数学2015 年复旦大学附中自招试卷及答案解析(3.20)

合集下载

2015-2016学年上海市复旦大学附属中学高一上学期期中考试数学试卷含详解

2015-2016学年上海市复旦大学附属中学高一上学期期中考试数学试卷含详解

复旦大学附属中学2015学年第一学期高一年级数学期中考试试卷一、填空题(每题4分,共48分)1.函数2y x=-的定义域为______.2.已知,a b ∈R ,写出命题“若0ab ≠,则220a b ->”的否命题__________.3.已知,x y R +∈且2xy =,则当x =________时,224x y +取得最小值.4.已知集合3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥,则集合A 的子集个数为______个.5.已知定义在R 上的函数()f x 为奇函数,且0x >时,2()23f x x x =+-,则0x <时,()f x =________6.已知函数25()43kx f x kx kx +=++的定义城为R (R 为实数集),则k 的取值范围为_________7.若a b ,为非零实数,则不等式①232a a +>,②4433a b a b ab ++≥,③a b a b +-≥,④2b aa b+≥中恒成立的序号是_______.8.已知定义在R 上的奇函数()f x 与偶函数()g x 满足()()()210f x g x a x x a +=>++,若()113f =-,则a =__________.9.关于x 的方程()2290x a x a a R ++-=∈有唯一的实数根,则a =________.10.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.11.已知集合2{|(2)10,}A x x a x x R =+++=∈,{|0,}B x x x =>∈R ,若A B =∅ ,则实数a 的取值范围是________.12.若a 、b R ∈,且2249a b +≤≤,则22a ab b -+的最大值与最小值之和是________.二、选择题(每题4分,共16分)13.已知函数(1)=-y f x 的定义域为[0,1],则(1)f x +的定义域为()A.[-2,-1]B.[-1,0]C.[0,1]D.[2,3]14.给出三个条件:①22ac bc >;②a bc c>;③a b >;④1a b >-.其中能分别成为a b >的充分条件的个数为()A.0B.1C.2D.315.已知{}()(){}||330A x x B x x x =>=-+>,,则A B = ()A.()21-, B.()3-∞-, C.()2-∞,D.()01,16.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有()个(1)G 是非负整数集,⊕:实数的加法;(2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法.A.1 B.2 C.3 D.4三、解答题(本题共5大题,满分56分)17.已知集合{}{}211|0A B x x ax b x R =-=++=∈,,,,若B ≠∅,且A B A ⋃=,求实数a b ,的值.18.已知二次函数()2f x ax bx =+对任意x ∈R 均有()()2f x f x =--成立,且函数的图像过点312A ⎛⎫ ⎪⎝⎭,.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[]4m ,,求实数t 、m 的值.19.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥.(1)当1a =时,求集合B .(2)问:12a ≥是A B =∅ 的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.20.设函数()f x x a a=++.(a R ∈且0a ≠)(1)分别判断当1a =及2a =-时函数的奇偶性;(2)在a R ∈且0a ≠的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.21.已知关于x 不等式()()241292110kx k k x ---->,其中k ∈R .(1)试求不等式的解集A ;(2)对于不等式的解集A ,若满足A B =Z (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少时k 的取值范围,并用列举法表示集合B ;若不能,请说明理由.复旦大学附属中学2015学年第一学期高一年级数学期中考试试卷一、填空题(每题4分,共48分)1.函数y =的定义域为______.【答案】[1,2)(2,)-+∞ 【分析】由解析式有意义求解.【详解】由题意1020x x +≥⎧⎨-≠⎩,解得1x ≥-且2x ≠.故答案为:[1,2)(2,)-+∞ .【点睛】本题考查求函数定义域,属于基础题.2.已知,a b ∈R ,写出命题“若0ab ≠,则220a b ->”的否命题__________.【答案】若0ab =,则220a b -≤【分析】根据否命题的形式写出即可.【详解】命题“若0ab ≠,则220a b ->”的否命题是“若0ab =,则220a b -≤”故答案为若0ab =,则220a b -≤【点睛】本题主要考查了否命题的形式,属于基础题.3.已知,x y R +∈且2xy =,则当x =________时,224x y +取得最小值.【答案】2【分析】由2xy =,解出2y x=,代入224x y +中,化简利用基本不等式即可求出x 的值.【详解】因为2xy =,所以2y x=222222216448x y x x x x ⎛⎫+= =++≥⎝⎭=⎪当且仅当2216x x=,即2x =时,224x y +取得最小值.故答案为2【点睛】本题主要考查了基本不等式的运用,注意基本不等式使用的条件,考查学生利用知识分析和解决问题的能力,属于基础题.4.已知集合3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥,则集合A 的子集个数为______个.【答案】8【分析】求出集合A 中元素,由子集的定义求解.【详解】3|11A x x Z x ⎧⎫=∈⎨⎬+⎩⎭,≥{012}=,,,子集个数为328=.故答案为:8.【点睛】本题考查求子集个数,掌握子集概念是解题关键.,含有n 元素的集合的子集个数为2n .5.已知定义在R 上的函数()f x 为奇函数,且0x >时,2()23f x x x =+-,则0x <时,()f x =________【答案】223x x -++【分析】求0x <的解析式()f x ,可先求出()f x -的解析式,再利用奇函数()f x 与()f x -的关系求出()f x .【详解】设0x <,则0x ->,所以2()23f x x x -=--,又因为()f x 为定义在R 上的奇函数,所以()2()23f x f x x x =--=-++.故答案为223x x -++.【点睛】本题主要考查利用奇偶性求解函数的解析式,主要利用转化法把所求转化到已知区间,结合奇偶性可得,侧重考查数学抽象的核心素养.6.已知函数25()43kx f x kx kx +=++的定义城为R (R 为实数集),则k 的取值范围为_________【答案】3[0,4【分析】由函数25()43kx f x kx kx +=++的定义城为R ,转化为2430kx kx ++≠在R 上恒成立,结合二次函数的性质,分类讨论,即可求解.【详解】由题意,函数25()43kx f x kx kx +=++的定义城为R ,即2430kx kx ++≠在R 上恒成立,当0k =时,30≠恒成立,当0k ≠时,则满足2(4)430k k ∆=-⨯⨯<,即2430k k ∆=-<,解得304k <<,综上可得,实数k 的取值范围是3[0,4.故答案为:3[0,4.