二次根式教材分析

合集下载

北师大版数学八年级上册7《二次根式》教学设计4

北师大版数学八年级上册7《二次根式》教学设计4

北师大版数学八年级上册7《二次根式》教学设计4一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容,本章主要让学生了解二次根式的概念、性质和运算方法。

通过本章的学习,学生能理解二次根式的实际意义,掌握二次根式的基本性质和运算规律,为后续学习更高深的数学知识打下基础。

二. 学情分析学生在七年级时已经学习了实数和分数,对数的运算有一定的基础。

但是,对于二次根式这一概念,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生对于抽象的数学概念,有时难以理解其内涵,需要教师通过具体例子和生活中的实际问题来进行引导。

三. 教学目标1.了解二次根式的概念和性质。

2.掌握二次根式的运算方法。

3.能运用二次根式解决实际问题。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

3.二次根式在实际问题中的应用。

五. 教学方法采用讲授法、案例分析法、问题驱动法、小组讨论法等,结合多媒体教学,引导学生通过观察、思考、讨论、实践等方式,掌握二次根式的概念、性质和运算方法。

六. 教学准备1.教材、教案、课件。

2.相关的生活实例和练习题。

3.多媒体教学设备。

七. 教学过程1. 导入(5分钟)教师通过引入实际问题,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。

”让学生思考如何用数学方法来解决这个问题。

2. 呈现(10分钟)教师通过讲解和展示课件,介绍二次根式的概念和性质,如“二次根式是一个形如√a的数学表达式,其中a是一个非负实数。

”并通过实例来引导学生理解二次根式的实际意义。

3. 操练(10分钟)教师给出一些二次根式的运算题目,如“计算√8 + √2”,让学生独立完成,然后进行讲解和解析。

4. 巩固(10分钟)教师通过一些练习题,让学生运用二次根式的运算方法,如“计算(√2 + √3)^2”,并引导学生理解二次根式的运算规律。

5. 拓展(10分钟)教师引导学生思考二次根式在实际问题中的应用,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。

二次根式教材分析

二次根式教材分析
5、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
三、本章知识结构框图
(a≥0)是一个非负数
( )2=a(a≥0)
的乘除
二次根式的加减
四、课时安排
16.1二次根式2课时
16.2二次根式的乘除2课时
16.3二次根式的加减3课时
数学活动本章小结2课时
二、本章学习目标:
1、理解二次根式的概念,了解被开方数必须是非负数的理由。
2、了解最简二次根式的概念。
3、理解二次根式的性质:
(1) (a≥0)是一个非负数(2)( )2=a(a≥0)(3) =a(a≥0).
4、掌握二次根式的加减乘除运算法则,会使用它们进行有
章节教材分析
关实数的简单四则运算。
二次根式的化简与运算
科目
数学
版本
新人教版
第16章
一、本章内容主要包括:二次根式的概念,二次根式的三个性质,代数式的概念,二次根式的乘除运算,二次根式的加减运算,并会用它们进行有关实数的简单四则运算。
全章分为三节,第一节研究了二次根式的概念和性质,在二次根式的概念中重点是理解被开方数是非负数的要求。从算术根的定义出发探讨了二次根式的三个性质,为后两节的学习打下了基础。第二节研究二次根式的乘除运算,第三节是二次根式的加减运算及简单的四则运算,这些都应用了二次根式的性质、最简二次根式和正式的运算性质。二次根式的学习为今后学习锐角三角函数、一元二次方程、二次函数打下良好的基础。

教材分析 二次根式

教材分析 二次根式

第1章 二次根式二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。

二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。

这些都说明了前后知识之间的内在联系。

本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。

一、教科书内容和教学目标1、本章的教学要求。

(1)了解二次根式的概念,了解简单二次根式的字母取值范围;(2)了解二次根式的性质;(3)了解二次根式的加、减、乘、除的运算法则;(4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化)。

