四校自招-数学复附卷
上海四校自主招生-数学交附卷(高清打印)

⎨四校自招-数学·交附卷一、填空题1、在△ABC中,设CA=a,CB=b,P是中线AE与中线CF的交点,则BP= 。
(用a,b表示)2、已知a是正实数,则a+2的最小值等于a3、正整数360共有个正因数。
4、小明负责小组里4个同学的作业本的收发,但做事比较马虎。
如果他随机的分发4个同学的本子,那么他把每个同学的本子都发错的概率是5、计算:1=3-226、计算:1+1+ +1=1⨯22⨯32013⨯20147、一卷直径为10厘米的圆柱形无芯卷筒纸是由长为L厘米的纸绕80圈而成,那么L=8、满足方程:4+2=1的正整数有序数对的(m,n)个数为m n9、已知实数x满足2x2-4x=6x2-2x-1,则x2-2x的值为10、直线x-y=1与反比例函数y=k的图像如果恰有一个交点,则该交点必定在第象限。
x11、平面上边长为1的正方形ABCD绕着其中心旋转45︒得到正方形A'B'C'D',那么这两个正方形重叠部分的面积为12、请在下列表格的9个小方格中分别填入数字1、2、3、4、5、6、7、8、9,使得每行每列,以及两条对角线上的三个数之和相等(只需要填1种答案)13、在前1000个整数1,2,3,…,1000中,数码1共出现了次14、设A(0,-2),B(4,2)是平面直角坐标系中的两点,P是线段AB垂直平分线上的点,如果点P与点C(1,5)的距离等于22,则点P的坐标为15、方程组⎧217x+314y=2的解为⎩314x+217y=2 16、坐标原点(0,0)关于直线y=x+4翻折后的点的坐标为二、解答题17、已知,在△ABC中,AC=BC=1,∠C=36°,求△ABC的面积S18、已知二次函数y=ax2+bx+c的图像抛物线经过A(-3,0),B(1,0)两点,M(t,4)是其顶点。
(1)求实数a,b,c的值;(2)设点C(-4,-6),D(1,-1),点P在抛物线上且位于x轴上方,求当△CDP的面积达到最大时点P 的坐标。
上海四校自招-数学交附卷解析

a 2 · a 2 3 = 四校自招-数学·交附卷学而思高中部 胡晓晨老师υυυρ 1. BP = 1 υυυρ BA + 1 υυυρ BC = 2 υυυρ BC + 1 υυυρCA = a - 2b3 3 3 3 3【高中知识点】向量的分解2. a + 2 ≥ 2 = 2a 【高中知识点】均值不等式3. 360 = 23 ⨯32 ⨯5约数个数为4⨯3⨯ 2 = 244. 所有可能的情况为1234, 1243, 1324, 1342, 1423, 14322134, 2143, 2314, 2341, 2413, 24313124, 3142, 3214, 3241, 3412, 34214123, 4132, 4213, 4231, 4312, 432193全都发错有9 种可能,因此概率为 24 82 + 5.520136. 2014【高中知识点】裂项求和7. 设纸的厚度为r ,则2⨯80r = 10即 r = 1 16L = 2π (r + 2r + 3r +Λ+ 80r ) = 6480π r = 405π cm【高中知识点】等差数列求和8.(m - 4)(n - 2) = 8= 8⨯1 = 1⨯ 8= 2 ⨯ 4 = 4 ⨯ 2= (-8) ⨯(-1) = (-1) ⨯(-8)= (-4) ⨯(-2) = (-2) ⨯(-4)2依次检验,只有前 3 组符合题意,故(m , n ) 的个数为3 个9. 设 x 2 - 2x = t ,则2t = 6 -1 ,即2t 2 + t - 6 = 0 ,即(t + 2)(2t - 3) = 0 t ∴ t = -2 或 3 2又t = (x -1)2 -1 ≥ -1∴ t = 3210. 四11. 考虑四个角的小直角三角形,每个小直角三角形的斜边上的高为2则面积为( )2 = 2 4因此,重叠的面积为1- 3 - 2 2 =2 2 +1 4 42 9 412. 