的右端加入 误差修正项的滞后期一般也要作相应 调整。 如取成以下形式:

基于霍尔传感器的转速测量)

成绩评定: 传感器技术 课程设计 题目基于霍尔传感器的转速测量

摘要 转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 2 3.2设计步骤------------------------- 2 3.3设计原理分析--------------------- 16 四、课程设计小结与体会 ---------------- 16 五、参考文献------------------------- 16

一、设计目的 1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。 2.学会霍尔传感器的设计方法和性能指标测试。 3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。 4.培养实践技能,提高分析和解决问题的能力。 5.提高自己对文献资料的搜索和信息处理能力。 二、设计任务与要求 2.1设计任务 1、查阅传感器有关方面的相关资料,了解此方面的发展状况。 2、掌握所用器件的特性。 3、采用合理的设计方案。 4、设计、实现该系统。 5、撰写设计报告。 2.2设计要求 1.掌握霍尔传感器的使用方法 2.熟悉使用单片机测量转速 三、设计步骤及原理分析 3.1设计方法 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化

误差修正模型

第二节 误差修正模型(Error Correction Model ,ECM ) 一、误差修正模型的构造 对于y t 的(1,1)阶自回归分布滞后模型: t t t t t y x x y εβββα++++=--12110 在模型两端同时减y t-1,在模型右端10-±t x β,得: t t t t t t t t t t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+?=+---+--+?=+-+++?+=?------)(]) 1()1()[1()1()(1101012120120121100 其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。 记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++?=?-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。 二、误差修正模型的含义 如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ?,右端)0(~I x t ?,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。 当y t 和x t 协整时,设协整回归方程为: t t t x y εαα++=10 它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1

是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样 0<γ; 当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰 好相反,所以,误差修正是一个反向调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++?=?-10 三、误差修正模型的估计 建立ECM 的具体步骤为: 1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性; 2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t : t t t x y εβα++=0 t t t x y e 0??βα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++?=?-10γβ 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: t i t i i t i t y x y εβαα∑∑+++=-- 此时,长期参数为: ∑∑-=)1(i i βαθ 协整回归方程和残差也相应取成:

测试技术基础答案 第三章 常用传感器

第三章 常用传感器 一、知识要点及要求 (1)掌握常用传感器的分类方法; (2)掌握常用传感器的变换原理; (3)了解常用传感器的主要特点及应用。 二、重点内容及难点 (一)传感器的定义、作用与分类 1、定义:工程上通常把直接作用于被测量,能按一定规律将其转换成同种或别种量值输出的器件,称为传感器。 2、作用:传感器的作用就是将被测量转换为与之相对应的、容易检测、传输或处理的信号。 3、分类:传感器的分类方法很多,主要的分类方法有以下几种: (1)按被测量分类,可分为位移传感器、力传感器、温度传感器等; (2)按传感器的工作原理分类,可分为机械式、电气式、光学式、流体式等; (3)按信号变换特征分类,可概括分为物性型和结构型; (4)根据敏感元件与被测对象之间的能量关系,可分为能量转换型与能量控制型; (5)按输出信号分类,可分为模拟型和数字型。 (二)电阻式传感器 1、分类:变阻式传感器和电阻应变式传感器。而电阻应变式传感器可分为金属电阻应变片式与半导体应变片两类。 2、金属电阻应变片式的工作原理:基于应变片发生机械变形时,其电阻值发生变化。金属电阻应变片式的的灵敏度v S g 21+=。 3、半导体电阻应变片式的工作原理:基于半导体材料的电阻率的变化引起的电阻的变化。半导体电阻应变片式的的灵敏度E S g λ=。 (三)电感式传感器 1、分类:按照变换原理的不同电感式传感器可分为自感型与互感型。其中自感型主要包括可变磁阻式和涡电流式。 2、涡电流式传感器的工作原理:是利用金属体在交变磁场中的涡电流效应。 (四)电容式传感器 1、分类:电容式传感器根据电容器变化的参数,可分为极距变化型、面积变化型、介质变化型三类。 2、极距变化型:灵敏度为201δ εεδA d dC S -==,可以看出,灵敏度S 与极距平方成反比,极距越小灵敏度越高。显然,由于灵敏度随极距而变化,这将引起非线性误差。 3、面积变化型:灵敏度为常数,其输出与输入成线性关系。但与极距变化型相比,灵敏度较低,适用于较大直线位移及角速度的测量。 4、介质变化型:可用来测量电介质的液位或某些材料的厚度、湿度和温度等;也可用于测量空气的湿度。 (五)压电式传感器 1、压电传感器的工作原理是压电效应。

