3第三章-地震学基础—地震波传播理论
地球物理学中的地震波传播理论分析

地球物理学中的地震波传播理论分析地震是一种自然现象,是地球内部因各种原因而产生的震动。
它不仅对人类社会产生直接影响,还是研究地球内部结构和地球科学的基础。
地震波传播是研究地震的重要内容之一,地球物理学中已有较成熟的理论分析方法。
地震波类型根据振动方向、传播速度和产生地点不同,地震波可分成P波、S波、L波和R波。
P波:即纵波,是指振动方向与波传播方向一致的波动。
它具有压缩性和弹性,传播速度较快,可以通过任何物质传播。
S波:即横波,是指振动方向垂直于波传播方向的波动。
它只具有弹性,没有压缩性,传播速度比P波慢,只能通过固体介质传播。
L波:即面波,是指在地表或地壳上传播的波动。
它的传播速度介于P波和S波之间,既有弹性也有压缩性。
R波:即径向波,是指振动方向垂直于地心方向的波动,主要产生于深部地震。
地震波传播理论分析地震波传播的理论分析是地震学的重要内容之一。
在地球物理学中,传播理论可以通过针对特定问题和地质情况的模型计算,得到传播速度、方向和部分振动参数。
传播速度地震波的传播速度取决于介质的密度、弹性模量和泊松比。
在任意介质结构中,速度都随深度变化,到达地下水平面时发生反射和折射,这些过程也会改变波速。
传播方向地震波在地球内部的传播方向受到介质类型、脆-塑性变形和地球结构的影响。
在大型地震中,地震波的传播方向通常是为三维结构,这需要通过计算机模拟进行处理。
部分振动参数地震波的部分振动参数包括振幅、频率、波长和位移。
在地球科学研究中,这些参数对测量物理现象和分析数据具有重要意义。
进一步应用在地震学中,地震波传播理论分析不仅适用于地质结构探测和地震预测,还适用于天体物理学、大气物理学和宇宙学等领域。
例如,利用地震波理论和观测数据,可以研究地球内部的物理性质、地球的演化历史以及宇宙大爆炸等问题。
结语地震波传播理论分析是地球物理学的重要组成部分,可以为地球内部结构的研究和地震灾害的预警提供有力支持。
通过深入理解地震波的传播机制和物理特性,可以进一步拓展对地球和宇宙的认识。
3 第三章 地震波动方程wan

第三章 地震波动方程现在,我们用前一章提出的应力和应变理论来建立和解在均匀全空间里弹性波传播的地震波动方程。
这章涉及矢量运算和复数,附录2对一些数学问题进行了复习。
3.1 运动方程(Equation of Motion )前一章考虑了在静力平衡和不随时间变化情况下的应力、应变和位移场。
然而,因为地震波动是速度和加速度随时间变化的现象,因此,我们必须考虑动力学效应,为此,我们把牛顿定律(ma F =)用于连续介质。
3.1.1一维空间之振动方程式质点面上由于应力差的存在而使质点产生振动。
如图1-3所示,考虑一横截面为A ∆薄棒向x1轴延伸,任取以微元,沿x1的长度为1x ∆,其左端的应力为11σ,方向逆x1的方向,右端的应力为11111x σσ∂+∂,方向与x1方向相同,其位移量为u :1D caseFigure 2.8x 1111111x ∂则其作用力为“应力” “其所在的质点面积”,所以其两边的作用力差为()()()()()111111111111111111111A x x x A x x x x Ax x σσσσσσ⎛⎫∂∂∆+∆-=∆+∆-=∆∆ ⎪∂∂⎝⎭惯量﹙inertia ﹚为212ux A tρ∂∆∆∂所以得出21121u t x σρ∂∂=∂∂ ……………………………………………………... (3-1)其中ρ为密度﹙density ﹚。
3-1式表示,物体因介质中的应力梯度﹙stress gradient ﹚而得到加速度。
如果ρ与E 为常数,1111uEx x σ∂∂=∂∂,这里考虑一维情况,将x 的角标去掉,则3-1式可写为 222221tu c x u ∂∂=∂∂ …………………………………………………… (3-2)其中ρEc =运用分离变量法求解(3-2)式,设u=X(x)T(t),(3-2)式可以变为T X cT X ''=''21设22ω-=''=''TT X X c 求解20T T ω''+=,其特征方程为220r ω+=,特征根为1,2r i ω=±,所以微分方程的解为:12i t i t T C e C e ωω-=+ 同理得到,220X X c ω''+=的解为12i xi x ccX D eD eωω-=+。
地震概论地概知识点整理