2、本章教材分析。

课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式。

在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题。

对于二次根式的性质,课本利用第4页图1-2给出的。

该图的含义是如果正方形的面积为a ,那么这个正方形的边长就是a ;反之,如果正方形的边长为a ,那么这个正方形的面积就是a ,因此就有a a 2)(。

从而得出二次根式的第一个性质。

至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳。

该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开。

第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质。

通过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简。

人教版数学九年级上册21.1.2《二次根式的概念》教案

人教版数学九年级上册21.1.2《二次根式的概念》教案

人教版数学九年级上册21.1.2《二次根式的概念》教案一. 教材分析人教版数学九年级上册21.1.2《二次根式的概念》是该册的一个重点和难点。

本节课主要介绍二次根式的概念,包括二次根式的定义、性质和运算。

通过本节课的学习,学生将能够理解二次根式的概念,掌握二次根式的性质和运算,为后续学习二次根式的应用打下基础。

二. 学情分析学生在学习本节课之前,已经学习了实数、有理数、无理数等基础知识,对数的运算也有一定的了解。

但是,学生对二次根式的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。

此外,学生可能对二次根式的运算有一定的困难,需要通过实例和练习来加深理解。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质和运算。

2.能够运用二次根式的知识解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。

通过问题引导学生思考,通过实例讲解和练习让学生理解和掌握二次根式的概念和性质,通过合作学习让学生互相交流和解决问题。

六. 教学准备1.PPT课件。

2.教学实例和练习题。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾实数、有理数、无理数等基础知识,为新课的学习做好铺垫。

2.呈现(15分钟)讲解二次根式的定义,通过实例让学生理解二次根式的概念。

讲解二次根式的性质,让学生掌握二次根式的基本性质。

3.操练(20分钟)让学生进行二次根式的运算练习,引导学生运用二次根式的性质和运算法则进行计算。

在此过程中,教师要及时给予指导和反馈,帮助学生巩固所学知识。

4.巩固(10分钟)通过一些典型的例题和练习题,让学生进一步理解和掌握二次根式的概念和性质,能够熟练地进行二次根式的运算。

5.拓展(10分钟)让学生思考和讨论二次根式在实际问题中的应用,引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。

【人教版】数学八下:第16章《二次根式》全章名师说课稿

【人教版】数学八下:第16章《二次根式》全章名师说课稿

【人教版】数学八下:第16章《二次根式》全章名师说课稿一. 教材分析《人教版》数学八下第16章《二次根式》是学生在学习了实数、代数式、方程等知识后,进一步研究根式的一个章节。

本章主要内容包括二次根式的定义、性质、运算及应用。

通过本章的学习,使学生了解二次根式在数学中的地位和作用,培养学生运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已掌握了实数、代数式、方程等知识,具备了一定的数学基础。

但二次根式作为一项新的内容,对学生来说仍具有一定的抽象性。

因此,在教学过程中,需要关注学生的学习需求,引导他们通过观察、分析、归纳等方法,逐步理解二次根式的内涵和外延。

三. 说教学目标1.知识与技能:理解二次根式的定义、性质,掌握二次根式的运算方法,能运用二次根式解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主学习、合作交流的能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的意识。

四. 说教学重难点1.重点:二次根式的定义、性质,二次根式的运算。

2.难点:二次根式在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、分组讨论等教学方法,引导学生主动参与,提高学生学习兴趣。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,使抽象的二次根式形象化、具体化。

六. 说教学过程1.导入新课:通过一个实际问题,引出二次根式,激发学生学习兴趣。

2.自主学习:让学生独立阅读教材,理解二次根式的定义和性质。

3.合作交流:分组讨论二次根式的运算方法,分享学习心得。

4.课堂讲解:教师讲解二次根式的运算规则,引导学生总结规律。

5.巩固练习:布置针对性的练习题,让学生巩固所学知识。

6.拓展应用:引入实际问题,引导学生运用二次根式解决问题。

7.课堂小结:教师引导学生总结本节课的主要内容和收获。

8.课后作业:布置适量的作业,让学生进一步巩固所学知识。

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容。

本节内容是在学生已经掌握了有理数的乘除法、平方根的基础上进行的。

二次根式是数学中的基本概念,它在几何、物理等领域有广泛的应用。

本节课的主要内容是二次根式的定义、性质和运算规则,旨在培养学生的逻辑思维能力和数学运算能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平方根的概念和运算有一定的了解。

但二次根式相对于平方根来说,其概念和运算更为复杂,需要学生进行一定的抽象和推理。

因此,在教学过程中,需要关注学生的学习情况,引导学生理解二次根式的本质,掌握其运算规则。

三. 教学目标1.理解二次根式的定义和性质。

2.掌握二次根式的运算规则。

3.能够运用二次根式解决实际问题。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析,让学生了解二次根式的应用;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件。

