地震波的基本概念
地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。
本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。
1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。
纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。
当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。
2.地震波探测方法地震波探测方法包括折射波法和反射波法。
折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。
反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。
在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。
3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。
野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。
室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。
4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。
预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。
5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。
构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。
抗震 知识点总结

抗震知识点总结地震是一种自然的地球现象,经常会给人们的生活和工作带来极大的威胁。
而建筑物作为人们生活和工作的主要场所,其抗震设计和抗震能力就显得尤为重要。
为了保障人们的生命财产安全,建筑工程领域对于抗震知识的研究和运用也日益重要。
下面将从地震的基本原理、建筑物的抗震设计和抗震技术三个方面,对抗震知识进行总结。
地震的基本原理地震是地球地壳发生变动时,由于能量释放引起的振动现象。
地震是一种无法预测的自然灾害,一般由于地壳发生变动所引起。
地震的原理是由地震波造成的地面振动。
地震波是指地震中地壳中的能量传播。
地震波在地球内部传播时,会产生地面振动和震动,导致建筑物产生变形和破坏。
地震波有三种类型:P波、S波和L波。
P波是一种压缩波,能够穿过液体和固体,速度快于其他波;S波是一种横波,能够穿过固体但不能穿过液体,速度比P波稍慢;L波是一种地震波,其振幅大,能力强,可以引起建筑物的毁坏。
建筑物的抗震设计为了减少地震对于建筑物的破坏,提高建筑物的抗震能力,抗震设计就显得非常重要。
抗震设计是指在建筑物的设计和施工阶段,要考虑地震因素对建筑物的影响,并进行相应的设计和施工,以求建筑物在地震发生时能够尽量减少破坏,保障人们的生命财产安全。
抗震设计的基本原则有四点:一是考虑地震引起的水平作用力,二是提高结构的承载能力,三是采用地震减震和隔震技术,四是避免单一破坏。
抗震技术为了提高建筑物的抗震能力,可以采用一些抗震技术和防护措施。
抗震技术主要包括地震减震技术和地震隔震技术。
地震减震技术是通过在建筑物的结构中设置减震装置,减少地震对建筑物的影响。
减震装置一般为阻尼器、支座和隔震层等。
这些装置能够吸收地震能量,降低地震引起的震动幅度,提高建筑物的抗震能力。
地震隔震技术是通过在建筑物与地基之间设置隔震装置,减少地震波对建筑物的影响。
隔震装置一般为隔震层和隔震橡胶垫等,能够降低地震波的传播速度,减少地震对建筑物的破坏。
在抗震知识方面,人们还需了解一些基本的自救和互救技能。
地震波理论

地震波理论读书报告通过课程的学习以及自己课外的一些读书认识和实习经验,对地震波理论有了一个初步的认识。