7 5 36 1 813. 一位数中,1 出现了1次两位数中 1 在十位上出现了10 次,在个位上,出现了9 次这样,前两位数共出现20 次三位数中,1 在百位上共出现了 100 次,十位和个位看成一个整体,共出现了数字 1 有20⨯9 = 180 次 最后数 1000 里面出现了 1 有1次一共有20 +100 +180 +1 = 301 次【高中知识点】组合计数14. 线段 AB 垂直平分线的方程为 y = -x + 2因此,设 P (t , -t + 2) ,则 PC 2 = (t -1)2 + (-t + 2 - 5)2= 8即 2t 2 + 4t +10 = 8 ,解得t = -1因此 P (-1,3)【高中知识点】解析几何——直线与圆的方程15. 两式相减,得97x = 97 y ,即 x = y2 -1 2 -13 - 2 2AB 2 - BE 2 5 -58 BA 2⎧x = ⎪ 因此方程的解为⎨ ⎪ y = ⎩ 2531253116. (-4, 4)【高中知识点】解析几何——点关于直线的对称17. 在ςABC 中作∠CAB 的角平分线 AD设 AB = x ,则∠C = 36︒ , ∠CAB = ∠B = 72︒ , ∠CAD = ∠BAD = 36︒可得ςBAD ∽ςBCA故 BA= BDBC BA2则 BD = = x BC ∴ CD = CB - BD =1- x 2又∠C = ∠CAD = 36︒ ,故 DA = DC =1- x 2又∠ADB = ∠B = 72︒ ,故 AB = AD ,即 x = 1- x 2∴ x 2 + x -1 = 0解得 x =∴ AB = 5 -1或 - 2 5 -125 -1(舍)2 过 A 作ςABC 的高 AE ,则AE = = x 2 = 3 - 5 2则 AE == = 10 - 2 54则 S = 1 CB ·AE = 10 - 2 5ς ABC2 818.(1)设 f (x ) = a (x + 3)(x -1) ,且 f (-1) = 4解得a = -1∴ f (x ) = -(x + 3)(x -1) = -x 2 - 2x + 3∴ a = -1, b = -2 , c = 3(2) 依题意,当 S ςCDP 的面积最大时, P 到直线CD 的距离最大x - ( )2 x 222 3 - 5 - (3 - 5 )2 2 4 ⎪2 那么,过点 P 作平行于CD 的直线,必与抛物线相切(否则在平行线的上方,有到比CD 的距离更远的点) C (-4, -6), D (1, -1) ,则直线CD 的斜率为k =-1- (-6) = 1 1- (-4)设过 P 的直线为 y = x + b ,代入 y = -x 2- 2x + 3 得 x 2 + 3x + (b - 3) = 0∴∆ = 9 - 4(b - 3) = 21- 4b = 0 ∴ b = 214方程即 x 2 + 3x + 9 = 0 ,所以得 x =- 34 2 则 y = - 3 + 21 = 152 4 4∴当 Sς PCD 面积最大时, P 的坐标为 P (- 3 ,15)2 4 【高中知识点】解析几何——直线的方程19. 假设 = p ,其中 p , q 为整数且互质 q则 p = 2q , p 2 = 2q2 故 p 2 为偶数,则 p 为偶数设 p = 2m ,则(2m )2 = 2q 2 ,得 q 2 = 2m2则 q 2 为偶数,则q 为偶数 p , q 均为偶数,与 p , q 互质矛盾!故 不是有理数【高中知识点】反证法【试卷总结与分析】1. 