不封闭路线的植树问题
植树问题和方阵问题

一、 植树问题分两种情况:(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、 解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.知识框架植树问题和方阵问题例题精讲一、不封闭植树问题【例1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。
两端都植,共植树多少棵?【例2】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【巩固】从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【例3】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【巩固】马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树,问汽车每小时走多少千米?【例4】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【巩固】丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【例5】有一个报时钟,每敲响一下,声音可持续3秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?【巩固】有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?【例6】元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【巩固】校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【例7】有三根木料,打算把每根锯成3段,每锯开一处需用3分钟,全部锯完需要多少分钟?【巩固】一根木料在24秒内被锯成了4段,用同样的速度锯成5段,需要多少秒?【例8】有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?【巩固】大头儿子和小头爸爸一起攀登一个有300级台阶的山坡,爸爸每步上3级台阶,儿子每步上2级台阶,从起点处开始,父子俩走完这段路共踏了多少级不同的台阶?二、封闭植树问题【例9】公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【巩固】一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?一、 方阵问题(1) 明确空心方阵和实心方阵的概念及区别.(2) 每边的个数=总数÷41 ”;(3) 每向里一层每边棋子数减少2;(4) 掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
四年级奥数第10讲间隔问题(教师版)

四年级奥数第10讲间隔问题(教师版)λ封闭与非封闭植树路线的讲解及生活运用. λ掌握空心方阵和实心方阵的变化规律.一、植树问题路线(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,知识梳理教学目标只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
典例分析例1、大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【解析】从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵).例2、一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种树___________棵。
四年级二十三讲《植树问题》PPT课件

间隔个数= 全长÷间隔长度
树的棵数= 间隔个数
想一想 做一做
全长 = 间隔个数×间隔长度 间隔长度= 全长÷间隔个数
1.一个湖泊的周围长1080米,共栽树270棵, 相邻两棵树之间相隔多少米?
2.一个湖泊周围长2100米,沿湖泊周围每隔7 米栽1棵柳树,一共可以栽多少棵柳树?
3.有一块三角形果园,它的三条边长分别是90 米、80米、74米。在它的周围每隔2米种上1 棵树,共植树多少棵?
2.学校计划要一条小道旁每隔5米放一个垃圾 桶,如果小道的另一端不放,一共可以放15 个垃圾桶,问这条小道有多长?
二、封闭的路线: 树的棵数= 间隔个数
间隔个数= 全长÷间隔长度
难题点拨2
一个湖泊周围长1800米,沿湖泊周围每隔3米栽1棵 柳树。这个湖泊的周围共栽了多少棵柳树?
二、封闭的路线:
解: 100÷4 = 25树。
1、两端都植树:树的棵数= 间隔个数 + 1 间隔个数= 全长÷间隔长度
练习题
1.红旗小学开运动会,要求在主席台前50米 长的空地上站一排打彩旗的学生(两端都 站),已知每两个学生之间间隔2米。需要 多少名学生?
点拨4
一根木料截成3段需要6分钟。照这 样计算,如果要截成5段,需要多少 分钟?
两端都不植树:
解: 6÷(3-1) = 3(分钟)
间隔个数= 全长÷间隔长度
3 × (5-1) = 12(分钟)
树的棵数= 间隔个数 - 1 答:如果要截成5段,需要12分钟。
练习题
1.木工师傅要把一根长10米的圆木锯成6段,每锯一次要用5 分钟。木工师傅锯完这根木料用了多长时间?
答:迎春花75棵,串红花225棵。
练习题
1.一个公园的水上乐园是个椭圆形,周长 8000米,现在每隔16米栽一棵松树,在每两 棵松树每隔2米安一盏路灯,要植树多少棵? 安灯多少盏?
第六讲植树问题