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

坐标误差修正技术

坐标误差修正技术 汤文骏 段敏谟 张玉坤 方仲彦 (清华大学精密仪器系精密测试技术及仪器国家重点实验室,北京100084) 摘 要 随着对产品加工和测量准确度的要求越来越高,利用误差修正技术实现低成本精度升级的方法已成为一个非常重要的研究领域。本文介绍了误差修正技术的特点、内容以及最新的发展情况。关键词 误差修正 坐标误差 实时修正 一、综 述 许多加工和测量设备都是三坐标机构,比如坐标测量机、加工中心等。坐标误差(或空间误差)指刀具或测头在空间的实际位置与名义位置之间的误差。坐标误差是机构误差、热误差、形变误差等许多误差因素的合成,它直接体现了设备的精度。 常用的提高精度的方法是避免误差,这种方法成本高,对环境要求也很苛刻。另一种提高设备精度的途径是误差修正技术,它是在已有设备基础上, 根据实际的误差在机器的控制 小,这是由于两种测量方法都是接触测量,存在变形而产生测量误差。而智能化电容测厚仪更能反应实际厚度值,并且是数字显示,消除了读数误差,又是非接触测量,便于在线使用。本系统适用于片状材料厚度的测量和控制,若改用不同直径的传感器,可以得到仪器的不同分辨力。由于实现了智能化,测量结果既可以显示尺寸值,又可以显示平方米克重值等便于操作者读取需要的数值。改变材质,只需改变键盘输入的系数。并且由于设置了初距键,避免了零点漂移带来的麻烦,使用非常方便。 图3 计量器具测 量 数 据 (单位:L m)千分尺25222326212522242126电感测微仪21191922182119191822电容测微仪 25.4 22.2 23.0 26.2 21.4 25.4 23.0 25.4 21.4 26.2 参考文献 [1]郑义忠.运算法电容测微仪原理及其应用,天津大学  1988年6月 [2]李勋,李新民.M CS —51单片微型计算机,天津科技翻译 出版公司

第5章 动态回归与误差修正模型(案例)汇总

例:(file: break2)东北、华北、华东、华中21省市1993和1998年耕地面积(land ,百万公顷)和农业产值(Y , 百亿元)数据见图(已取对数)。用圆圈表示的观测点为1993年数据,用三角表示的观测点为1998年数据。大体看各省市1998年耕地面积比1993年耕地面积略有减少,产值却都有增加。以1993和1998年数据为两个子样本,以42个数据为总样本,求得残差平方和见下表 -10 12 3 -2 -1 1 2 3 LOG(LAND) LOG(Y93)LOG(Y98) -10 1 2 3 -2 -1 1 2 3 LOG(LAND) LOG(Y93)LOG(Y98) 样本容量 残差平方和 相应自由度 回归系数 1 T = 42 SSE T = 14.26 T - k = 40 2 n 1= 21 SSE 1 = 4.37 n 1 - k = 19 α1 3 n 2= 21 SSE 2 = 3.76 n 2 - k = 19 β1 注:三次回归的模型形式Lnout t = β0 +β1 Lnland t + u t 。 因为, F = ) 2/()(/)]([2121k T SSE SSE k SSE SSE SSE T -++-= 38 /)76.337.4(2 /)]76.337.4(26.14[++-= 14.33 > F (1, 40) = 7.31

所以两个年度21省市的农业生产发生了很大变化。

案例1:开滦煤矿利润影响因素的实证分析(1903-1940,动态分布滞后模型,file:LH1) (发表在《学术论坛》,2003.1, p. 88-90) 1000 2000300040005000600005 10 15 20 25 30 35 40 销煤量 x1 图 1 开滦煤矿销煤量变化曲线(x 1, 1903-1940) 2 4681012141605 10 15 20 25 30 35 40 吨煤售价 X2 图2 开滦煤矿吨煤售价变化曲线(x 2, 1903-1940)