【点睛】本题主要考查了函数的定义域的定义,以及一元二次式的恒成立问题,其中解答中合理转化,结合二次函数的性质,分类讨论求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.若a b ,为非零实数,则不等式①232a a +>,②4433a b a b ab ++≥,③a b a b +-≥,④2b aa b+≥中恒成立的序号是_______.【答案】①②【分析】用作差法比较大小证明不等式,举反例说明不等式不成立.【详解】2232(1)20a a a +-=-+>,232a a +>恒成立,①正确;44333322222213()()()()()[()]024a b a b ab a b a b a b a ab b a b a b b +--=--=-++=-++≥,∴4433a b a b ab ++≥恒成立,②正确;2,1a b ==-时,③④均不成立,故答案为:①②.【点睛】本题考查不等式的性质,作差法是证明不等式的基本方法,必须掌握.对不恒成立的不等式可通过举反例说明,较方便.8.已知定义在R 上的奇函数()f x 与偶函数()g x 满足()()()210f x g x a x x a +=>++,若()113f =-,则a =__________.【答案】1【分析】由奇偶性求出(),()f x g x ,再由(1)f 求得a .【详解】∵()()21f xg x x x a +=++,①,∴21()()f x g x x x a-+-=-+,∵()f x 是奇函数,()g x 是偶函数,∴21()()f x g x x x a-+=-+,②,(①-②)除以2,得22111()(2f x x x a x x a=-++-+,∴1111(1)(223f a a =-=-+,∵0a >,∴1a =.故答案为:1.【点睛】本题考查函数的奇偶性,掌握奇偶性定义是解题关键.9.关于x 的方程()2290x a x a a R ++-=∈有唯一的实数根,则a =________.【答案】3【分析】考虑绝对值的性质,方程的唯一实根只能是0,即0x =,由此分析可得结论.【详解】方程2290x a x a ++-=为2290x a x a ++-=,因此原方程有唯一实根,则0x =,290a -=,3a =±,3a =-时,方程为230x x -=,x =0或3,不合题意,3a =时,方程为230x x +=,0x =,3x =-舍去.故答案为:3.【点睛】本题考查方程根的分布,根据绝对值的性质易得结论.10.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.【答案】[3,1)(3,)--+∞ 【分析】先求出A B -和B A -,再计算A B∆【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞ ,故答案为:[3,1)(3,)--+∞ 【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.11.已知集合2{|(2)10,}A x x a x x R =+++=∈,{|0,}B x x x =>∈R ,若A B =∅ ,则实数a 的取值范围是________.【答案】4a >-【分析】根据A B =∅ 可知,A =∅或方程2(2)10x a x +++=只有非正根,由此可解得a 的范围.【详解】分A ≠∅和A =∅两种情况讨论.①当A ≠∅时,A 中的元素为非正数,A B =∅ ,即方程2(2)10x a x +++=只有非正数解,所以2(2)40,(2)0,a a ⎧∆=+-≥⎨-+≤⎩解得0a ≥;②当A =∅时,2(2)40a ∆=+-<,解得40a -<<.综上所述,实数a 的取值范围是4a >-.故答案为:4a >-【点睛】当A B =∅ 时,包含A ≠∅和A =∅两种情况,A =∅容易被忽略.12.若a 、b R ∈,且2249a b +≤≤,则22a ab b -+的最大值与最小值之和是________.【答案】312【分析】用三角换元法,转化为求三角函数的最值.【详解】设cos ,sin a r b r θθ==,则23r ≤≤,2222222221cos sin cos sin sin 22a ab b r r r r r θθθθθ-+=-+=-21(1sin 2)2r θ=-,因为1131sin 2222θ≤-≤,249r ≤≤,∴21272(1sin 2)22r θ≤-≤.即22a ab b -+的最大值为272,最小值为2,和为312.故答案为:312.【点睛】本题考查由已知条件求最值,解题关键是三角换元,换元后可把两个变量分开,分别求得最值,再结合求得结论.二、选择题(每题4分,共16分)13.已知函数(1)=-y f x 的定义域为[0,1],则(1)f x +的定义域为()A.[-2,-1]B.[-1,0]C.[0,1]D.[2,3]【答案】A 【分析】由题意首先求得函数()f x 的定义域,然后求解函数(1)f x +的定义域即可.【详解】由题意可得,函数()f x 的定义域为:[]1,0-,则函数()1f x +的定义域满足:110x -≤+≤,解得:21x -≤≤-,表示为区间形式即[]2,1--.故选A .【点睛】本题主要考查抽象函数的定义域,属于中等题.14.给出三个条件:①22ac bc >;②a bc c>;③a b >;④1a b >-.其中能分别成为a b >的充分条件的个数为()A.0B.1C.2D.3【答案】C 【分析】根据不等式的性质作答.【详解】由22ac bc >能得出a b >,由a bc c >不能得出a b >(0c <时不成立),a b >,显然有a b >(原因是b b ≥),1a b >-时可能有a b <,如12a b =-,因此有两个,①③满足题意.故选:C.【点睛】本题考查不等式的性质,掌握不等式的性质是解题基础.15.已知{}()(){}||330A x x B x x x =>=-+>,,则A B = ()A.()21-, B.()3-∞-, C.()2-∞, D.()01,【答案】B 【分析】求出集合,A B 后可求其交集.【详解】由20x -≥得2x ≤,当0x ≤x >显然成立,当02x <≤时,由x >得22x x ->,解得01x <<,∴(,1)A =-∞,又()(){}|330B x x x =-+>(,3)(3,)=-∞-+∞ ,∴(,3)A B =-∞- .故选:B.【点睛】本题考查集合的交集运算,解题关键是正确解无理不等式.16.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有()个(1)G 是非负整数集,⊕:实数的加法;(2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法.A.1 B.2 C.3 D.4【答案】B 【分析】根据新定义运算⊕判断.【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个.故选:B.【点睛】本题考查新定义,解题关键是对新定义的理解与应用.三、解答题(本题共5大题,满分56分)17.已知集合{}{}211|0A B x x ax b x R =-=++=∈,,,,若B ≠∅,且A B A ⋃=,求实数a b ,的值.【答案】21a b =⎧⎨=⎩或21a b =-⎧⎨=⎩或01a b =⎧⎨=-⎩.【分析】A B A ⋃=得B A ⊆,结合B ≠∅,可根据B 的各种情形分类讨论.【详解】由A B A ⋃=得B A ⊆,由于B ≠∅,∴{1}B =-或者{1}B =或者{1,1}B =-,若{1}B =-,则111(1)a b --=-⎧⎨-⨯-=⎩,即21a b =⎧⎨=⎩,若{1}B =,则1111a b +=-⎧⎨⨯=⎩,即21a b =-⎧⎨=⎩,若{11}B =-,,则1111a b -+=-⎧⎨-⨯=⎩,即01a b =⎧⎨=-⎩,综上,21a b =⎧⎨=⎩或21a b =-⎧⎨=⎩或01a b =⎧⎨=-⎩.