一:地震波的基本概念1.地震波是在岩石中传播的弹性波。
2.波前:介质中某一时刻刚刚开始震动的点组成的一个面,叫波前。
3.波面:介质中某时刻同时开始震动的点组成的面,叫做波面。
4.波后:介质中某时刻刚刚开始震动结束的点组成的面,叫波后。
5.波线:在特定条件下,可以认为波及其能量是沿着一条路径传播的,然后又沿着那条路径向外传播,这样的理想路径叫做波线。
6.震动曲线:震动中某一质点在不同时刻的情况描述图一震动曲线7.波形曲线:将同一时刻各点的震动情况画在同一个图上,来反映各点震动之间的关系图二波形曲线不同的质点可能有不同的震动曲线,不同的时刻有不同的波形曲线,在地震勘探中通常把沿着测线画出来的波形曲线叫做“波刨面”。
8.正弦波:各点的震动都是谐震动。
对于正弦波各部分震动频率等于波源频率,周期t和频率有固定值。
9.波长:在一个周期内波沿着波线传播的距离,在此处键入公式。
V=λf或λ=TV公式一图三10.视速度:不是沿着波传播方向来确定波速和波长时,所得的结果叫做波的视速度和波长时如图四A̅B′̅为沿着测线方向的视波长A̅B̅=λA̅B′̅=λa公式二波沿着测线方向传播速度:V a=λaT有:V=λT =>V a=Vsin(θ)公式三二:地震波的传播规律1.反射和透射:图五波的传播波阻抗:第一种介质ρ1V1第二种介质ρ2V2当两种介质的波阻抗不等时才会发生反射。
2.反射定律和透射定律:入射面:入射线和法线所确定的平面垂直分界面。
反射定律:反射性位于入射面内,反射角等于入射角图六透射定律:透射线也位于入射面内,公式四图七全反射:图八开始出现全反射时的入射角叫------临界角。
3.斯奈儿定律:图九对于水平层装介质,各层的纵波横波速度分别用Vρ1,V s1,Vρi,V si则:sin(θp1)Vρ1=sin(θs1)V s1=……=sin(θp i)V pi=sin(θs i)V si=p 公式五4.费马原理:图十波在介质中传播满足时间最短条件。
地震勘探原理题库讲解

第一章地震波的运动学第一节地震波的基本概念第二节反射地震波的运动学第三节地震折射波运动学第二章地震波动力学的基本概念第一节地震波的频谱分析第二节地震波的能量分析第三节影响地震波传播的地质因素第四节地震记录的分辨率第三章地震勘探野外数据的野外采集第一节野外工作方法第二节地震勘探野外观测系统第三节地震波的激发和接收第四节检波器组合第五节地震波速度的野外测定第四章共中心点迭加法原理第一节共中心点迭加法原理第二节多次反射波的特点第三节多次叠加的特性第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素第五章地震资料数字处理第一节提高信噪比的数字滤波第二节反滤波第三节水平迭加第四节偏移归位第五节地震波的速度第六章地震资料解释第一节地震资料构造解释工作概述第二节时间剖面的对比第三节地震反射层位的地质解释第四节各种地质现象在时间剖面上的特征和解释第五节地震剖面解释中可能出现的假象第六节反射界面空间位置的确定第七节构造图、等厚图的绘制及地质解释第八节水平切片的解释一、名词解释第一章地震波的运动学1、波动(难度90区分度30)2、波前(难度89区分度31)3、波尾(难度89区分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34)7、波线(70 、 33) 8、射线(72 、 40)9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47)15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、动校正(60、 60) 19、几何地震学(70 、 35)第二章地震波动力学的基本概念1、动力学(70 、 40)2、物理地震学(71、 35)3、频谱(50 、 50)4、波的发散(90 、 30)5、波散(90 、 31)6、频散(80、 35)7、吸收(70 、 40 )8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40)第三章地震勘探野外数据的野外采集1、规则干扰波(90、30)2、不规则干扰波(90、30)3、观测系统(80、35)4、多次覆盖(65、50) 