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

ECM误差修正模型

协整与误差修正模型 在处理时间序列数据时,我们还得考虑序列的平稳性。如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。建立误差修正模型。 建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。若序列都是同阶单整,我们就可以对其进行协整分析。在此我们只介绍单个方程的检验方法。对于多向量的检验参见Johensen 协整检验。我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。下面我们给出案例分析。 案例分析 在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。从这个理论出发,我们可以建立如下(8.1)式的模型。同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。在此先对人均可支配收入和人均消费水平取对数,同时给出如下的模型 t t t lincome lconsume lconsume 2110?+?+?=- t=1,2,…,n (8.1) 如果当期的人均消费水平与当期的人均可支配收入及前期的人均消费水平均为一阶单整序列,而它们的线性组合为平稳序列,那么我们可以求出误差修正序列,并建立误差修正模型,如下: t ecm lconsume lincome lconsume t t t t 4131210βββββ++?+?+=?-- t=1,2,…,n (8.2) t ecm = 12110--?-?-?-t t t lincome lconsume lconsume t=1,2,…,n (8.3) 从(8.2)式我们可以推出如下的方程: t lincome lincome lconsume lconsume lconsume t t t t t 4030123222131131)()()1(ββββββββββ+?-+?--+?--++=---(8.4) 在(8.2)中lconsume ?、 lincome ?分别为变量对数滞后一期的值,)1(-ecm 为误差修正项,如(8.3)式所示。(8.2)式为含有常数项和趋势项的形式,我们省略了只含趋

霍尔传感器测量转速

测试技术应用案例 (霍尔传感器测量转速) 班级: 学号: 姓名:

霍尔传感器测量转速 一.霍尔传感器的优点 1.测量范围广:霍尔传感器可以测量任意波形的电流和电压, 如:直流、交流、脉冲波形等。 2.精度高:在工作温度区内精度优于1%,该精度适合于任何波形 的测量。 3.线性度好:优于%。 4.动态性能好:响应时间小于1μs跟踪速度di/dt高于50A/μs。 5.性价比高。 各式各样的霍尔传感器 二.霍尔传感器测转速原理 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差U H的基本关系为: U H=K H IB K H =1/nq(金属) 式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度; 利用霍尔效应表达式:U H=K H IB,当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 三.测量设备 本案例以实验室霍尔元件测量圆盘转速为例。 实验设备:CSY2000系列传感器与检测技术实验台。

1、主控台部分,提供高稳定的±15V、+5V、±2V~±10V可 调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。 2、旋转源0-2400转/分(可调) 需用器件与单元:霍尔传感器、5V直流源、转速调节装置、转动源单元、数显单元的转速显示部分。 四.实验方案 1.实验装置如下图 2.将5V直流源加于霍尔元件电源输入端。 3.将霍尔转速传感器输出端(黄)插入数显单元F i n端。 4.将转速调节中的2V-24V转速电源引入到台面上转动单元中转 动电源2-24VK插孔。 5.将数显单元上的转速/频率表波段开关拨到转速档,此时数显 表指示转速。 6.调节转速调节电压使转动速度变化。观察数显表转速显示的变 化。 五.实验结果计算 磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就可算出转速。

stata-误差修正模型讲解

误差修正模型: 如果用两个变量,人均消费y 和人均收入x (从格林的数据获得)来研究误差修正模型。 令z=(y x )’,则模型为: t t k i i t t z p z A z επ+?++=?-=-∑11 10 其中,'αβπ= 如果令1=k ,即滞后项为1,则模型为 t t t t z p z A z επ+?++=?--1110 实际上为两个方程的估计: t t t t t y t x p y p x b y b a y 1112111112111ε+?+?+++=?---- t t t t t x t x p y p x b y b a x 2122121122121ε+?+?+++=?---- 用ols 命令做出的结果: gen t=_n tsset t time variable: t, 1 to 204 gen ly=L.y (1 missing value generated) gen lx=L.x (1 missing value generated) reg D.y ly lx D.ly D.lx Source | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 21.07 Model | 37251.2525 4 9312.81313 Prob > F = 0.0000 Residual | 87073.3154 197 441.996525 R-squared = 0.2996 -------------+------------------------------ Adj R-squared = 0.2854 Total | 124324.568 201 618.530189 Root MSE = 21.024 ------------------------------------------------------------------------------ D.y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .0417242 .0187553 2.22 0.027 .0047371 .0787112 lx | -.0318574 .0171217 -1.86 0.064 -.0656228 .001908 ly | D1. | .1093189 .082368 1.33 0.186 -.0531173 .2717552 lx | D1. | .0792758 .0566966 1.40 0.164 -.0325344 .1910861 _cons | 2.533504 3.757158 0.67 0.501 -4.875909 9.942916 这是t t t t t y t x p y p x b y b a y 1112111112111ε+?+?+++=?----的回归结果,其中y a =2.5335,

