平面连杆机构2
第五章 平面连杆机构的运动分析和设计2

怎样求杆长?
求铰链点,由铰链点求杆长
怎样求铰链点?
固定铰链点:无位置变化 其他铰链点:运动轨迹为圆
b B
1 2 3
C c
1 a
d A 4
D
讨论:固定铰链与活动铰链的关系
C2 B1 B2 B3 C1 C3
A
D
连杆上P、Q与铰链点A、B、C、D之间的关系
已知:连杆的三个精确位置P1Q1、P2Q2、P3Q3。
Burmester理论
当给定刚体三个位置,刚体平面上任意一点
都为圆点
当给定刚体四个位置时,圆点和圆心点为三次
曲线,称为Burmester曲线
当给定刚体五个位置时,设计问题的解是确定
的:圆点可能有4个、或者2个,或者没有解!
结论:
铰链四杆机构最多可实现五个连杆精确位置,即: 铰链四杆机构实现连杆精确位置的最大数目为 5
y B1 (3)
1
Bi
i
x (4)
A
O
= XA + LAB cos (1i + 1 ) = XA + LAB (cos1i cos 1-sin 1i sin 1 )
同理:
YBi =YA + LAB (sin1i cos 1+cos1i sin 1 )
(5)
y B1 yB1 Bi
013d????????????????????????????????????????????????????????????????????????115
第 五 章 平面连杆机构的运动分析和设计(2)
5.6 平面连杆机构的运动设计
设计要求通常用在输
出构件(连杆或连架杆) 上的点或直线的一系列有 序的位置来描述。这些点 或直线位置叫做精确点或 精确位置。 精确点或精确位置的含义是:必须保证 设计出来的机构能够到达这些点或位置,而 在精确点或精确位置之间的机构的运动情况 却不能保证。
2平面连杆机构

分类:
四杆机构
多杆机构
2 连杆机构 2
基本型式 (全为转动副)-铰链四杆机构 演化形式 (含有移动副)
2.1 平面四杆机构基本型式及其演化
一、铰链四杆机构
1. 组成 机架4 构件 连架杆1、3 连杆2 曲柄:相对机架作整周转 摇杆:相对机架不作整周转
转动副
整转副 (周转副 ):组成转动副的两构件能整周相对转动 摆动副(摆转副 ) :不能作整周相对转动的转动副
2. 三种类型 曲柄摇杆机构 如雷达俯仰机构、 缝纫机踏板机构, 其它 双曲柄机构 如机车车轮联动机构、 惯性振动筛 双摇杆机构 如飞机起落架机构、 造型机翻转机构, 其它
2 连杆机构 3
2.1 平面四杆机构基本型式及其演化
一、铰链四杆机构
3. 有整转副的条件 分析: 构件AB要为曲柄,则转动副A应为整转副; 因此AB杆应能占据与AD共线的位置AB'及 AB''。 由△DB'C', l1 + l4 ≤ l2 + l3
2 连杆机构 21
一、 按给定的行程速比系数K设计四杆机构
已知摇杆的长度CD、摆角φ及行程速比系数K,要求设计曲柄摇杆机构。
2 连杆机构 22Biblioteka 2.3 平面四杆机构的设计
二、 按给定连杆位置设计四杆机构
1. 给定两个连杆位置 已知连杆长度及两预定位置B1C1、B2C2,要求设计四杆机构。 b12 B1 B2 C1 c12
第2章 平面连杆机构
定义:若干构件用低副(转动副或移动副)连接组成的平面机构。
2 连杆机构 1
第2章 平面连杆机构
传动特点:
优点:
(1) 连杆机构为低副机构, 运动副为面接触, 压强小, 承载能力大, 耐冲击;
第2章 平面连杆机构

起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄
第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)
第2章 平面连杆机构