5、共反射点道集(70、45)6、检波器组合(90、30)7、方向特性(75、30)8、方向效应(90、30)第四章共中心点迭加法原理1、共中心点迭加(70、40)2、水平迭加(60、40)3、剩余时差(60、50)第五章地震资料数字处理1、偏移迭加(75、30)2、平均速度(85、30)3、均方根速度(80、30)4、迭加速度(70、40)第六章地震资料解释1、标准层(50、40)2、绕射波(40、50)3、剖面闭合(30、60)4、三维地震(70、30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30)二、填空题第一章1、振动在介质中的传播就是()。
地震波的基本概念

波动:振动在介质中的传播。
二、波的几个特征 1. 振动和波动的关系就是部分和整体的关系
波有一定的速率。 波的频率等于震源的频率。
2. 波前、波后和波面
波前:
介质中某一时刻刚刚开始振动的各点组 成的面叫波前。
波面:
介质中同时开始振动的各质点所组成的 曲面叫波面。
波后: 介质中某一时刻刚刚停止振动的各点组 成的面叫波后。
5、地震折射波:
当入射角 c 时,发生全反射,不产生滑 行波,没有透射波,滑行波传播又引起另 外的效应,由于两种介质互相密接,滑行 波在传播过程中也会反过来影响第一种介 质,并在第一种介质中激发新的波,这种 由滑行波引起的波,在地震勘探中叫“折 射波”。
四、地震勘探中的常见波
在地震勘探中用炸药激发时,一声炮响之 后会产生各种各样的地震波。 ㈠按波在传播过程中质点振动方向区分为 纵波:质点振动方向与传播方向一致; 横波:质点振动方向与传播方向垂直;
v2
v1
2
1
(1)波长λ:
在一个周期内,正弦波沿着波线前进的距 离叫波长。波源每振动一次,波长前进一 个等于波长的距离λ,波源每秒振动的次数 就是频率f,波每秒前进距离是f(即波速 v)。
v f 或 TV
T
(2)视速度:
当涉及的波速和波长时,我们是沿着波的传 播方向来考虑问题。
如果不是沿着波的传播方向而是沿着别的方 向来确定波速和波长时,所得结果叫做正弦
开始出现“全反射”时的入射角叫临界角
c , sinc
v1 v2
斯奈尔(Snell)定律:
对于水平层状介质,各层的纵波,横波 速度分别用
vp1 ,vs1 ,vpi ,vsi
02-1-地震勘探-地震波基本概念1弹性波

杨氏模量( E )
E
应力 应变
F/S L / L
(2) 泊松比(σ) 在拉伸形变中,直杆的横切面会减小。反之,在轴向挤压时,横截面将增大。
也就是说,在拉伸或压缩形变中,纵向增量 L和横向增量 d的符号总是相
反的。
泊松比: 介质的横向应变与纵向应变的比值 σ =- d / d
L / L
(3) 体变模量 一个体积为V的立方体,在流体静压力P的挤压下所发生体积形变。即每个正 截面的压体变模量(压缩模量): 压力P与体积相对变化之比 K= - P
参考书《弹性波动力学 》
自然界中绝大部分物体,在外力作用下,既可显弹,也可显塑
地震勘探,震源是脉冲式的,作用时间很短(持续十几~几十毫秒),岩土受 到的作用力很小,可把岩、土介质看作弹性介质,用弹性波理论来研究地震波。
各向同性介质:凡弹性性质与空间方向无关的介质 各向异性介质: 凡弹性性质与空间方向有关的介质
36个cij变为21个cij
各向同性
21个cij变为2个弹性参数
三、弹性模量
1.弹性模量的定义
弹性模量也叫弹性参数或弹性系数,它表示了弹性体应力与应变之间的关系, 反映了弹性体的弹性性质。
(1) 杨氏模量
当弹性体在弹性限度内单向拉伸时,应力与应变的比值称为杨氏模量(拉伸模量)。
E = F/S T
L / L e
地震波是机械波的一种
机械波定义:机械振动在介质中的传播。 形成机械波的两个必要条件:波源和介质。
•1)什么是波?
声波
绳子传播的波
水波
什么是地震波?
•弹性波:弹性介质中传播的波
•地震波是地下岩层中传播的弹性波
• 弹性波的产生
2、弹性介质与粘弹性介质
第1章地震波动力学

◆一、地震波是在地层中传播的弹性波 ◆二、地震波的几个特征 ◆三、地震波的传播特征
43
二、波的几个特征
1.波阵面(波前、波后)