高中知识点分析从设计到的高中知识点来说,交大附中的考察特点是“杂”,基本上都有涉及,无明显的针对性,如向量、均值不等式、反证法、数列求和、解析几何、组合计数等等,而且考察的也比较基础简单(例如数列求和的两道题可归类于小学奥数内容),涉及到的也不深,考试足以通过初中知识或小学奥数知识解决如 17 题,是初中讲过的“黄金三角形”,只要基础好,本题可秒杀19 题,是初中课本的拓展内容的原题,考生只要留心课本的拓展内容即可2. 初高衔接知识点分析2高中知识中,代数与几何所占比重差异巨大,代数大约占到95%,几何大约5%想打好初高衔接基础,建议把精力全部放在代数,这其中又主要以①代数式变换(因式分解、配方、根式与分式的化简计算)②解方程③二次函数的图像与性质为主在本卷中也有所体现,如第5, 8, 9, 10, 15, 18, 19 题,对于代数式变换和二次函数考察的较多,但不太深,只要接触过一点便能解决,建议学生在这方面平时稍加训练即可3.初中知识点分析初中知识以几何为主,本卷中几何考到的较多,如第1, 7, 10, 11, 14, 16, 17 都在考察平面几何知识,有一定难度但不偏不怪,想做对,要牢牢打好初中几何的基础,否则考试时会在这方面吃亏数论知识考察的不多,仅在第3,8 题涉及,而且考察点只有“质因数分解,约数个数”这些很基础的内容,建议考生无需花太大精力,若已有基本的数论知识,可放心应考;若考生完全没有接触过,建议尽快补充知识,否则会在这方面的考题吃亏组合知识在第4, 13 题中考到,两道题都需要用枚举方法解决,但难度不算很低,建议考生在组合知识方面稍加训练以对应考试。
四校自招数学复附卷解析.pdf

7. 设点 P 速度为 6 , Q 的速度为 3 , R 的速度为 2 ,边长 AB 6
则 SAPR
3 AP·AR 4
3 6t (6 2t) 4
SBPQ
3 BP·BQ 4
3 3t (6 6t) 4
SCQR
3 CQ·CR 4
3 2t (6 3t) 4
⑵ y 1 (x 1)(x 4) ,故 B(0, 2) , C(1,0) , D(4,0) 2
⑶作点 B 关于 x 轴的对称点 E(0, 2)
2015 年初升高·自招真题解析·数理化
3
则 kAE
14
(2) 8
2
,
kCE
0 (2) 1
2
∴ A, E,C 三点共线
又 PA PB PA PE
x
3 2
x 2
当 x 2 时, 4x 9 12 1
x
2
∴要使上述方程有且仅有一个实根,则 a 0 且 a 1 2
【高中知识点】等价转化思想,参变分离思想,分类讨论思想,对勾函数的图像与性质
10.
⑴设 y a(x 5)2 9 ,将 (8,14) 代入,得 a 1
28
2
∴ y 1 x2 5 x 2 22
四校自招-数学·复附卷
1. 2x 6 y 1 (x 4) y2 (x z)2 2
x 4 , 则 2x 6 2 ∴ x 4, y 1 0, x z 故 x z 4 , y 1 x y z 1
2. n 1001 1 998 ,
n3
n3
998 2 499 , n 3 4 , 故 n 3 499 或 998 ,共 2 个
2015 年初升高·自招真题解析·数理化
【中考数学】历年各校自招数学真题及参考答案

1 1 10.定义 min a, b, c 表示实数 a, b, c 中的最小值,若 x, y 是任意正实数,则 M min x, , y 的最大 x y
值是 .
二、计算题(20 分) (10 分) 11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.
12.如图,已知 PA 切 O 于 A , APO 30 , AH PO 于 H ,任作割线 PBC 交 O 于点 B 、 C ,计算
HC HB 的值.(10 分) BC
2.定义①1*1=1,②(n+1)*1=n*1+1,求 n*1=_________;
3. f ( x)
(a 1) x 2 (a 3) x 2a 8 的定义域为 D, f ( x)>0 在定义域 D 内恒成立,求 a 的取值范围? (2a 1) x 2 (a 1) x a 4
3 3 3
.