第2章平面连杆机构平面连杆机构是由若干构件通过低副联接而成的平面机构,也称平面低副机构。
平面连杆机构广泛应用于各种机械和仪表中,其主要优点是:(1)由于运动副是低副,面接触,传力时压强小,磨损较轻,承载能力较高;(2)构件的形状简单,易于加工,构件之间的接触由构件本身的几何约束来保持,故工作可靠;(3)可实现多种运动形式及其转换,满足多种运动规律的要求;(4)利用平面连杆机构中的连杆可满足多种运动轨迹的要求。
主要缺点有:(1)由于低副中存在间隙,机构不可避免地存在着运动误差,精度不高,(2)主动构件匀速运动时,从动件通常为变速运动,故存在惯性力,不适用于高速场合。
平面机构常以其组成的构件(杆)数来命名,如由四个构件通过低副联接而成的机构称为四杆机构,而五杆或五杆以上的平面连杆机构称为多杆机构。
四个机构是平面连杆机构中最常见的形式,也是多杆机构的基础。
1.1 四杆机构的基本形式及其演化1.1.1 四杆机构的基本形式构件间的运动副均为转动副联接的四杆机构,是四杆机构的基本形式,称为铰链四杆机构,如图1-1所示。
由三个活动构件和一个固定构件(即机架)组成。
其中,AD杆是机架,与机架相对的杆(BC杆)称为连杆,与机架相联的构件(AB杆和CD杆)称为连架杆,能绕机架作360°回转的连架杆称为曲柄,只能在小图1-1于360°范围内摆动的连架杆称为摇杆。
根据两连架杆的运动形式的不同,铰链四杆机构可分为三种基本形式并以其连架杆的名称组合来命名。
(1)曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的四杆机构,称为曲柄摇杆机构。
曲柄摇杆机构中,当以曲柄为原动件时,可将曲柄的匀速转动变为从动件的摆动。
如图1-2所示的雷达天线机构,当原动件曲柄1转动时,通过连杆2,使与摇杆3固结的抛物面天线作一定角度的摆动,以调整天线的俯仰角度。
图1-3为汽车前窗的刮雨器,当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。
《机械设计基础》第2章_平面连杆机构解析

由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:
第2章 平面连杆机构

曲 柄 摇 杆 机 构
急回特性 摇杆在空回行程中的平均速度大于工作行程的 平均速度的特性。 平均速度的特性。 行程速度变化系数K(或称行程速比系数) 行程速度变化系数 (或称行程速比系数) 从动件在空回行程中的平均速度与工作行程中 的平均速度之比值。 的平均速度之比值。
K −1 θ = 180 K +1
缝纫机踏板机构
2.双曲柄机构 双曲柄机构
具有两个曲柄的铰链四杆机构称为双曲柄机构。 具有两个曲柄的铰链四杆机构称为双曲柄机构。 两个曲柄的铰链四杆机构称为双曲柄机构
原动件: 原动件 匀速转动) 主动曲柄 (匀速转动 匀速转动 从动件: 从动件 变速转动) 从动曲柄 (变速转动 变速转动
应用实例: 应用实例
当以最短杆的相邻杆为机架时, 当以最短杆的相邻杆为机架时,必为曲柄摇 杆机构; 杆机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆的对面杆为机架( 当以最短杆的对面杆为机架(最短杆为连 必为双摇杆机构。 杆) 时,必为双摇杆机构。
实验与思考
平面四杆机构的演化
死点
消除死点位置的不利影响的措施 安装飞轮,加大从动件惯性; 安装飞轮,加大从动件惯性; 采用错列机构。 采用错列机构。
飞 轮
错列机构
死点
死点位置的利用
飞机起落架机构
2.4 平面四杆机构的运动设计
两类基本问题 按给定从动件的运动规律设计四杆机构 按给定运动轨迹设计四杆机构 三种设计方法 图解法 实验法 解析法
曲柄移动导杆机构
双滑块机构
曲柄移动导杆机构(正弦机构) 曲柄移动导杆机构(正弦机构)的演化 (2)双滑块机构 (2)双滑块机构 应用实例
椭 圆 仪
第2章 平面连杆机构02——自由度