【点睛】本题考查集合的并集,考查集合间的包含关系,解题关键是根据包含关系确定集合B 中各种可能.18.已知二次函数()2f x ax bx =+对任意x ∈R 均有()()2f x f x =--成立,且函数的图像过点312A ⎛⎫ ⎪⎝⎭,.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[]4m ,,求实数t 、m 的值.【答案】(1)21()2f x x x =+;(2)812t m =⎧⎨=⎩.【分析】(1)由()()2f x f x =--得出对称轴,结合点A 坐标可求得,a b ;(2)变形()f x t x -≤得21()02x t t --≤,显然0t >,直接解此不等式,由其解集为[4,]m 可求得,t m .【详解】∵()()2f x f x =--,∴1x =-是()f x 图象的对称轴,又函数图象过点3(1,)2A ,∴1232baa b ⎧-=-⎪⎪⎨⎪+=⎪⎩,解得121a b ⎧=⎪⎨⎪=⎩,∴21()2f x x x =+;(2)2211()()()22f x t x x t x t x x t t --=-+--=--,由题意21()02x t t --≤的解集是[4,]m ,所以0t >,且由21()02x t t --≤得t x t -≤≤+∴4t t m⎧=⎪⎨=⎪⎩,解得812t m =⎧⎨=⎩.【点睛】本题考查求二次函数解析式,考查解一元二次不等式,掌握二次函数的性质是解题基础.19.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥.(1)当1a =时,求集合B .(2)问:12a ≥是A B =∅ 的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.【答案】(1)[2,0]B =-;(2)充分非必要条件.【分析】(1)根据绝对值的性质解不等式得集合B ;(2)解不等式得集合,A B ,由A B =∅ 求出a 的范围,再判断是什么条件.【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-;(2)由题意(31,32)A a a =-+,[1,1]B a a =---+,若A B =∅ ,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥.∴12a ≥是A B =∅ 的充分非必要条件.【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.20.设函数()f x =.(a R ∈且0a ≠)(1)分别判断当1a =及2a =-时函数的奇偶性;(2)在a R ∈且0a ≠的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.【答案】(1)1a =时,()f x 既不是奇函数也不是偶函数,2a =-时,()f x 是奇函数.;(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.证明见解析.【分析】(1)根据奇偶性定义判断;(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.根据奇偶性定义证明即可.【详解】(1)1a =时,1()11f x x =++,定义域为210110x x ⎧-≥⎪⎨++≠⎪⎩,11x -≤≤,此时()2x f x x =+,()2x f x x -=-+,()()f x f x -≠-且()()f x f x -≠,()f x 既不是奇函数也不是偶函数,2a =-时,()22f x x =--,定义域为240220x x ⎧-≥⎪⎨--≠⎪⎩,22x -≤≤且0x ≠,此时()22f x x x ==---,()()f x f x x-==-,()f x 是奇函数.(2)0a >时,()f x 既不是奇函数也不是偶函数,0a <时,()f x 是奇函数.与(1)类似,0a >时,由2200a x x a a ⎧-≥⎪⎨++≠⎪⎩,得函数定义域是[,]a a -,()2f x x a =+,()2f x x a -=-+与()f x 既不相等也不是相反数,因此()f x 既不是奇函数也不是偶函数,0a <时,由2200a x x a a ⎧-≥⎪⎨++≠⎪⎩,得定义域是[,0)(0,]a a - ,()a x f x x =-,()()a x f x f x x -==-,()f x 是奇函数.【点睛】本题考查函数的奇偶性,掌握奇偶性定义是解题基础.判断奇偶性时应先确定函数定义域,在定义域内函数有时可化简,从而易于判断.21.已知关于x 不等式()()241292110kx k k x ---->,其中k ∈R .(1)试求不等式的解集A ;(2)对于不等式的解集A ,若满足A B =Z (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少时k 的取值范围,并用列举法表示集合B ;若不能,请说明理由.【答案】(1)k 0<时,212911(,)42k k A k ++=,0k =时,11(,)2A =-∞,01k <<或9k >时,211129(,)(,)24k k A k ++=-∞+∞ ,19k ≤≤时,212911(,)()42k k A k ++=-∞+∞ .(2)k 0<,B 能为有限集;44k -<<-B 中元素个数最少,{2,3,4,5}B =.【分析】(1)对k 分类讨论,利用解一元二次不等式的解法可得;(2)根据A B =Z (其中Z 为整数集).集合B 为有限集,可得,求出21294k k k++最大值可得集合B 元素个数最少时的集合.【详解】(1)0k =时,不等式为9(211)0x -->.112x <,∴11(,2A =-∞,(2)k 0<时,()21294(21104k k k x x k++-->,又方程()21294()211=04k k k x x k ++--两根为211294k k x k++=,2112x =k 0<时,由对勾函数图象知2112919311()34422k k x k k k ++==++≤<,所以21291142k k x k ++<<,212911(,)42k k A k ++=,(3)0k >时,由21291142k k k ++>得01k <<或9k >,不等式的解为112x <或21294k k x k++>,211129(,)(,)24k k A k++=-∞+∞ ,当19k ≤≤时,21291142k k k ++<,不等式的解为112x >或21294k k x k++<,212911(,)(,)42k k A k ++=-∞+∞ .综上,k 0<时,212911(,)42k k A k ++=,0k =时,11(,)2A =-∞,01k <<或9k >时,211129(,)(,)24k k A k++=-∞+∞ ,19k ≤≤时,212911(,)(,)42k k A k ++=-∞+∞ .(2)∵A B =Z (其中Z 为整数集).集合B 能为有限集,当0k =时,11(,2A =-∞,此时AB =Z 中有无限个整数,不合题意,舍去;当01k <<或9k >,211129(,(,)24k k A k++=-∞+∞ ,此时A B =Z 中有无限个整数,不合题意,舍去;当19k ≤≤时,212911(,)()42k k A k ++=-∞+∞ ,此时A B =Z 中有无限个整数,不合题意,舍去;当k 0<,212919()344k k k k k++=++,由对勾函数,知函数19(34y k k =++在(,3)-∞-上递增,在(3,0)-上递减,∴3k =-时,19()34y k k =++的最大值为193(3)3432y =-++=-,231112911(,)()2242k k k ++∴⊆,所以当21293142k k k ++<≤,即44k --<<-+B 中元素最少时,{2,3,4,5}B =.【点睛】本题考查解含参数的一元二次不等式,解题时需分类讨论,属于中档题.。