传感器与测试技术 ( 第2次 )

第2次作业 一、多项选择题(本大题共100分,共 25 小题,每小题 4 分) 1. 传感器的静态标定设备(标准值发生器)有() A. 力标定设备 B. 压力标定设备 C. 温度标定设备 D. 激振台 E. 力锤 2. 传感器的基本参数有() A. 测量范围 B. 量程 C. 过载能力 D. 灵敏度 E. 静态精度 3. 压电元件的连接方式有(),其中()方式输出电荷量大。 A. 多片串联 B. 多片并联 4. 在金属热电阻中,其测温特性最好的是( ),在精度要求不高的场合和测温范围较小时,普遍使用( )。 A. 铂电阻 B. 镍电阻 C. 铜电阻 D. 锰电阻 5. 串联两个热电偶的输出电动势是( ),因而可以用于测量( )。 A. 各热电动势的平均值 B. 各热电动势的代数和 C. 两点之间温度之和(差) D. 两点的平均温度 6. 形成干扰的条件是( )。 A. 干扰源 B. 信号是缓变信号 C. 干扰的耦合通道 D. 干扰的接收回路 E. 信号是交流信号 7. 测量信号经过频率调制后,所得到调频波的( )是随( )而变化的。 A. 幅值 B. 频率 C. 信号幅值 D. 信号频率 8. 选用不同导体材料做热电极,会影响热热电偶温度传感器的( )。 A. 灵敏度 B. 精度 C. 测量范围 D. 稳定性

9. ( ) 传感器属于有源型传感器。 A. 压电式 B. 热电式 C. 电感式 D. 电容式 E. 电阻式 10. 热电动势的大小与( )有关。 A. 两电极的材料 B. 热端温度 C. 冷端温度 D. 电极的尺寸与形状 11. 为了抑制干扰,常用的隔离电路有( )。 A. 滤波电路 B. A/D转换器 C. 变压器 D. 光耦合器 E. 调谐电路 12. 压电传感器的测量电路有(),其中能排除电缆电容影响的是()。 A. 电压放大器 B. 相敏整流电路 C. 电荷放大器 D. 交流电桥 E. RC滤波器 13. 抑制干扰的方法主要是() A. 单点接地 B. 屏蔽 C. 隔离 D. 滤波 14. 压电式加速度传感器是( )传感器。 A. 发电型 B. 能量转换型 C. 参量型 D. 适宜测量静态信号的 E. 适宜测量动态信号的 15. 通常采用的压力敏感元件有()。其中,()常用在电容式、应变式及电感式压力传感器中。 A. 模片 B. 柱形弹性元件 C. 波登管 D. 波纹管 E. 梁形弹性元件 F. 环形弹性元件 16. 在测量系统中有哪些接地系统() A. 安全地

误差修正模型案例

大型作业报告 课程名称计量经济学 课程代码142102601 题目误差修正模型 专业经济学 班级2010271 成员陈晓燕

上海电力学院经济与管理学院

计量经济学大型作业评分表 备注: 课程设计报告的质量70%,分4个等级: 1、按要求格式书写,计算正确,方案合理,内容完整,绘图规范整洁,符合任务书的要求35-40 2、按要求格式书写,计算较正确,有少量错误,方案较合理,内容完整,绘图较规范整洁,基本符合任务书的要求26-34 3、基本按要求格式书写,计算较正确,有部分错误,方案较合理,内容基本完整,绘图不规范整洁,基本符合任务书的要求15-25 4、基本按要求格式书写,计算错误较多,方案不合理,内容不完整,绘图不规范整洁,不符合任务书的要求0-14 工作态度30%,分4个等级: 1、很好,积极参与,答疑及出勤情况很好16-20 2、良好,比较能积极参与,答疑情况良好但有少量缺勤记录,或答疑情况