3.若有理数 a, b 满足
21 3 3 a b ,则 a b 4
.
4.如图, △ABC 中,AC=3,BC=4,AB=5,线段 DE⊥AB,且 △BDE 的面积是 △ABC 面积的三分之一, 那么,线段 BD 长为 。
5.二次函数 y ax 2 bx c 的图像与 x 轴有两个交点 M,N,顶点为 R,若 △MNR 恰好是等边三角形, 则 b 2 4ac 。
7.如图所示,正方形 ABCD 的面积设为 1, E 和 F 分别是 AB 和 BC 的中点,则图中阴影部分的面积 是 .
自招真题合集
8.在直角梯形 ABCD 中, ABC BAD 90o , AB 16 ,对角线 AC 与交 BD 于点 E ,过 E 作 EF AB 于点 F , O 为边 AB 的中点,且 FE EO 8 ,则 AD BC 的值为 .
四校自招模拟题-数学卷答案

1
1.2 配方
【4】若一个正整数 n 能写成另外两个整数的平方和,则称这样的数 n 为“好数”,若一个实数 x 能写 成两个好数的商,则称这样的数 x 为“坏数” 求证:(1)任何两个好数的积还是好数 (2)任何一个坏数可以写成两个有理数的平方和 【解析】 (1)设 m a 2 b2 , n c2 d ,其中 a, b, c, d 均为整数,则 m, n 是好数
【7】 a, b, c 为正整数,若
3
【 8 】 关 于 x 的 方 程 1 ax 2 的 解 集 中 , 有 且 仅 有 一 个 正 整 数 , 则 a 的 取 值 范 围 为 __________________ 【解析】不等式即
a
x
2 1 ,设 b ,即 b x 2b a a
四校自招针对性训练
Part 1 代数式变换
1.1 因式分解
【1】 x, y 是正整数,满足
1 1 的数对 ( x, y) _________________ x y 【解析】式子即 y 4 x xy ,即 xy 4 x y 0 ,即 xy 4 x y 4 4 即 ( x 1)( y 4) 4 x, y 是正整数,则 x 1 0 ,则 x 1 x 1 x 1 或 或 y 4 y 4 y 4 因此, ( x, y) (5,5) 或 (3,6) 或 (2,8)
mn (a 2 b 2 )(c 2 d 2 ) a 2 c 2 b 2 c 2 a 2 d 2 b 2 d 2 (a 2 c 2 b 2 d 2 2abcd ) (b 2c 2 a 2 d 2 2abcd ) (ac bd ) 2 (bc ad )
上海四校自招数学试卷

上海市四校自招考试数学试卷时间:120 分钟总分:150 分注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 11 页。
2. 请将答案书写在答题纸上,用黑色签字笔或圆珠笔书写。
3. 请仔细检查试卷,确认试卷所有页面齐全。
第 I 卷(选择题)一、单项选择题(每题 3 分,共 30 分)1. 下列函数中,奇函数的是()(A)(B)(C)(D)2. 若,则的值是()(A)(B)(C)(D)3. 已知集合,,则是()(A)(B)(C)(D)4. 已知,则的值为()(A)(B)(C)(D)5. 下列命题中,真命题是()(A) 三个角的和大于的三角形是钝角三角形(B) 若两个三角形两边分别相等,那么这两个三角形全等(C) 若,则(D) 若,则6. 已知点在圆上,则的最大值为()(A) 3(B) 4(C) 5(D) 67. 函数的最小值为()(A) -2(B) -1(C) 0(D) 18. 已知数列,则的值为()(A) 120(B) 130(C) 140(D) 1509. 下列说法中,正确的是()(A) 任何一个集合都是有限集(B) 任何一个非空集合都至少有一个元素(C) 两个集合的交集一定包含这两个集合中的所有元素(D) 两个集合的并集一定包含这两个集合中的所有元素10. 已知向量,,则的值为()(A) -5(B) -3(C) 3(D) 5二、多项选择题(每题 4 分,共 20 分)11. 下列说法中,正确的是()(A) 是有理数(B) 是无理数(C) 是有理数(D) 是无理数12. 下列函数中,周期为的是()(A)(B)(C)(D)13. 下列命题中,真命题是()(A) 若,,则(B) 若,,则(C) 若,,则(D) 若,,则14. 已知点,分别在抛物线上,且的中点为,则的值为()(A)(B)(C)(D)15. 下列说法中,正确的是()(A) 线性方程组的解集一定是有限集(B) 线性方程组的解集一定包含整数解(C) 线性方程组的解集一定包含有理数解(D) 线性方程组的解集一定包含实数解第 II 卷(非选择题)一、填空题(每题 5 分,共 25 分)16. 已知为实数,且,则_________.17. 已知三角形的三边长分别为,,,且,则三角形的形状为_________.18. 已知数列的首项为,公差为,则的值为_________.19. 已知函数,则_________.20. 已知直线与圆相切,则_________.二、解答题(共 75 分)21. (15 分)解不等式:22. (10 分)已知函数,求函数的最小值和最大值。