复旦附中自招真题解析

复旦附中自招真题解析


7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA , 若 BC 边上的高为 AD, 则 BD DC ______________. 【答】4. A 【解析】设 AB 、 BC 、 CA 分别为 n 1 、 n 、 n 1 ,则



立 方
B
C

2
2
B
D C
有 c 2 a 2 b2 2b2 c 2b ab 2 b b 2b 2 而 ab 2 a b c 2 0 b b a 5 ,


2 2 b 7b a 7 ,

若 a 5 ,25 c b c b c b 25 ,c b 1 c 13 ,b 12 代入两式验证成立; 若 a 6 , 36 c b c b c b 18 , c b 2 c 10 , b 8 代入两式验证成立;
2
若它们为不同解,则 19m n 19 矛盾 19m n
原式
m 19m 4m 1 19m2 99m 1 95m 5 . 19m 19m
9. 若关于 x 的方程 x 2 x 2 4 x m 0 有三个根,且这三个根恰好可以作为一个三角形 的三边长,则 m 的取值范围是______________. 【答】 3 m 4 . 【解析】显然 x 2 是原方程的根,设另两个根分别为 a 、 b , a b 4 2 ,
15 sin120 a a 2 3 2 4 则 a 2 2a 1 16 sin 60 2 S 2a 2 ABCD 2

2015复旦附中自主招生数学试题

2015复旦附中自主招生数学试题

2015复旦附中自主招生数学试题2015复旦附中自主招生数学试题A1.实数x 、y 、z 满足xz z x x y y x 22416222+=++-+++-,则x+y-z=_____.2.若31001的分子、分母同时加上正整数n 时,该分数称为整数,这样的正整数n 共有__个.3.已知a 2=7-3a ,b 2=7-3b ,且a≠b ,则=+22ba ab ______. 4.设P 是奇质数,则方程2xy=p(x+y)满足x<="">5.方程2121111??? ??-+??? ??-=x x x x 的解为____________.6.如图,正方形ABCD 的边长为100米,甲、乙两个动点分别从A 点和B点同时出发按逆时针方向移动,甲的速度是7米/秒,乙的速度是10米/经过_____秒,甲、乙两动点第一次位于正方形的同一条边上.7.已知△ABC 是等边三角形,动点P、Q、R分别同时从顶点A、B、C出发,沿AB 、BC 、CA 按逆时针方向以各自的速度匀速移动,且P 、Q 、R 经过△ABC 的一边所用时间分别为1秒、2秒、3秒.从运动开始起,在1秒内,经过_____秒△PQR 的面积取到最小值.8.二次函数f (x)的图像开口向上,与x 轴交于A 、B 两点,与y 轴交与点C ,以D 为顶点,若三角形ABC 的外接圆与y 轴相切,且∠DAC=150°,则x≠0时,x x f )(的最小值是_____.二、解答题9.已知a 是正常数,且关于x 的方程2311212+-=-+-x x ax x x 仅有一个实数根,求实数a 的取值范围.10.如图,抛物线的顶点坐标是??-89,25,且经过点A(8,14).(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),求点B 、C 、D 的坐标.(3)设点P 是x 轴上的任意一点,分别连结AC 、BC .比较PA+PB 与AC+BC 的大小关系,说明理由.2015复旦附中自主招生数学试题B1.若x=ab ,y=a 2+b 2,则()()22y x y x -++=______.2.xk y =上一点C ,以C 为圆心,1为半径画圆,圆上有2点到O 点距离为2,则k 的取值范围为__________.3.设x 1、x 2为x 2-2px-p=0的两实根,p 为实数.①求证:2px 1+x 22+3p≥0;②当|x 1-x 2|≤|2p -3|时,求p 的最大值.4.实数a 1,a 2,…,a n 满足:①a 1+a 2+…+a n =0;②|a 1|+|a 2|+…+|a n |=1.求证:k 个数(k=1,2,…,n),|a 1+a 2+…+a k |≤21.。

复旦大学自主招生考试数学试题及答案

复旦大学自主招生考试数学试题及答案

1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。

A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。

A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。

2015年高三数学高校自主招生考试 真题分类解析10 不等式

2015年高三数学高校自主招生考试 真题分类解析10 不等式

2015年高三数学高校自主招生考试真题分类解析10 不等式一、选择题。

1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值X围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k=时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( ) A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值X围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。

7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 . 8.(2009年华中科技大学) 对任意的a>0,b>0,的取值X围是.三、解答题。

9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年某某大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年某某大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年某某大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值.16.(2011年大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值.17.(2012年大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0). 4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值X围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x +)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且X围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的X围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n ≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011.……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011.当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.word所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x, [f(x)]min=f()=.11 / 11。