路长=株距×段数
关爱成长每一天
我试试:
1、 一条马路的一侧共有 26 盏路灯,每两盏路灯之间相距 15 米,这条马路多长?
2、一条 2 千米长的马路一旁安装电线杆,每隔 40 米安一根,一共要安装多少根电线杆?
3、在全长 2040 米公路的一侧,等距离地栽了 103 棵杨树,求两棵杨树之间的间隔是多少米?
3、科学家进行一项实验,每隔 5 小时做 1 次记录。做 12 次记录时,挂钟的时针恰好指向 9,问: 做第一次记录时,时针指向几?
第二关:我能会
例 1.一位老人在公路上散步,从第一根电线杆走到第 12 根电线杆处共用了 22 分钟。这位老人 走了 40 分钟,这时他走到了第几根电线杆处? 解析:从第一根到第十二根电线杆,共有十一个段,可以先求出走每段所用的时间,再根据总时 间求出段数,根据棵数=段数+1,求出电线杆总数。 解: 22÷(12-1)=2(分) 40÷2+1=21(根)
2、大雪后的一天,小明和爸爸共同步测一个圆形花圃的周长。他俩的起点和走的方向完全相同。 小明的平均步长 54 厘米,爸爸平均步长 72 厘米。由于两人的脚印有重合,并且他们走了一圈后 都回到起点,这时雪地上只有留下 60 个脚印。这个花圃的周长是多少米?
3、在一根长木棍上,有三种刻度线。第一种刻度线将木棍分成十等份;第二种将木棍分成十二等 份;第三种将木棍分成十五等份。如果沿每条刻度线将木棍锯开,木棍总共被锯成多少段?
我能行:
1、一个公园周长 2700 米,沿公园周围每隔 20 米栽一棵柳树,每相邻两棵柳树中间栽两棵桃树, 公园周围栽柳树和桃树各多少棵?
2、有一个圆形花坛,绕着它走一圈是 120 米。如果沿着这一圈每隔 6 米栽一棵丁香花,再在每相 邻的两株丁香花之间等距离地栽 2 株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻 的丁香花之间的 2 株月季花相距多少米?
植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习

植树问题最全应用题(专项讲义)六年级数学小升初总复习(五大类型+方法+练习+答案)植树问题是小数数学应用题的重难点问题,主要分为不封闭路线、封闭路线两种情况,可细分为五大考点。
【考点一】非封闭路线的两端都要植树【方法总结】若题目中要求在非封闭路线的两端都要植树,则植树棵数就比分成段数多1,可得到:植树棵数=间隔个数+1;植树棵数=植树全长÷间隔距离+1;间隔距离=植树全长÷(植树棵数-1);植树全长=间隔距离×(植树棵数-1)。
【典型例题】兴华学校为了建设美丽校园,决定在校园里一条长200米的路的两边从头到尾都种树,且每隔5米种一棵树,一共需要种几棵树?【解题分析】这道题是属于非封闭路线的两端都要植树的问题,那么植树棵数就比分成段数多1。
可直接采用公式:植树棵数=植树全长÷间隔距离+1;代入数据即可求出。
本题需要注意的是“路的两边都种树”,最后的棵数要“×2”。
【解答】300÷5+1=60÷1=61(棵)61×2=122(棵)答:一共需要种122棵树。
【跟踪练习】1、绿茵公园里有一条全长1000米的主干道路,现在打算在这条道路的一侧从头到尾等距离地放置6张长木凳供游人休息,每两张长木凳之间相距是多少米?2、宜安居小区为了打造最美绿化小区,计划在小区里的一条主干道进行绿化升级。
主干道长420米,在主干道的两边从头到尾都植树。
为了对称性美观,路的两边所种的树间隔和棵数一样,都是每隔6米种一棵树,则一共需要种多少棵树?3、在公路的一边立着等距离的电线杆,李华从第1根路灯下走到第9根路灯下用了4分钟。
如果李华走了10分钟,此时他走到了第几根路灯下? 5米 1棵 2棵 3棵0 5米 10米 15米 20米 4棵 5棵 …………4、校园里的林荫小道边上摆着一排花,每隔0.6米摆一盆,加上两端一共摆了82盆花。
现在改成每隔0.9米摆一盆花,那么剩下多少盆花?5、会议大楼从一楼走到四楼一共要走63级台阶。
小学数学4年级培优奥数讲义 第10讲-间隔问题(学生版)