性桁架,因而不能成为机构。
5)超静定桁架
n=3 PL=5 PH=0 F=3n-2PL-PH=3×3-2×5-0=-1 表明该运动链由于约束过多,已成为超静定桁架 了,也不能成为机构。
计算实例 实例1: 解:n = 3, PL = 4, PH = 0 F = 3n - 2PL - PH =3×3 - 2×4 - 0
3ቤተ መጻሕፍቲ ባይዱ
2 1 4
n=3 PL=4 PH=0
F=3n-2PL-PH=3×3-2×4-0=1 2)五杆机构: n=4 PL=5 PH=0 F=3n-2PL-PH=3×4-2×5-0=2 3)凸轮机构: n=2 PL=2 PH=1 F=3n-2PL-PH=1
4 3
2
1 5
4)刚性桁架
n=2 PL=3 PH=0 F=3n-2PL-PH=3×2-2×3-0=0 表明该运动链中各构件间已无相对运动,只构成了一个刚
2、约束
但当这些构件之间以一定的方式联接起来成为构件系 统时,各个构件不再是自由构件。——自由度减少。
这种对构件独立运动所施加的限制称为约束。
3、自由度和约束的关系 运动副每引入一个约束,构件就失去一个自由度。 运动副既限制了两构件的某些相对运动,又允许构件 间有一定的相对运动。
二、平面机构的自由度计算
惯性筛机构
F=3n-2PL-PH
=3×5-2×7-0
=1
2.局部自由度
个别构件所具有的,不影响整个机构运动的自由度称为 局部自由度。 典型例子:滚子的转动自由度并不影响整个机构的运 动,属局部自由度。 计入局部自由度时 n = 3, PL = 3, PH = 1 F =3×3 - 2×3- 1 =2 与实际不符
=1
实例2: n =5, PL = 7, PH = 0 解: F = 3n – 2PL – PH = 3×5 – 2×7 – 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用实例
下列机构分别为什么机构
C
3
C
3
C
3
C
3
2
2
2
2
4
4
4
4
B
B
B
B
1A
1A
1A
1A
(a)
(b)
( c)
( d)
曲柄滑块机构 转动导杆机构 摆动导杆机构 移动导杆机构
平面四杆机构的其他形式
• 2、导杆机构 a)概念: 导杆与导杆 机构 b)类型: 1转动导杆机构 2摆动导杆机构 3移动导杆机构
1、曲柄摇杆机构
• 其中两连架杆一为曲柄另一为摇杆;
切割机
应用实例连架杆均为曲柄;
当连杆与机架相等 并两曲柄长度相等 有:
1、平行四边形机 构——方向相同, 角速度相等
2、反相双曲柄机 构——方向相反, 角速度不相等
应用实例
视频
3、双摇杆机构
• 其中两连架杆均为摇杆。
• 3、存在死点 • 当连杆与丛动件处于
共线位置时。 • 对传动来说死点是有
害的,可以通过安装 飞轮等方法克服。 • 也有机构利用死点工 作的,如钻床夹具等。
钻床夹具
平面四杆机构的其他形式
• 1、曲柄滑块机构 a)滑块移动距离等于
曲柄长度的2倍 b)运动形成(视) c)应用 1,曲柄作主动件 (压力机) 2、滑块作主动件 (单缸内燃机)
平面连杆机构
平面连杆机构基本概念
• 平面连杆机构——由一些刚性构件用转动副和移动副 相互连接而组成的在同一平面或相互平行平面内运动 的机构。
• 四杆机构——四个构件的低副机构 • 平面铰链四杆机构——构件间用四个转动副相连的平
面四杆机构。(简称铰链四杆机构)
内燃机简图
铰链四杆机构的基本形式
• 动画演示 • 若连架杆能做整周运动,则称为曲柄; • 若只能往复摆动一个角度,则称为摇杆。
作业
• 1、铰链四杆机构的基本型式有哪些?存在 曲柄的条件是什么?平面四杆机构有哪些 基本特征?
应用实例
铰链四杆机构曲柄存在的条件
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度和。 (2)最短杆是连架杆或机架。
推论: (1)若四杆机构中最短杆与最长杆之和小于或等于其余两 杆长度之和,则:
取最短杆为连架杆——曲柄摇杆机构 取最短杆是机架 ——双曲柄机构 取最短杆是连杆 ——双摇杆机构 (2)若四杆机构中最短杆与最长杆之和大于其余两 杆长 度之和,则无曲柄存在,此四杆机构只能是双摇杆机构
五、平面四杆机构的基本特性
• 1、急回运动特性 • 当曲柄均匀旋转时,
从动件作急回运动。 • 如牛头刨床的导杆
机构等。 • 有无急回等性取决
于急回特性系数K, K与极位夹角有关
五、平面四杆机构的基本特性
• 2、传动角越大,传 动性能越好。
- • 传动角=900 压力角
• 动画解说
五、平面四杆机构的基本特性