2.相关案例材料。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如计算物体体积、求解方程等,引导学生思考这些实例与二次根式的关系。

2.呈现(10分钟)介绍二次根式的定义和性质,通过PPT展示相关公式和定理。

让学生初步了解二次根式的基础知识。

3.操练(10分钟)让学生进行一些简单的二次根式运算,如化简、求值等。

教师在这个过程中要注意引导学生掌握运算规则,并及时解答学生的问题。

4.巩固(10分钟)让学生运用二次根式解决一些实际问题,如计算物体体积、求解方程等。

教师在这个过程中要注意引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。

5.拓展(10分钟)让学生探讨二次根式在实际生活中的应用,如物理、化学等领域。

教师在这个过程中要注意引导学生思考和探索,培养学生的创新能力。

北师大版数学八年级上册7《二次根式》说课稿3

北师大版数学八年级上册7《二次根式》说课稿3

北师大版数学八年级上册7《二次根式》说课稿3一. 教材分析北师大版数学八年级上册7《二次根式》是初中数学的重要内容,它既是对实数系统的完善,也是进一步学习代数、几何等知识的基础。

本节课主要介绍二次根式的概念、性质和运算。

通过学习,学生能够理解二次根式的实际意义,掌握二次根式的基本性质,提高解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了实数的基本概念,具有一定的代数基础。

他们对实数的认识有助于理解二次根式。

然而,学生对二次根式的理解可能仍停留在表面,对其内在联系和应用可能不够深入。

因此,在教学过程中,需要关注学生的认知水平,引导学生深入理解二次根式。

三. 说教学目标1.知识与技能:学生能够理解二次根式的概念,掌握二次根式的性质,学会进行二次根式的运算。

2.过程与方法:通过观察、思考、交流,学生能够发现二次根式的性质,提高分析问题和解决问题的能力。

3.情感态度与价值观:学生能够体验数学与实际生活的联系,培养学习数学的兴趣和自信心。

四. 说教学重难点1.重点:二次根式的概念、性质和运算。

2.难点:二次根式的性质的发现和证明,二次根式在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究发现的教学方法,引导学生主动参与,培养学生的思维能力和创新能力。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。

六. 说教学过程1.导入:通过实际问题引入二次根式的概念,激发学生的兴趣。

2.新课导入:介绍二次根式的概念,引导学生探究二次根式的性质。

3.例题讲解:通过典型例题,讲解二次根式的运算方法。

4.实践环节:学生自主探究,发现二次根式的性质。

5.应用拓展:结合实际问题,引导学生运用二次根式解决实际问题。

6.总结:对本节课的内容进行总结,强调二次根式的概念、性质和运算。

7.作业布置:布置巩固二次根式的练习题,提高学生的应用能力。

七. 说板书设计板书设计要清晰、简洁,能够突出二次根式的关键信息。

北师大版八年级数学上册:2.7《二次根式》教学设计3

北师大版八年级数学上册:2.7《二次根式》教学设计3

北师大版八年级数学上册:2.7《二次根式》教学设计3一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节内容主要介绍二次根式的概念、性质和运算。

二次根式是中学数学中的重要内容,它在解决实际问题和其他学科中有着广泛的应用。

通过学习二次根式,学生能够更好地理解和掌握数学中的根式概念,提高解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。

但学生对二次根式这一概念可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对二次根式的运算规则和性质理解不够深入,需要在教学过程中进行引导和讲解。

三. 教学目标1.理解二次根式的概念和性质;2.掌握二次根式的运算规则;3.能够应用二次根式解决实际问题;4.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算规则;3.二次根式在实际问题中的应用。

五. 教学方法采用问题驱动法和案例教学法,通过实例和练习引导学生理解二次根式的概念和性质,通过讲解和练习让学生掌握二次根式的运算规则,通过实际问题让学生应用二次根式解决问题。

六. 教学准备1.PPT课件;2.相关例题和练习题;3.教学黑板和粉笔。

七. 教学过程1.导入(5分钟)通过PPT展示一些实际问题,如计算物体体积、求解方程等,引导学生思考如何利用二次根式解决这些问题。

让学生认识到二次根式在实际问题中的重要性。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关定义和性质,让学生理解二次根式的基本特点。