【2020-2021自招】遵义市第四中学初升高自主招生数学模拟试卷【4套】【含解析】

第一套:满分150分2020-2021年遵义市第四中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
自招 上海自主招生数学试题

B. 30 A 45
C. 45 A 60
D. 60 A 90
3
8. 观察右图,根据规律,从 0
3→4
7→8
11 → …
↓
↑
↓
↑
↓
↑
…
2002 到 2004,箭头方向 1 → 2
2
2004 年交大附中自主招生数学试题及答案
(本试卷满分 100 分,90 分钟完成)
一、单项选择题:(本大题满分 30 分)本大题共有 10 个小题,每小题给出了代号为 A 、B 、
C 、 D 四个答案,其中有且只有一个答案是正确的.请把正确答案的代号写在题后的
圆括号内.每小题选对得 3 分;不选、错选或选出的代表字母超过一个(不论是否写在
2011-2015 年 上海初中自主招生数学
试题及答案
1
目录
2004 年交大附中自主招生数学试题及答案................................................................................... 3 2011 年华师二附自主招生数学试题及答案................................................................................... 7 2011 年上海中学自主招生数学试题及答案(部分)................................................................... 9 2012 年复旦附中自主招生数学试题及答案................................................................................. 11 2013 年复旦附中自主招生数学试题及答案(部分)................................................................. 13 2013 年华二附中自主招生数学试题与答案(部分)................................................................. 14 2013 年交大附中自主招生数学试题及答案(部分)................................................................. 16 2013 年上海中学自主招生数学试题及答案................................................................................. 17 2014 年交大附中自主招生数学试题及答案................................................................................. 20 2014 年进才中学自主招生数学试题及答案................................................................................. 23 2014 年上海中学自主招生数学试题及答案................................................................................. 25 2014 年复旦附中自主招生数学试题及答案................................................................................. 27 2014 年华师二附自主招生数学试题............................................................................................. 29 2014 年华中一附自主招生数学试题............................................................................................. 33 2015 年复旦附中自主招生数学试题............................................................................................. 37 2015 年华师一附自主招生数学试题及答案................................................................................. 39