波阵面—波从震源出发向四周传播,在某一时刻,
把波到达时间各点所连成的面,简称波面。
波前—振动刚开始与静止时的分界面,即刚要开始
振动的那一时刻。同样,振动刚停止时刻的分界面 为波后。波前或波后是用面表示的,不是曲线。
80
一、地震地质介质的简化
一般情况下,对地下介质常见的简化分类: 1、均匀介质 2、水平层状介质 3、连续介质
81
82
83
84
85
第二节 一个分界面情况下共炮点反射波的时距曲线
一、地震地质介质的简化 二、野外观测方式的介绍 三、一个分界面共炮点反射波时距曲线方程 四、正常时差\动校正 五、倾角时差 六、时距曲面和时间场
75
2、惠更斯(huygens)原理
76
平面波
77
第一节 地震波的基本概念 惠更斯原理的应用
惠更斯原理是利用波前面的概念来解释传播问 题的。因此可用图法绘出各种波的波面。 惠更斯原理可以确定波的传播方向,而不能确 定沿不同方向传播的振动的振幅 ,只是给出了几 何位置,没有涉及波到达新位置的物理状态。
三、一个分界面共炮点反射波时距曲线方程
时距曲线 定义 表示波从震源出发,传播到测线上各观测 点的旅行时间t,同观测点相对于激发点的 距离x之间的关系曲线。
X=offset 炮检距 一般情况下不是波传播的实际路径的长度。
96
讨论时距曲线的实际意义
1. 不同的波具有不同的时距曲线,具有不同的特点。
5
一、地震波是在地层中传播的弹性波
地震波原理

地震波原理地震波是由地球内部的能量释放而产生的一种波动。
这种能量释放通常是由地震活动引起的,包括地壳运动、板块运动等。
地震波的传播具有一些基本原理,分为两大类:体波和面波。
1.体波(BodyWaves)P波(纵波):P波是一种纵波,是地震波中传播速度最快的波。
P波在固体、液体和气体中均可以传播。
P波的传播方向是沿着波的传播方向,即振动方向与传播方向一致。
P波的振动速度大致是S波的1.7倍。
S波(横波):S波是一种横波,传播速度比P波慢。
S波只能在固体中传播,无法穿过液体和气体。
S波的振动方向垂直于波的传播方向。
S波相对于P波来说,对岩石的破坏性较大。
2.面波(SurfaceWaves)Love波:Love波是横波,振动方向是垂直于波的传播方向。
Love波主要沿地表传播,对地表的破坏性相对较小。
Rayleigh波:Rayleigh波是一种复杂的波动,是横波和纵波的结合。
Rayleigh波主要沿地表传播,具有类似海浪的运动。
Rayleigh波对地表的破坏性相对较大,但能量逐渐减小。
地震波传播的基本原理:1.波的起源:地震波的起源通常是地球内部的能量释放,例如地壳运动或板块运动。
2.能量传播:地震波通过岩石和地球的其他物质传播。
不同类型的波在不同的介质中传播,速度也不同。
3.波的传播方向:P波和S波是体波,其传播方向是从震源向各个方向传播。
面波则主要沿地表传播。
4.波的振动方向:P波和S波的振动方向不同,这在地震记录中有明显的区别。
5.波的影响:地震波的传播引起地面的震动,这会导致建筑物和其他结构的震动,可能引发地质灾害。
地震波的传播是地震学研究的基础,通过观测地震波的行为,地震学家可以了解地球内部的结构和地震源的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V1 V2
若把上式改写成如下形式:
V1 V2 Va sin 1 sin 2
此式表明:沿着界面,波在两种介质中传播的视速度 是相等的。
第一节 几何地震学基本概念
由右下图可以看到所谓全反射现象的存在。如果 V2>V1,则有sinθ2>sinθ1,即θ2>θ1 ;当θ1增大到一定程 度但还没到90o时,θ2已经增大到90o这时透射波在第二 种介质中沿界面“滑行” ,出现了“全反射”现象, 因为θ1再增大,就不能出现透射波了。 开始出现“全反射”时 的入射角叫做临界角; 因为这时θ2=90o, sinθ2=1,所以临界角θc 满足下列关系式:
第一节 几何地震学基本概念
在压力很大、作用时间很长的条件下,大部分物体 都表现为塑性性质。反之,在外力很小、作用时间很 短的情况下,大部分物体都具有弹性性质。
物体受力的三种状态: ①弹性形变 ②塑性形变 ③永久形变
f
①
②
③
e