《解析》2014-2015学年上海市复旦大学附中高一(上)期末数学试卷Word版含解析

《解析》2014-2015学年上海市复旦大学附中高一(上)期末数学试卷Word版含解析

2014-2015学年上海市复旦大学附中高一(上)期末数学试卷一、填空题(每题4分,共48分)1.设集合M={﹣1,0,1},N={a,a2},则使N⊊M成立的a的值是.2.不等式,当且仅当a=时,等号成立.3.已知函数g(x)=x﹣,那么函数f(x)=g(x)+h(x)的解析式是f(x)=.4.求值:=.5.函数的定义域为.6.函数y=x2+1(x≤﹣1)的反函数为.7.设函数f(x)=ax2+bx+1(a、b∈R),若f(﹣1)=0,且对任意实数x均有f(x)≥0成立,则a+b=.8.函数f(x)=ax2+bx+6满足条件f(﹣1)=f(3),则f(2)的值为.9.若函数y=的反函数的图象的对称中心是点(1,3),则实数a的值为.10.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是.11.设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足的所有的x的和为.12.定义两种运算:a⊕b=,则函数f(x)=的奇偶性为.二、选择题(每题4分,共16分)13.“a=0”是“函数f(x)=x2+ax在区间(0,+∞)上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.若函数f(x)在(4,+∞)上为减函数,且对任意的x∈R,有f(4+x)=f(4﹣x),则()A.f(2)>f(3) B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)15.已知函数f(x)=()x﹣log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)()A.恒为负值B.等于0 C.恒为正值D.不大于016.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y=2x2+1,值域为{3,19}的“孪生函数”共有()A.15个B.12个C.9个D.8个三、解答题17.已知log a484=m,log a88=n,试用m、n表示log211.18.f(x)=(1)作出函数的大致图象;(2)求不等式f(x)>f(1)的解集.19.如果函数y=x+的最小值为6,求b的值.20.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?21.已知函数f(x)=为奇函数,(1)求a的值;(2)求f(x)的反函数f﹣1(x);(3)解关于x的不等式:f﹣1(x)>log2.22.已知函数,其中x>0.(1)当0<a<b且f(a)=f(b),求ab的取值范围;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域和值域都是,若存在,求出a、b的值,若不存在,说明理由;(3)若存在a、b(a<b),使得y=f(x)的定义域为,值域为(m≠0),求m的取值范围.2014-2015学年上海市复旦大学附中高一(上)期末数学试卷参考答案与试题解析一、填空题(每题4分,共48分)1.设集合M={﹣1,0,1},N={a,a2},则使N⊊M成立的a的值是﹣1.考点:集合的包含关系判断及应用.专题:集合.分析:由真子集的定义即知N的元素都是集合M的元素,从而分别让a取﹣1,0,1,看得到的集合N能否满足N⊊M,以及能否符合集合元素的性质,从而便得到a的值.解答:解:N⊊M,∴N的元素都是M的元素;若a=0,1时,显然不满足集合的互异性;若a=﹣1,则N={﹣1,1},满足N⊊M;∴a的值是﹣1.故答案为:﹣1.点评:考查列举法表示集合,真子集的定义,以及集合元素的性质.2.不等式,当且仅当a=±1时,等号成立.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:不等式,当且仅当a2=1,即a=±1时,等号成立.故答案为:±1.点评:本题考查了基本不等式的性质,属于基础题.3.已知函数g(x)=x﹣,那么函数f(x)=g(x)+h(x)的解析式是f(x)=x+,(x≥﹣,且x≠0).考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据已知,求出函数g(x),h(x)的定义域,进而可得函数f(x)=g(x)+h(x)的解析式.解答:解:∵函数g(x)=x﹣,(x≥﹣),h(x)=,(x≥﹣,且x≠0)∴函数f(x)=g(x)+h(x)=x+,(x≥﹣,且x≠0)故答案为:x+,(x≥﹣,且x≠0)点评:本题考查的知识点是函数的解析式及求法,函数的定义域,解答时一定要注意两个基本函数定义域对复合函数定义域的影响.4.求值:=4.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用有理指数幂的运算性质及对数的运算性质计算.解答:解:===.故答案为:4.点评:本题考查对数的运算性质,关键是对对数运算法则的记忆与运用,是基础题.5.函数的定义域为(0,7).考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:根据使函数的解析式有意义的原则,我们可以构造出自变量x的不等式组,解不等式组,求出x的取值范围,即可得到函数的定义域.解答:解:要使函数的解析式有意义,自变量必须满足:解得:0<x<7故函数的定义域为(0,7)故答案为:(0,7)点评:本题考查的知识点是对数函数的定义域,函数的定义域及其求法,其中正确理解,求函数的定义域即求使函数的解析式有意义的自变量的取值范围,是解答本题的关键.6.函数y=x2+1(x≤﹣1)的反函数为(x≥2).考点:反函数.专题:函数的性质及应用.分析:由原函数求得x,把x,y互换求得原函数的反函数.解答:解:由y=x2+1(x≤﹣1),得x2=y﹣1,∴x=(y≥2),x,y互换得:(x≥2),∴函数y=x2+1(x≤﹣1)的反函数为(x≥2),故答案为:(x≥2).点评:本题考查函数的反函数的求法,注意反函数的定义域为原函数的值域,是基础题.7.设函数f(x)=ax2+bx+1(a、b∈R),若f(﹣1)=0,且对任意实数x均有f(x)≥0成立,则a+b=3.考点:二次函数的性质.专题:函数的性质及应用.分析:由f(﹣1)=0,可得b=a+1,又对任意实数x均有f(x)≥0成立,可得恒成立,可求出a,b的值;解答:解:∵函数f(x)=ax2+bx+1(a、b∈R),f(﹣1)=0,∴a﹣b+1=0即b=a+1,又对任意实数x均有f(x)≥0成立∴恒成立,即(a+1)2﹣4a≤0,可得(a﹣1)2≤0恒成立∴a=1,b=2;a+b=3.故答案为:3.点评:本题考查了函数的恒成立问题及二次函数的性质的应用,难度一般,关键是掌握二次函数的性质.8.函数f(x)=ax2+bx+6满足条件f(﹣1)=f(3),则f(2)的值为6.考点:函数的值;函数解析式的求解及常用方法.专题:计算题.分析:由题意应对a进行分类:a=0时和a≠0时,再由条件分别判断出函数为常函数和二次函数的对称轴,再由函数的性质求值.解答:解:①当a=0时,∵f(﹣1)=f(3),∴函数f(x)是常函数,即a=b=0,∴f(x)=6,则f(2)=6,②当a≠0时,则函数f(x)是二次函数,∵f(﹣1)=f(3),∴f(x)的对称轴是:x=1,∴f(2)=f(0)=6,综上得,f(0)=6故答案为:6.