一般但出勤情况良好11-15 3、一般,积极性不是很高,基本没有答疑记录,出勤情况较差6-10 4、欠佳,不认真投入,且缺勤很多,也没有任何答疑记录0-5 实验报告 一、实验目的与要求 1、掌握时间序列的ADF平稳性检验; 2、掌握双变量的Engel-Granger检验; 3、掌握双变量的误差修正模型; 4、熟练使用Eviews软件建立误差修正模型。 二、实验内容 依据1978-2010年我国人均消费和人均GDP的数据,完成以下内容。 1、对实验数据进行单位根检验; 2、利用E-G两步法对实验数据进行协整检验; 3、根据实验数据的关系,建立误差修正模型,估计并进行解释。 三、实验步骤 (1)收集数据

霍尔测速实验

246810 1214 1618202224 霍尔传感器V-n 曲线图 电压(V )/V 转速(n )/r p m 霍尔测速实验报告 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 霍尔传感器、+5V 、+4、±6、±8、±10V 直流电源、转动源、频率/转速表。 三、实验原理; 利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 四、实验内容与步骤 1.安装根据图28-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。 图28-1 2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值。也可用示波器观测霍尔元件输出的脉冲波形。 五、数据记录与分析 2、用matlab 绘制V-RPM 曲线图

3、霍尔组件产生脉冲的原因 因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化而产生的脉冲信号变化。两者之间通常会设有遮光原件,能够在变化过程中间断的影响到两者之间的磁通量。有磁场照射霍尔元件导通,没有磁场照射霍尔元件截止,不断的交替变化引起了脉冲的信号变化,所以霍尔测速时,所长生的波形也就是脉冲电,只是随转速的改变频率发生了改变,频率变化越快证明转速越快。 六、实验报告 1.分析霍尔组件产生脉冲的原理。 2.根据记录的驱动电压和转速,作V-RPM曲线。

传感器与测试技术模板

传感器与测试技术 一、判断题 1、传感器是与人感觉器官相对应的原件。B错误 2、敏感组件, 是指传感器中能直接感受或响应被测量的部分。A正确 3、信息革命的两大重要支柱是信息的采集和处理。A正确 4、传感组件把各种被测非电量转换为R,L,C的变化后, 必须进一步转换为电流或电压的变化, 才能进行处理, 记录和显示。A正确 5、弹性敏感组件在传感器技术中有极重要的地位。A正确 6、敏感组件加工新技术有薄膜技术和真空镀膜技术。B错误 2、传感器动态特性可用瞬态响应法和频率相应法分析。A正确 4、传感器的输出--输入校准曲线与理论拟合直线之间的最大偏差与传感器满量程输出之比, 称为该传感器的”非线性误差”。A正确 5、选择传感器时, 相对灵敏度必须大于零。B错误 6、用一阶系统描述的传感器, 其动态响应特征的优劣也主要取决于时间常数τ, τ越大越好。B错误 7、一阶装置动态特性的主要参数是时间常数, 一般希望它越大越好。B错误 8、LTI系统的灵敏度是时间的线性函数。B错误 9、一个复杂的高阶系统总是能够看成是由若干个零阶、一阶和二阶系统并联而成的。B错误 10、无论何种传感器, 若要提高灵敏度, 必然会增加非线性误差。B错误 11、幅频特性优良的传感器, 其动态范围大, 故能够用于高精度测量。B错误 12、传感器的阈值, 实际上就是传感器在零点附近的分辨力。B错误 13、非线性误差的大小是以一拟合直线作为基准直线计算出来的, 基准直线不同, 所得出的线性度就不一样。A正确 14、外差检测的优点是对光强波动和低频噪声不敏感。A正确