第一节 几何地震学基本概念
地震勘探中形成地震波的过程是:若 激发方式为炸药爆炸,那么在炸药包附 近,爆炸产生的强大压力大大超过岩石的 极限强度,岩石遭到破坏形成一个破坏带。 随着离开震源距离的增大,压力减小,但 仍超过岩石的弹性限度,该范围岩石发 生塑性形变,形成一些辐射状或环状裂 隙的塑性带。再向外,压力降低到弹性限 度以内,又因为炸药爆炸所产生的是一个 延续时间很短的作用力,该区域的岩石发 生弹性形变,即为弹性带。 由此可见,地震波就是一种在岩层中传播 的弹性波。
图2-1-1 爆炸产生 的三个带
第一节 几何地震学基本概念
2、波前、波后和波面 波前——介质中的各点刚刚开始振动,这一曲面S2称 作波在t1时刻的波前或波阵面。 波后——在V0和V1的分界面S1上,介质中各点刚刚停 止了振动,这一曲面S1叫做波在t1时刻的波后或波尾。 不指明哪一个时刻的波前和波后是没有意义的。
地球物理勘探
地球物理系
王永刚
课程内容
• • • • • •
第1章 绪论 第2章 地震波运动学理论 第3章 地震资料采集方法与技术 第4章 地震波速度 第5章 地震资料解释的理论基础 第6章 地震资料构造解释
第2章 地震波运动学理论
• 第一节 几何地震学基本概念 • 第二节 常速单界面的反射波路径及
第一节 几何地震学基本概念
4、振动图与波剖面 波动是一种很复杂的运动过程。 在这种过程中,介质中的无数 个小部分都在振动,而且不同部 分的振动还可以在相位、强度等方面有所不同。这样 复杂的运动,是不能用单独一条曲线来描述其全过程 的。例如,指定了一个点P1,它的振动可以用一条振动 曲线来反映,如上图所示。但是,这样的任何一条曲 线,只是反映无限多个点中某一指定点而已。 在地震勘探中,每个检波器所记录的,便是那个检 波器所在点处的地面振动,它的振动曲线习惯上叫做 该点的惠更斯(Huygens)原理
惠更斯原理是利用波前概念来研究波的传播的。表
述为:在已知波前面(等时面)上的每一个点都可视 为独立的、新的子波源,每个子波源都向各方发出新 的波,称其为子波,子波以所在处的波速传播,最近 的下一时刻的这些子波的包络面或线便是该时刻的波
前面。这样从前一个波前面位置移到下一个波前面位
S2
S1 t1 t2
第一节 几何地震学基本概念
按照波面的形状,可以对波进行分类。如果所有的波 面都是球面则为球面波;如果都是柱面则为柱面波; 如果都是互相平行的平面就叫做平面波。波面的形状 取决于波源的形状和介质的性质。 3、射线 在几何地震学中,通常认为波及其能量是沿着一条 “路径”从波源传到所考虑的一点P,然后又沿着那条 “路径”从P点传向别处。这样的假想路径就叫做通过 P点的波线或射线。在波动所及的介质中,通过每一点 都可以设想有这么一条波线。在各向同性介质中,波 线和所过各点处的波面相垂直。例如,在均匀介质中 的球面波,波线就是从波源向外的半径,这就是“射 线”一词的由来。
s1
震 源
s2
S1
S2
v0
v1
t1
t2
v2
第一节 几何地震学基本概念
波面——介质中每一个同时开始振动的曲面。在波的 传播过程中,波前将不断推进而扫过介质的全部。因 此,波前在整个介质中都留有遗迹。换句话说,通过 介质中的任何一点,都有一个波面。在介质中任取一 点P,再找出介质中和P点同时开始振动的那些点,将 这些点连成一个曲面,就是通过P点的波面。由此可见, 波面是波前的“遗迹”,波面是同相的、等时的和静 止的。
第一节 几何地震学基本概念
广泛用于地震正演模型计算和地震资料解释中的 雷克(Ricker)子波,在时间域可表示为: f (t ) [1 2(f p t ) 2 ] exp[f p t ) 2 ] 在频率域可表示为:
F ( f ) (2 / )( f 2 / f p3 ) exp[( f / f p ) 2 ]
第一节 几何地震学基本概念
测线不垂直界面走向的倾斜界面,射线平面垂直 界面,但不垂直地面。
第一节 几何地震学基本概念 2、透射定律
由实验总结得出的透射定律如下:透射线也位于入射 面内,入射角的正弦与透射角的正弦之比等于第一、二 两种介质中的波速之比,即: sin V sin 1 sin 2 1 1 或