点评:本题考查了利用常函数和二次函数的性质求值,特别再求出对称轴后,不用a和b的值直接由f(2)=f(0)求解,易错点易忘对a进行讨论.9.若函数y=的反函数的图象的对称中心是点(1,3),则实数a的值为3.考点:反函数.专题:函数的性质及应用.分析:由题意可得函数f(x)=的对称中心是(3,1),再由函数的解析式可得对称中心是(a,1 ),比较可得a的值解答:解:由题意可得函数f(x)=的对称中心是(3,1),又函数f(x)==1+的对称中心是(a,1 ),∴a=3,故答案为:3.点评:本题考查函数与反函数的图象间的关系,函数的对称中心,由函数y=得到对称中心为(a,1)是解题的关键,是基础题.10.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是.考点:反函数.专题:计算题.分析:由函数y=g(x)的图象与y=e x的图象关于直线y=x对称,则y=g(x)的图象与y=e x 互为反函数,易得y=g(x)的解析式,再由函数y=f(x)的图象与y=g(x)的图象关于y轴对称,进而可以得到函数y=f(x)的解析式,由函数y=f(x)的解析式构造方程f(m)=﹣1,解方程即可求也m的值.解答:解:∵函数y=g(x)的图象与y=e x的图象关于直线y=x对称∴函数y=g(x)与y=e x互为反函数则g(x)=lnx,又由y=f(x)的图象与y=g(x)的图象关于y轴对称∴f(x)=ln(﹣x),又∵f(m)=﹣1∴ln(﹣m)=﹣1,故答案为﹣.点评:互为反函数的两个函数图象关于线y=x对称,有f(x)的图象上有(a,b)点,则(b,a)点一定在其反函数的图象上;如果两个函数图象关于X轴对称,有f(x)的图象上有(a,b)点,则(a,﹣b)点一定在函数g(x)的图象上;如果两个函数图象关于Y轴对称,有f(x)的图象上有(a,b)点,则(﹣a,b)点一定在函数g(x)的图象上;如果两个函数图象关于原点对称,有f(x)的图象上有(a,b)点,则(﹣a,﹣b)点一定在函数g(x)的图象上.11.设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足的所有的x的和为﹣8.考点:奇偶性与单调性的综合.专题:计算题.分析:f(x)为偶函数⇒f(﹣x)=f(x),x>0时f(x)是单调函数⇒f(x)不是周期函数.所以若f(a)=f(b)⇒a=b或a=﹣b,再结合已知条件可得正确答案.解答:解:∵f(x)为偶函数,且当x>0时f(x)是单调函数∴若时,即或,得x2+3x﹣3=0或x2+5x+3=0,此时x1+x2=﹣3或x3+x4=﹣5.∴满足的所有x之和为﹣3+(﹣5)=﹣8,故答案为﹣8.点评:本题属于函数性质的综合应用,属于中档题.解决此类题型要注意变换自变量与函数值的关系,还要注意分类讨论和数形结合的思想方法的应用.12.定义两种运算:a⊕b=,则函数f(x)=的奇偶性为奇函数.考点:函数奇偶性的判断.专题:函数的性质及应用.分析:利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,根据函数奇偶性的定义进行判断即可.解答:解:由定义知f(x)==,由4﹣x2≥0且|x﹣2|﹣2≠0,得﹣2≤x<0或0<x≤2,即函数f(x)的定义域为{x|﹣2≤x<0或0<x≤2},关于原点对称;此时f(x)===,则f(﹣x)==﹣=﹣f(x),故f(x)是奇函数.故答案为:奇函数点评:本题主要考查函数奇偶性的判断,根据新定义将函数进行化简是解决本题的关键.二、选择题(每题4分,共16分)13.“a=0”是“函数f(x)=x2+ax在区间(0,+∞)上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;函数的单调性及单调区间.分析:函数f(x)=x2+ax在区间(0,+∞)上是增函数,结合二次函数的图象求出a的范围,再利用集合的包含关系判充要条件.解答:解:函数f(x)=x2+ax在区间(0,+∞)上是增函数,0,a≥0,“a=0”⇒“a≥0”,反之不成立.故选A点评:本题考查充要条件的判断,属基本题.14.若函数f(x)在(4,+∞)上为减函数,且对任意的x∈R,有f(4+x)=f(4﹣x),则()A.f(2)>f(3) B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)考点:抽象函数及其应用.分析:因为所给选项为比较函数值的大小,所以要根据已知条件将所给函数值都转化到同一个单调区间上去,因此分析f(4+x)=f(4﹣x)的含义也就成了解答本题的关键.解答:解:∵f(4+x)=f(4﹣x),∴f(x)的图象关于直线x=4对称,∴f(2)=f(6),f(3)=f(5),又∵f(x)在(4,+∞)上为减函数,∴f(5)>f(6),∴f(5)=f(3)>f(2)=f(6).故选D.点评:(1)f(a+x)=f(a﹣x)⇔函数f(x)的图象关于直线x=a对称;(2)f(a+x)=﹣f(a﹣x)⇔函数f(x)的图象关于点(a,0)对称;(3)f(a+x)=f(b﹣x)⇔函数f(x)的图象关于直线x=对称;(4)f(a+x)=﹣f(b﹣x)⇔函数f(x)的图象关于点对称.特别地,当a=b=0时,有f(﹣x)=f(x)及f(﹣x)=﹣f(x),f(x)分别表示偶函数与奇函数.15.已知函数f(x)=()x﹣log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)()A.恒为负值B.等于0 C.恒为正值D.不大于0考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:由于y=()x在x>0上递减,log2x在x>0上递增,则f(x)在x>0上递减,再由条件即可得到答案.解答:解:由于实数x0是方程f(x)=0的解,则f(x0)=0,由于y=()x在x>0上递减,log2x在x>0上递增,则f(x)在x>0上递减,由于0<x1<x0,则f(x1)>f(x0),即有f(x1)>0,故选C.点评:本题考查函数的单调性及运用,考查运算能力,属于基础题.16.若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y=2x2+1,值域为{3,19}的“孪生函数”共有()A.15个B.12个C.9个D.8个考点:函数的定义域及其求法;函数的值域;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据“孪生函数”的定义确定函数定义域的不同即可.解答:解:由y=2x2+1=3,得x2=1,即x=1或x=﹣1,由y=2x2+1=19,得x2=9,即x=3或x=﹣3,即定义域内﹣1和1至少有一个,有3种结果,﹣3和3至少有一个,有3种结果,∴共有3×3=9种,故选:C.点评:本题主要考查函数定义域和值域的求法,利用“孪生函数”的定义是解决本题的关键.三、解答题17.已知log a484=m,log a88=n,试用m、n表示log211.考点:对数的运算性质.专题:函数的性质及应用.分析:把已知利用对数的运算性质变形求解log a2,log a11的值,然后利用对数的换底公式得到log211.