15、传感器在稳态信号作用下, 输入和输出的对应关系称为静态特性; 在动态的信号作用下, 输入和输出的关系称为动态特性。A正确 16、传感器动态特性的传递函数中, 两个各有G1(s) 和G2(s)传递函数的系统串联后, 如果她们的阻抗匹配合适, 相互之间仍会影响彼此的工作状态。B错误 17、对比波长大得多的长度变化, 物理扰动P随时间变化的速率与振荡频率f成正比。A正确 18、灵敏度是描述传感器的输出量( 一般为非电学量) 对输入量( 一般为电学量) 敏感程度的特性参数B错误 19、传递函数表示系统本身的传输、转换特性, 与激励及系统的初始状态无关。A正确 20、应变计的灵敏度k恒大金属线材的灵敏度系数ko。A正确 21、对应变式传感器来说, 敏感栅愈窄, 基长愈长的应变计, 其横向效应引起的误差越大。A正确 22、零值法的优点是, 测量精度主要取决于读数桥的精度, 而不受电桥供电电压波动以及放大器放大系数波动等的影响, 因此测量精度较高。但由于需要进行手调平衡, 故一般用于静态测量。A正确 23、传感器的灵敏度是指输出量与相应的被测量( 输入量) 之比。B错误 24、金属材料灵敏度比半导体大50~100倍。B错误 25、一个复杂的高阶系统能够看成是由若干个一阶和二阶系统串联而成的。B错误 26、传感器的灵敏度定义为传感器输入量变化值与相对应的输出量变化值之比。B错误 41、应变式传感器的温度误差主要是应变式温度传感器件的测量部分引起的。B错误43、固有频率属于传感器的动态特性指标。A正确 1、应变计的非线性度一般要求在0.05%或1%以内。A正确

一种脉动压力比对校准误差修正数据处理方法,中国科学消息.doc

一种脉动压力比对校准误差修正数据处理 方法,中国科技信息, :阎玲 摘要:依据行业规程,为了满足某型飞机垂尾抖振科目试飞测试要求,基于脉动压力传感器测试中,针对产生的误差原因分析,提出了飞行试验中比对校准误差修正数据处理方法。 关键词:脉动压力;测试;校准;标定;数据处理 1 引言 随着航空技术的不断进步,动态压力测量技术得到迅猛发展,使得动态压力测试技术在测试脉动压力时,可以获得准确结果。在被测量的物理量随时间变化的情况下,传感器的输出能否良好地跟随输入量变化是一个很重要的问题,有时传感器尽管其静态性能非常好,但由于不能很好地跟随输入量变化而导致误差。在脉动压力测试中,测量误差大小直接影响飞行测试结果,如果不能保证脉动压力传感器的精度,就无法满足飞机垂尾抖振科目试飞测试要求。因此,对于飞行中所使用的脉动压力传感器,必须定期对其各项技术性能指标进行校准,以此来确定其灵敏度和误差范围,最终达到整个测试系统的可靠精度,如何保证飞行试验数据准确可靠,可靠的校准方法和数据处理至关重要。 2误差原因分析 通常飞行试验中稳态压力传感器测试用标准压力源进行内场校准,由于脉动压力传感器安装在垂尾壁面无法进行内场校准,传感器未装机前由于传感器结构限制也不能进行实验室内场校准。测试精度的主要部分是压力传感器校准,传统方法是沿用

厂家出厂时标定的传感器灵敏度进行计算给出校线, 这种方法在试飞试验中发现误差较大,其误差原因是: (1).传感器本身漂移使出厂后传感器灵敏度有变化,使用出厂时的灵敏度已不可行。脉动压力传感器测试中,桥压的精确度直接决定了动态压力传感器的信号输出精度,由于动态压力传感器的输出信号较小,灵敏度大致为4 mv/psi,信号满量程输出也仅为100mV左右,桥压的微小波动,也会引起灵敏度的改变。 (2).传感器制造中自身零位存在,传感器的零位一致性差,变化范围可达-12mv/psi --12mv/psi,造成了误差的存在。一直以来未能对压力传感器误差提出相应的改进方法,测试精度就无法保证。不解决误差的存在将导致测试系统测量不准确,无法获取可靠的飞行试验数据。 根据以上两点导致的误差原因分析,在无标定方法借鉴的情况下,针对误差 的存在,在实验的基础上,依据行业规范,提出了比对校准误差修正数据处理方法的研究,首次用于飞行试验中。 3.一般常用标校方法 3.1静态校准 依据测量和监控装置对比校准规程(BMI.QEMS)比对是在规定条件下,对相同准确度等级的同类基准标准或工作计量器具之间的量值进行比较,校准:是指被校的计量器具与高一等级的计量标准相比较,以确定被校计量的示值误差。静态校准主要是利用压力标准器按照传感器的测量范围,均匀地施加标准压力来测量传感器灵敏度,非线性以及重复性,迟滞等静态误差指标。 3.2 动态校准 动态校准是建立在静态校准的基础上,动态校准主要是测