第10讲间隔问题教学目标封闭与非封闭植树路线的讲解及生活运用.掌握空心方阵和实心方阵的变化规律.知识梳理一、植树问题路线(一)不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41 ”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
典例分析例1、大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?例2、一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种树___________棵。
例3、一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?例4、校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8, 一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?例5、从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?例6、马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?例7、一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树)例8、元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?例9、有一个报时钟,每敲响一下,声音可持续3秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?例10、小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少?例11、科学家进行一项试验,每隔5小时做一次记录,做第12次记录时,挂钟时针恰好指向9,问做第一次记录时,时针指向几?例12、裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?例13、有三根木料,打算把每根锯成3段,每锯开一处需用3分钟,全部锯完需要多少分钟?例14、甲、乙、丙三人锯同样粗细的木棍,分别领取8米,10米,6米长的木棍,要求都按2米的规格锯开.劳动结束后,甲,乙,丙分别锯了24, 25, 27段,那么锯木棍速度最快的比速度最慢的多锯次.例15、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红色点,同时自右向左每隔5 厘米也染一个红点,然后沿红点将木棍逐级锯开,那么长度是4厘米的短木棍有多少根?例16、甲、乙俩人对一根3米长的木棍涂色,首先甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为厘米.例17、大头儿子和小头爸爸一起攀登一个有300级台阶的山坡,爸爸每步上3级台阶,儿子每步上2级台阶,从起点处开始,父子俩走完这段路共踏了多少级不同的台阶?例18、北京市国庆节参加游行的总人数有60000人,这些人平均分为25队,每队又以12人为一排列队前进.排与排之间的距离为1米,队与队之间的距离是4米,游行队伍全长多少米?例19、思考乐学校三年级运动员参加校运动会入场式,组成66的方块队(即每行每列都是6人),前后每行间隔为2米.他们以每分钟40米的速度,通过长30米的主席台,需要多少分钟?例20、有一路电车的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站出发开往乙站,全程要15分钟.有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上,他又遇到了10辆迎面开来的电车才到达甲站,这时候,恰好又有一辆车从甲站开出,问:他从乙站到甲站用了多少分钟?实战演练➢课堂狙击1、在一条长240米的水渠边上植树,每隔3米植1棵。
小学奥数:植树问题(一).专项练习

1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造一、植树问题分两种情况:(一)不封闭的植树路线. ① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
知识点拨教学目标5-1-3.植树问题(一)例题精讲【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。
两端都植,共植树多少棵?【例 2】一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种树___________棵。
【例 3】一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?【例 4】贝贝要去外婆家,他家门口有一根路灯杆,从这根杆开始,他边走边数,每50步有一根路灯杆,数到第10根时刚好到外婆家,他一共走了_____步.【例 5】校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【例 6】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【巩固】从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【例 7】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【巩固】马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树,问汽车每小时走多少千米?【例 8】一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树)【例 9】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【巩固】丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【例 10】有一座高楼,小红每上登一层需1.5分钟,每下走一层需半分钟,她从上午8:45开始不停地从底层往上走,到了最高层后又立即往下走,中途也不停留,上午9:17第一次返回底层。
典型应用题(一):植树问题