解答:解:∵log a484=m,∴,即①,又log a88=n,∴log a8+log a11=n,即3log a2+log a11=n②,联立①②得:,.∴log211===.点评:本题考查对数的运算性质,考查了对数的换底公式,是基础的计算题.18.f(x)=(1)作出函数的大致图象;(2)求不等式f(x)>f(1)的解集.考点:其他不等式的解法;函数的图象.专题:不等式的解法及应用.分析:(1)分类讨论化简函数的解析式,从而画出函数的图象.(2)结合函数f(x)的图象可得f(﹣3)=f(1)=f(3)=0,数形结合可得不等式f(x)>f(1)的解集.解答:解:(1)对于函数f(x)=,当x≥0时,f(x)=(x﹣3)(x﹣1);当x<0时,f(x)=﹣=﹣()=﹣(+)=﹣﹣,故函数f(x)的图象如图所示.(2)结合函数f(x)的图象可得f(﹣3)=f(1)=f(3)=0,数形结合可得不等式f(x)>f(1)的解集为{x|﹣3<x<1,或x>3}.点评:本题主要考查分段函数的应用,分式不等式的解法,体现了转化、数形结合的数学思想,属于中档题.19.如果函数y=x+的最小值为6,求b的值.考点:基本不等式.专题:不等式.分析:先求出函数的导数,得到函数的单调区间,结合x的范围,从而求出函数取最小值时的b的值.解答:解:y′=1﹣=,令y′>0,解得:x>,令y′<0,解得:x<,∴函数在(0,)递减,在(,+∞)递增,∴函数在x=时取得最小值,∴+=6,解得:2b=9,代入函数的不表达式得:x=3,∵x≥4,不合题意,∴x=4时,函数值最小,此时:4+=6,解得:b=3.点评:本题考查了函数的单调性、最值问题,考查不等式取最小值时的条件,是一道中档题.20.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?考点:函数模型的选择与应用;分段函数的应用.专题:函数的性质及应用.分析:(1)通过分别求出当0<x≤10、10<x≤16、x>16时各自f(x)的最大值即得结论;(2)通过计算f(5)与f(20)的大小即得结论;(3)通过令f(x)=55,计算出0<x≤10、x>16时各自的解并比较两个解的差的绝对值与13的大小关系即可.解答:解:(1)依题意,①当0<x≤10时,f(x)=﹣0.1x2+2.6x+43=﹣0.1(x﹣13)2+59.9,故f(x)在0<x≤10时递增,最大值为f(10)=﹣0.1(10﹣13)2+59.9=59,②当10<x≤16时,f(x)≡59,③当x>16时,f(x)为减函数,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间.(2)∵f(5)=﹣0.1(5﹣13)2+59.9=53.5,f(20)=﹣3×20+107=47<53.5,∴开讲5分钟时学生的接受能力比开讲20分钟时要强一些.(3)当0<x≤10时,令f(x)=55,解得x=6或20(舍),当x>16时,令f(x)=55,解得x=17,因此学生达到(含超过)55的接受能力的时间为17﹣6=11<13,∴老师来不及在学生一直达到所需接受能力的状态下讲授完这个难题.点评:本题考查函数模型的性质与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=为奇函数,(1)求a的值;(2)求f(x)的反函数f﹣1(x);(3)解关于x的不等式:f﹣1(x)>log2.考点:反函数;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)利用函数的奇偶性,得到f(﹣x)=﹣f(x),解方程即可求a的值;(2)根据反函数的定义即可f(x)的反函数f﹣1(x);(3)根据对数函数的单调性,结合分式不等式的解法进行求解即可.解答:解:(1)∵函数的定义域为{x|x≠0}且f(x)是奇函数,∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,即+=0,则+=0,即﹣a﹣2x+a•2x+1=0,则(1﹣a)(1﹣2x)=0,∵x≠0,∴1﹣a=0.即a=1.此时f(x)=.(2)由y=得(2x﹣1)y=2x+1.即y•2x﹣y=1+2x,即(y﹣1)•2x=1+y,当y=1时,方程等价为0=1,不成立,∴y≠1,则2x=,由2x=>0得y>1或y<﹣1,即函数f(x)的值域为(﹣∞,﹣1)∪(1,+∞),由2x=,得x=log2,即f(x)的反函数f﹣1(x)=log2,x∈(﹣∞,﹣1)∪(1,+∞);(3)∵f﹣1(x)>log2.∴log2>log2.①若k>0,则x+1>0,即x>﹣1,∵x∈(﹣∞,﹣1)∪(1,+∞);∴此时x>1,此时不等式等价为>,即,则0<x﹣1<k,即1<x<k+1,②若k<0,则x+1<0,即x<﹣1,∵x∈(﹣∞,﹣1)∪(1,+∞);∴此时x<﹣1,此时不等式等价为>,即<,则x﹣1>k,即﹣1>x>k+1,综上若k>0,不等式的解集为(1,1+k),若k<0,不等式的解集为(1+k,﹣1).点评:本题主要考查函数奇偶性的应用以及函数反函数的求解,对数不等式的求解,综合性较强,运算量较大,有一定的难度.22.已知函数,其中x>0.(1)当0<a<b且f(a)=f(b),求ab的取值范围;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域和值域都是,若存在,求出a、b的值,若不存在,说明理由;(3)若存在a、b(a<b),使得y=f(x)的定义域为,值域为(m≠0),求m的取值范围.考点:函数的值域;函数的定义域及其求法.专题:分类讨论;函数的性质及应用.分析:(1)讨论a,b的范围,确定a∈(0,1),b∈,由此出发探究a,b的可能取值,可分三类:a,b∈(0,1)时,a,b∈(1,+∞)时,a∈(0,1),b∈(1,+∞),分别建立方程,寻求a,b的可能取值,若能求出这样的实数,则说明存在,否则说明不存在;(3)由题意,由函数y=f (x)的定义域为,值域为(m≠0)可判断出m>0及a>0,结合(1)的结论知只能a,b∈(1,+∞),由函数在此区间内是增函数,建立方程,即可得到实数m所满足的不等式,解出实数m的取值范围.解答:解:(1)f(x)=,若a,b∈(0,1),f(x)递减,f(a)>f(b)不成立;若a,b∈,而y≥0,x≠0,所以应有a>0,又f(x)=,①当a,b∈(0,1)时,f(x)在(0,1)上为减函数,故有,即,由此可得a=b,此时实数a,b的值不存在.②当a,b∈(1,+∞)时,f(x)在∈(1,+∞)上为增函数,故有,即,由此可得a,b是方程x2﹣x+1=0的根,但方程无实根,所以此时实数a,b也不存在.③当a∈(0,1),b∈(1,+∞)时,显然1∈,而f(1)=0∈不可能,此时a,b也不存在.综上可知,符合条件的实数a,b不存在;(3)若存在实数a,b使函数y=f(x)的定义域为,值域为(m≠0).由mb>ma,b>a得m>0,而ma>0,所以a>0,由(,1)知a,b∈(0,1)或a∈(0,1),b∈(1,+∞)时,适合条件的实数a,b不存在,故只能是a,b∈(1,+∞),∵f(x)=1﹣在∈(1,+∞)上为增函数∴,即,∴a,b是方程mx2﹣x+1=0的两个不等实根,且二实根均大于1,∴,解之得0<m<,故实数m的取值范围是(0,).点评:本题的考点是函数与方程的综合应用,考查了绝对值函数,函数的定义域、值域,构造方程的思想,二次方程根与系数的关系等,解题的关键是理解题意,将问题正确转化,进行分类讨论探究,属于难题和易错题.。