式中P称为射线参数。在水平层状介质中,当波的某条 射线以某一角度入射到第一个界面后,再向下透射的 方向将由上式决定,这条射线就对应于一个射线参数 值Pi 。
第一节 几何地震学基本概念 4、费马(Fermat)原理
费马原理较通俗的表达是:波在各种介质中的传播路 径,满足所用时间为最短的条件。
费马原理示意图
第一节 几何地震学基本概念
为了反映各点间的振动关系,常常采用描绘波形曲 线的方法,即把在同一时刻各点的位移画在同一个图 上。选定一个时刻t1,我们用纵坐标代表各物质小块 离开平衡位置的位移,横坐标为各点的距离x ,就得 到一条曲线。这条曲线就叫做波在t1时刻沿x方向的波 形曲线。 在地震勘探中,通常把沿着测线画出的波形曲线叫 做“波剖面”。
u( x )
t2时刻波剖面
x
u( x )
t1时刻波剖面
x
地面
第一节 几何地震学基本概念
5、地震子波(wavelet) 爆炸脉冲的变化如右图所示。 具有多个相位、延续60~100 毫秒的稳定波形(图c)称为 地震子波。 如果把某个反射界面以上的 地层介质视为一个滤波器,该 滤波器的输入就是激发脉冲, 其输出则为激发的单位脉冲通过该滤波器的时间响应, 从这个意义上讲,地震子波就是地震能量由震源通过复 杂的地下路径传播到接收器所记录下来的质点运动速度 (陆上检波器)或压力(海上检波器)的远场时间域响应。
V1 sin c V2
全反射示意图
第一节 几何地震学基本概念 3、斯奈尔(Snell)定律
设各层的纵波、横波速度分别用Vp1,Vs1,Vp2, Vs2,......Vpi,Vsi表示,θ下标代表各种波的入射角,则 斯奈尔定律可表示为:
sin p1 V p1 sin pi sin si sin s1 sin p 2 sin s 2 .......... .. P Vs1 Vp2 Vs 2 V pi Vsi
数学表达式 • 第三节 变速多界面的反射波路径及 数学表达式 • 第四节 地震折射波运动学
第2章 地震波运动学理论
第一节 几何地震学基本概念
一、地震波的基本概念 二、地震波的传播规律 三、地震波的类型
第一节 几何地震学基本概念
地震波的运动学(Kinematics of seismic wave)是研 究地震波波前面的空间位置与其传播时间的相互关系, 它与几何光学相似,是引用波前、射线等几何图形来 描述波的运动过程和规律,因此也称几何地震学。 一、地震波的基本概念 1、地震波 振动——介质中每一个点围绕平衡位置的运动。 波动——振动在介质中的传播过程。波动是一种不断 变化、不断推移的运动过程。振动和波动的关系就是 部分和整体的关系。
第一节 几何地震学基本概念
总 结
•振动是一点的运动; •波动是振动的传播,即介质整体的运动。 •振动传播的速度为波速,与质点本身运动的 速度无关。波速有限是波动的必要条件。 •波动伴随能量传播。
u(t )
u(t )
t
t
介质中不同点的振动曲线
地面
总 结
•振动曲线:表示质点振动的曲线。 •振动图:检波器所在点的振动曲线。 •波形线:同一时刻各点的位移绘制在一个图 上得到的曲线。 •波剖面:沿测线的波形曲线。
置,如法炮制,便可得到介质中的等时面系,因而得 到波在该介质中传播的全部特点。
第一节 几何地震学基本概念
利用惠更斯原理求新波前
第一节 几何地震学基本概念 三、地震波的类型
•按照波在传播过程中质点振动的方向来区分,可以分 为纵波和横波。 •按波动所能传播的空间范围来区分,地震波又可分为 体波和面波。 •按照波在传播过程中的传播路径的特点来区分,又可 把地震波分为直达波、反射波、透射波(透过波)、折 射波等,如右图所示。
•按照波面形状来分, 可以分为球面波、柱 面波、平面波。
第一节 几何地震学基本概念
•按照入射波、反射波和透射波的波型是否相同来区分, 地震波可分为同类波和转换波。 垂直入射时的反射系数公式是:
2V2 1V1 R 2V2 1V1
右上式可知:在介质分界面上能产生反射波的条件是分 界面两边介质的波阻抗不相等。也即严格地说,波阻抗 界面才是反射界面;速度界面不一定是反射界面。 •按照各种波在地震勘探中所处的地位来区分,地震波 还可分为有效波、干扰波和特殊波等。
( f ) 0
式中f(t)与F(f)互为傅立叶变换,fp为频谱的峰值频率。
第一节 几何地震学基本概念