霍尔转速测量实训报告

河南工程学院 课程设计 霍尔转速测量 学生姓名:## 学院:电气信息工程学院专业班级:电气工程及其自动化####专业课程:自动检测技术 指导教师:## 2014年6月26日

一、设计的背景和目的 1.设计的背景 在工程实践中,我们经常会遇到各种需要测量转速的场合。例如在发动机、电动机等旋转设备的试验、运转和控制中,常需要分时和连续测量和显示其转速及瞬时速度。 传统式的转速测量通常是采用测速发电机为检测元件,这种方法是模拟式的,因此其得到的信号是电压信号,其抗干扰能力差,灵活性差。霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达.55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 2.设计的目的 实验介绍了霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,利用硬件电路设计,编制了电机转速的测量设计了测量模块、显示模块等,并通过PROTEUSE软件进行了仿真。仿真结果表明所设计的电路原理上是可行的。 二、设计的功能 根据霍尔传感器的原理,当转动的物体比如说电机在转动时,如果能在其转子上加上一个磁铁,然后让霍尔传感器去感受就能在LED数码管上得到一定时间内的转动的脉冲数,然后通过芯片的内部计算从而得到转速,并且显示在数码管

传感器与检测技术第3章 传感器基本特性参考答案

第3章传感器基本特性 一、单项选择题 1、衡量传感器静态特性的指标不包括()。 A. 线性度 B. 灵敏度 C. 频域响应 D. 重复性 2、下列指标属于衡量传感器动态特性的评价指标的是()。 A. 时域响应 B. 线性度 C. 零点漂移 D. 灵敏度 3、一阶传感器输出达到稳态值的50%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 4、一阶传感器输出达到稳态值的90%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 5、传感器的下列指标全部属于静态特性的是() A.线性度、灵敏度、阻尼系数 B.幅频特性、相频特性、稳态误差 C.迟滞、重复性、漂移 D.精度、时间常数、重复性 6、传感器的下列指标全部属于动态特性的是() A.迟滞、灵敏度、阻尼系数 B.幅频特性、相频特性 C.重复性、漂移 D.精度、时间常数、重复性 7、不属于传感器静态特性指标的是() A.重复性B.固有频率C.灵敏度D.漂移8、对于传感器的动态特性,下面哪种说法不正确() A.变面积式的电容传感器可看作零阶系统 B.一阶传感器的截止频率是时间常数的倒数 C.时间常数越大,一阶传感器的频率响应越好 D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是() A.重复性B.固有频率C.灵敏度D.漂移

10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为() A. 0°°° D. 在0°和90°之间反复变化的值 11、传感器的精度表征了给出值与( )相符合的程度。 A.估计值 B.被测值 C.相对值 D.理论值 12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。 A.时间 B.被测量 C.环境 D.地理位置 13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。 A.相等 B.相似 C.理想比例 D.近似比例 14、回程误差表明的是在( )期间输出-输入特性曲线不重合的程度。 A.多次测量 B.同次测量 C.正反行程 D.不同测量 =秒的一阶系统,当受到突变温度作用后,传感器输15、已知某温度传感器为时间常数τ3 出指示温差的三分之一所需的时间为()秒 A.3 B.1 C.D.1/3 二、多项选择题 1.阶跃输入时表征传感器动态特性的指标有哪些() A.上升时间 B.响应时间 C.超调量 D.重复性 2.动态响应可以采取多种方法来描述,以下属于用来描述动态响应的方法是:() A.精度测试法 B.频率响应函数 C.传递函数 D.脉冲响应函数 3. 传感器静态特性包括许多因素,以下属于静态特性因素的有()。 A.迟滞 B.重复性 C.线性度 D.灵敏度 4. 传感器静态特性指标表征的重要指标有:() A.灵敏度 B.非线性度 C.回程误差 D.重复性 5.一般而言,传感器的线性度并不是很理想,这就要求使用一定的线性化方法,以下属于线性化方法的有:() A.端点线性 B.独立线性 C.自然样条插值 D.最小二乘线性 三、填空题 1、灵敏度是传感器在稳态下对的比值。 2、系统灵敏度越,就越容易受到外界干扰的影响,系统的稳定性就越。 3、是指传感器在输入量不变的情况下,输出量随时间变化的现象。 4、要实现不失真测量,检测系统的幅频特性应为,相频特性应为。

相关文档
最新文档