高中2015年自主招生数学考试含答案

高中2015年自主招生数学考试含答案

⾼中2015年⾃主招⽣数学考试含答案2015年⾃主招⽣考试⼀、选择题(每⼩题6分,共30分。

每⼩题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有⼀个选项是正确的。

请将正确选项的代号填⼊题后的括号⾥,不填、多填或错填均得0分)1、下列图中阴影部分⾯积与算式2131242-??-++的结果相同的是………………【】2、下列命题中正确的个数有……………………………………………………………【】①实数不是有理数就是⽆理数;② a <a +a ;③121的平⽅根是 ±11;④在实数范围内,⾮负数⼀定是正数;⑤两个⽆理数之和⼀定是⽆理数A. 1 个B. 2 个C. 3 个D. 4 3、某家庭三⼝⼈准备在“五⼀”期间参加旅⾏团外出旅游。

甲旅⾏社告知:⽗母买全票,⼥⼉按半价优惠;⼄旅⾏社告知:家庭旅⾏可按团体票计价,即每⼈均按⼋折收费。

若这两家旅⾏社每⼈的原标价相同,那么……………………………………………………………………【】 A 、甲⽐⼄更优惠 B 、⼄⽐甲更优惠 C 、甲与⼄相同 D 、与原标价有关4、如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆⼼O 移动的⽔平距离为【】A 、2πB 、πC 、32D 、45、平⾯内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m n + 等于……………………………………………………………………………【】 A 、36 B 、37 C 、38 D 、39 ⼆、填空题(每⼩题6分,共48分)1、甲、⼄两⼈骑⾃⾏车,同时从相距65千⽶的两地相向⽽⾏,甲、⼄两⼈的速度和为32.5千⽶/时,则经过⼩时,两⼈相遇。

2、若化简16812+---x x x 的结果为52-x ,则x 的取值范围是。

3、某校把学⽣的笔试、实践能⼒和成长记录三项成绩分别按50%、20%和30%的⽐例计⼊学期总评成绩,90分以上为优秀。

复旦大学自主招生试题

复旦大学自主招生试题

复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。

本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。

一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。

分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。

根据极值的定义,我们可以通过求解f'(x) = 0来得到。

2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。

求该商品的原价。

分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。

通过解这个方程,我们可以求出该商品的原价x。

二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。

Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年复旦附中自招数学试卷(3.20)
填空A
1、若22x ab y a b ==+, ,则
=______________
2
、12x x -=12x x 、的方差______________
3、从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有__________个
4
、解方程:12x x +=-+ 5、28152
31x x x x -+--=的解有_________个。

6、37531(12)8mx mx
mx x m x -<-⎧⎨+-<-+⎩
有正数解,求m 的取值范围__________
7、2104y x x m =-+与x 轴两个交点在x 的正半轴,求m 的取值范围。

8、495
235
x y x z z +++==--时,求x y 的值
9、矩形ABCD 中,3AB BC =,将矩形折叠,点B 落在边AD 上的点M 处,
C 落在N 处,求EC FB
AM
-
1、 扫雷游戏
2、已知不等式:21y x px ≤-++求能使x y +最大值为2的负实数p 的取值范围。

3、如图所示,直线l 经过点P ,且垂直于AB ,当长方形AOBP 的周长为20时,请求出无论图形如何变化,l 始终经过的定点坐标___________。

4、在反比例函数k
y x
=
上存在点C ,以点C 为圆心,1为半径画圆,圆上存在两点到O 点距离为2,则k 的取值范围______________
5、已知直线MA NB 、均与线段MN 为直径的半圆相切,直线AB 与半圆相切于点F ,P 在线段MN 上且PF MN ⊥,当直线AB 变化时,求+PA PB
AB
的最大值
6、在1,2,3……,39,40数列中能找出__________对数字使它们的差的绝对值为质数。

1、已知在BAC ∠的内部存在一点M ,在不画出A 点的情况下过M 点作一条直线,使它经过A 点。

2、设12x x 、为220x px p --=的两根,p 为实数
①求证:2
12230px x p ++≥ ②当1223x x p -≤-时,求p 的最大值
3、实数12n a a a 、满足: ①12=0n a a a ++
+
②121n a a a ++
+=
求证:k 个数
123k n =(,,,),121
2
k a a a +++≤
4、锐角ABC ∆中,AD BE CF ,,分别为
BC AC AB ,,边上的高,设BC a =,AC b =,AB c =,BD x =,EC y =,AF z =
① 用a b c 、、表示x
② 当a b c 、、满足什么关系时,有
2()x y z a b c
++=++
B。

相关文档
最新文档