同时,给出一些例子,让学生加深对二次根式的认识。

3.操练(10分钟)让学生进行二次根式的运算练习,如化简、求值等。

教师引导学生运用二次根式的性质和运算规则,解答练习题。

在此过程中,教师应及时解答学生的疑问,并进行讲解和指导。

4.巩固(10分钟)让学生运用二次根式解决实际问题,如计算物体体积、求解方程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章《二次根式》教材分析
一、主要知识点
本章内容分为三节:
第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,又是后面两节内容的基础,因此起承上启下的作用;
第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简,给出了最简二次根式的概念,为下一节学习二次根式的加减运算作好了铺垫。

第三节是是二次根式的加减运算和二次根式的加、减、乘、除混合运算,本小节的基础是学生已经掌握了把一个二次根式化简成最简二次根式的方法。

主要研究二次根式的加减运算法则和进一步完善二次根式的化简。

突出了二次根式与整式之间的关系,体现了整式的运算性质、公式和法则与二次根式相关内容的一致性。

二、本章地位与作用
本章内容“二次根式”是《课程标准》中“数与代数”领域的重要内容。

从《课程标准》看,关于数的内容,第三学段主要学习有理数和实数。

对于有理数和实数,本套教科书主要分三章编写,分别是7年级上册第1章“有理数”,7年级下册第10章“实数”和本章“二次根式”。

本章是在第10章的基础上继续研究有关实数的内容。

本章是在第10章的基础上,进一步研究二次根式的概念和运算。

在本章中,学生将学习二次根式的概念、性质、运算法则和化简的方法。

通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。

学习本章的关键是理解二次根式的概念和性质,这是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。

本章内容与已学“实数”“整式”“勾股定理”等内容联系紧密,同时也是以后将要学习的“解直角三角形”“一元二次方程”和“二次函数”等内容的重要基础,并为学习高中数学中不等式、函数以及解析几何等的大部分知识作准备。

三、中考考试要求及本章内容在近年中考中所占分值:
2010年在选择题选项中结合幂的运算考到过5;在计算题化简考到过。

11分
2011年在选择题中考到是否有意义。

4在计算题化简第一个题考到 11分
2012年在计算题中化简考到 8分
2013年在选这题第一个中结合相反数考到,第七个结合勾股定理考到,计算题化简考到8分 14分
2014年选择题中第4个考到是否有意义 3分选择题8中结合解直角三角形考到过。

3分计算题第一个化简考到 8分 14分。

四、关注几个问题
(一)适当加强练习,为后续学习打好基础
本章内容属于“数与代数”领域中较基础的内容,其中二次根式的加、减、乘、除运算是后续学习解直角三角形、一元二次方程和二次函数的重要基础。

例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式以及二次根式的加减运算;在“一元二次方程”中,利用公式法解方程时,会
用到二次根式的性质;在“二次函数”一章中,判断二次函数的图象与x轴是否有交点时,会遇到根的判别式中被开方数小于0的情形。

这里需要深刻理解二次根式的意义。

因此二次根式的有关概念和运算是学好这些后续内容的重要基础,而熟练掌握二次根式的概念和运算需要一定的训练。

这样,教学中可以适当增加练习,使学生较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。

另外,本章内容与“整式”“勾股定理”等联系紧密,在加强练习的过程中,要注意强调知识之间的相互联系,进一步加深对整式和勾股定理等内容的理解,使学生养成以联系和发展的观点学习数学的习惯。

(二)引导学生理解数学的本质
本章的重点是让学生理解二次根式的概念,并会熟练运用法则进行运算。

本章编写时,注重说明性质和法则成立的合理性,突出它们的数学本质。

例如,教科书在介绍二次根式
的性质=a(a≥0)时,首先让学生通过探究活动,对这条性质有所感受。

然后再从
算术平方根的意义出发,结合具体例子对这条性质进行分析。

最后由特殊到一般地得到这条性质。

这样就可以使学生对这条性质的数学实质有较深刻的认识。

另外,对于概念,本章编写时遵循淡化概念名词,突出概念实质的原则。

例如,本章在介绍二次根式的乘除运算时,没有给出分母有理化的概念,而是结合具体例子说明分母有理化的要求。

再如,对于二次根式的加减运算,教科书回避了同类二次根式的概念,突出强调了运算时先将二次根式化成最简二次根式再进行合并的方法。

这样处理内容的目的是使学生将学习的重点放在理解数学的本质上来。

因此,教学中要注意体会教科书的编写意图,培养学生的数学能力。

相关文档
最新文档