典型应用题(一):植树问题在不封闭路线上植树【例1】园林工人在长96米的公路两边每隔6米栽一棵树(首尾都栽)现在要改成每隔4米栽一棵树,那么不用移裁的树有多少棵?思路引导因为4和6的最小公倍数是12,故是12的整数倍的地方不需要移动,所以求出一侧栽树的棵数再乘2,即可得出不用移栽的树的总棵数。
正确解答:因为4和6的最小公倍数是12,所以96÷12=8(棵)(8+1)×2=9×2=18(棵)答:不用移栽的树有18棵。
解决这类问题的关键是要明白求4和6的最小公倍数是解决问题的关键,其次要掌握植树问题中两端都植树的数量关系式。
【变式1】园林工人在长60米的小路两边每隔5米栽一棵树(首尾都栽),现在要改成每隔4米栽一棵树,那么不用移栽的树有多少棵?【例2】为了美化乡村环境,王张村准备给一条长800m的村道两侧栽树,每隔20m栽一棵(只栽一端)。
一共需要多少棵树苗?思路引导只栽一端的植树问题,公式是:植树棵数=间隔数,两侧的棵数=一侧的棵数×2,据此计算即可。
正确解答:800÷20×2=40×2=80(棵)答:一共需要80棵树苗。
本题主要考查植树问题,关键分清植树棵数和间隔数的关系做题,并且看清楚是路的两侧还是一侧植树。
【变式2】聪聪家门前有一条长60米的小路,绿化队要在小路的两旁栽树(一端栽,一端不栽)。
相邻两棵树之间的距离是5米,一共要栽多少棵树?【例3】“一根木头要把它平均分成5段,每锯一段需要5分钟,锯完这根木头需要多少分钟?”这题属于植树问题中的()。
A.两端都不栽B.两端都栽C.一端栽一端不栽思路引导锯木头,锯1次,平均分成2段;锯2次,平均分成3段……锯的次数=段数-1;属于植树问题中的两端都不栽,棵数=间隔数-1,锯木头的次数=段数-1,相当于植树问题中的两端都不栽的情况,列式为:5-1=4(次),5×4=20(分钟)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 不封闭路线的植树问题
主备人;刘思佳
教学目标:
1通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树
情况,培养学生分析问题的能力m
2:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似
的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。
3:培养学生认真审题的良好学习习惯。
教学重、难点
重 点:能理解间隔数与棵数之间的关系并应用到生活中去。
难 点:理解间隔数与棵数之间的规律(总长÷间距=间隔数,间隔数+1=植树棵
数),并能运用规律解决。
教学准备:
多媒体。
教学过程
一、情境导入
1.出示:公路两旁的树。
师:为什么要在公路的两旁栽上树呢?学生自由发言。
教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造
林有助于环境的改善。(渗透植树造林的环保意识。)
2.揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题)
二、互动新授
(一)提出问题——两端都栽、两端不栽。
1.出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5
米栽一棵树(两端都栽)。一共需要多少棵小树?
2.出示教材第107页例2:大象馆和猩猩馆相距60米,绿化队要在两馆间
的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3米。一共要栽多少棵
树?
引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。
3.(出示线段图)问题分析:
两端都栽:
两端不栽:
(二)棵数与间隔数之间的关系。(找规律)
提问:刚才同学们用线段图表示了两种植树情况,现在同学们能否用算式来
表示这两种植树情况呢?
1.两端都栽:(教学例1)
假设小路长20米,那么可以栽几棵?
用画线段图表示:
则20÷5=4,要栽5棵。
5m
由此可知:lOO÷5=20(个),那么这里的20就是棵数了吗?应该是什么?
学生回答:不是,是间隔数,应该是20+1=21(棵)。
教师板书:关系:间隔数+1=棵数
追问:为什么这里的20是间隔数,而不是棵数?
学生回答,分析原因:100÷5=20只是求100米里面有多少个5米,所以
20是间隔数而不是棵树。并得出公式:路长÷间距=间隔数(不是棵数,跟棵
数没关系。)
2.两端不栽:(教学例2)
假设两馆间相距30米,小树之间的距离为5米,则30÷5=6(个),6-1=5
(棵)
用画线段图表示:
由此可知:60÷3=20(个),20-1=19(棵)
教师板书:关系:间隔数-1=棵数
三、巩固练习
1.教材第109页练习二十四第3题。
2.教材第111页练习二十四第13题。
3.教材第109页练习二十四第6题。组织学生读题并归纳有效信息,讨论
这道题属于植树问题的哪种情况,并列式算出答案。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
五、作业:教材练习二十四剩余题。(课内时间不够,可在课外完成)
板书设计 :
不封闭路线的植树问题
两端都栽 两端不栽
间隔数+1=棵数 间隔数-1=棵数
5m