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深与专业〮信于人
四校自招-数学·复附卷
一、填空题
1.实数x ,y ,z 满足|2x -6|+|y +1|+x -4y 2+x 2+z 2=2+2xz ,则x +y -z =__________。
2.若10013
的分子、分母同时加上正整数n 时,该分数称为整数。
这样的正整数n 共有_______个。
3.已知a 2=7-3a ,b 2=7-3b ,且a ≠b ,则a b 2+b a 2=____________。
4.设p 是奇数,则方程2xy =p (x +y )满足x <y 的正整数解是_____________。
11⎛
1⎫⎛1⎫22
5.方程x = x -⎪+ 1-⎪的解为_______________。
⎝x ⎭⎝
x ⎭6.如图,正方形ABCD 的边长为100米,甲、乙两个动点分别从A 点和B 点同时出发按逆时针方向移动。
甲的速度是7米/秒,乙的速度是10米/秒。
经过_________秒,甲、乙两动点第一次位于正方形的同一条边上。
7.已知ABC 是等边三角形,动点P ,Q ,R 分别同时从顶点A ,B ,C 出发,沿AB ,BC ,CA 按逆时针方向以各自的速度匀速移动,且P ,Q ,R 经过ABC 的一边所用时间分别为1秒,2秒,3秒。
从运动开始起,在1秒内,经过_________秒PQR 的面积取到最小值。
8.二次函数f (x )的图像开口向上,与x 轴交于A ,B 两点,与y 轴交于点C ,以D 为顶点,若三角形ABC 的外接圆与y 轴相切,且∠DAC =150︒,则x ≠0时,f (x )
的最小值是
________。
|x |
二、解答题
9.已知a 是正常数,且关于x 的方程1+1=
ax 仅有一个实数根,求实数a 的取值范围。
x -3x +2-2x -1x 210.如图,抛物线的顶点坐标是 ⎛5,-9⎪⎫,且经过点A (8,14)。
⎝28⎭
(1)求该抛物线的解析式;
(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),求点B 、C 、D 的
坐标;
(3)设点P是x轴上的任意一点,分别连结AC、BC。
比较PA+PB与AC+BC的大小关系,说明理由。
【试卷总结与分析】
1.高中知识点分析
涉及到的重要高中知识点几乎很少,但有些考察的并不浅,如第9,10,11题
并不是简单的通过初中知识就能解决的,需要较好的掌握才足以解决问题(如参变分离思想,对勾函数的图像,均值不等式等)
因此,建议考生对于高中的这些特有的思想和知识,又与初中知识相关的,加强补习与训练,才能在考试中占据优势
2.初高衔接知识点分析
高中知识中,代数与几何所占比重差异巨大,代数大约占到95%,几何大约5%
想打好初高衔接基础,建议把精力全部放在代数,这其中又主要以
①代数式变换(因式分解、配方、根式与分式的化简计算)
②解方程
③二次函数的图像与性质
为主
在本试卷中,这一点几乎被体现的淋漓尽致,因为几何题几乎没有,全是代数
因此,本试卷的核心思想就是——让代数功底好的学生体现最大的优势而且,
所有初高衔接知识点的题目,反复涉及到了上面的三条基本功
第1题(配方)
第2题(分式的化简计算)
第3题(分式的化简计算、因式分解、二次方程根与系数的关系)
第4题(因式分解解不定方程)
第5题(根式、分式的化简计算,配方,换元法解方程)
第7题(二次函数求最值)
第8题(根式、分式的换件计算,二次方程根与系数的关系)
第9题(分式的化简,解分式方程,函数图象)
第10题(二次函数图象性质)
这当中的有些问题并不简单,需要足够强的代数功底才能解决!
2015年初升高·自招真题解析·数理化2这也足以说明,复旦附中选拔考生的主旨——不要代数功底不好的学生,否则,你根本不可能跟上高中数学课堂的脚步!
若考生的代数功底较差,建议尽快花大力气加强代数训练,提高代数能力,否则几乎不可能在考试中脱颖而出
3.初中知识点分析
根据上面的分析,仅仅考到初中知识点的题目,可能只有第8题了(当然,本卷题目并不完整,可能其余题目也有所涉及,笔者只就现在了解的题目以分析)
而且,这个题目的解决,也是一个以“找规律”为主要思想的问题,并无明显针对性,建议考生无需花精力在本部分准备,全部精力最好放在第二部分——初高衔接知识点。