第一章地震学的研究范围和历史全球每年发生500万次地震,人们可以感觉的仅占1%,造成严重破坏的7级以上的大地震约有18次,8级以上的特大地震1~2次。
全世界有6亿多人生活在强震带上,上个世纪约有200万人死于地震,预计二十一世纪将有约1500万人死于地震。
我国是个多地震国家,20世纪以来,我国发生了800多次6级以上的地震,平均每年约8次;历史记载全球死亡超过20万人的地震有6次,其中在中国就有4次。
第一节什么是地震学?地震学包括:一、地震的科学以及地球内部物理学,后者主要研究地震波的传播,从而得出地球内部结构的结论;二、弹性波(地震波)的科学,主要研究地震、爆炸等激发的弹性波的产生、在地球内部的传播、记录以及记录的解释;三、应用:地震勘探、工程地震学、识别核爆。
固体地球物理学则是通过观测地球表面上的物理效应来研究地球内部的物质的性质第二节地震学的研究范围和主要的研究方面研究范围的三个方面一、宏观地震学:主要是指地震宵害的调查和研究、地区基本烈度的划分,以达到为建筑物的抗震设计提供合理的资料和指标,并为地震预报提供宏观数据。
二、地震波的传播理论:根据地震台风网观测得到的地震资料,研究地震波的发生及传播特征,并利用来研究地壳和地球内部的结构、组成和状态。
三、测震学:内容包括地震仪器的研制、地震观测台网的布局以及记录图的分析、处理和解释工作。
第三节地震学的基本名词和概念2)按震源深度划分:✧浅源地震:震源深度小于60km的天然地震;✧中源地震:震源深度在60-300km之间的地震称为中源地震;✧深源地震:震源深度大于300km的地震已记录到的最深地震的震源深度约700公里。
有时也将中源地震和深源地震统称为深震。
(3)按震中距划分:✧地方震:震中距小于100km的地震;✧近震:震中距小雨1000km的地震;✧远震:震中距大于1000km的地震;(4)按震级划分:✧弱震:M<3的地震;✧有感地震:3<M<4.5的地震;✧中强震:4.5<M<6的地震;✧强震:M 6的地震;地震波波长:数百米至数千米第三节古代人类对地震的认识一、地震学前史在科学不发达的过去,人们对地震发生的原因,常常借助于神灵的力量来解释。
地震学教学大纲

地震学教学大纲一、教学目标本课程旨在帮助学生全面了解地震学的基本概念、原理和应用,培养学生独立分析地震事件的能力,掌握地震预测、预警和防灾减灾知识,从而提高社会应对地震灾害的整体能力。
二、教学内容1. 地震的概念和分类2. 地震波的传播特点3. 地震仪器及地震监测网络4. 地震的动力学原理5. 地震预测与预警6. 地震灾害的防治7. 地震学在地质勘探和资源勘查中的应用8. 地震学在工程勘测和建设中的应用9. 地震学在灾后救援和重建中的应用三、教学方法1. 理论授课:通过教师讲解、PPT展示等方式,向学生传授地震学理论知识。
2. 实地考察:组织学生参观地震监测站、地质调查点等,了解实际应用情况。
3. 讨论和案例分析:引导学生针对真实地震事件展开讨论,分析地震预警和防治策略。
4. 课堂练习和考核:布置作业、小测验等形式,检验学生对地震学知识的掌握情况。
四、教学评估1. 课堂表现:包括课堂积极参与、作业完成情况等。
2. 考试成绩:定期进行地震学知识测试,评估学生掌握情况。
3. 实践能力:通过案例分析、实地考察等方式,评估学生解决实际问题的能力。
五、教学资源1. 教材:选用《地震学导论》等教材。
2. 多媒体教学设备:提供PPT、视频素材等教学辅助工具。
3. 实地考察安排:协调地震监测站、地质勘探单位等,提供实地考察机会。
六、教学安排1. 课程设置:安排理论课、实验课、实地考察等环节。
2. 时间安排:每周2-3节课,共计36学时。
3. 教学进度:根据具体内容难易程度,合理安排每次课程的授课重点。
七、教学环节1. 第一阶段:地震基础知识概述2. 第二阶段:地震波传播与监测3. 第三阶段:地震动力学原理4. 第四阶段:地震预测与预警5. 第五阶段:地震灾害防治与应对八、教学效果检测1. 学生学习兴趣:通过课程反馈、评教等方式,了解学生对地震学的兴趣和理解程度。
2. 学习成绩提升:对比学生学习前后的地震学知识掌握情况,评估教学效果。
地震概论第三章地震波

4170 9.53
5155 10.33 10.89
6371 11.17
4.2 2.9 4.6 3.34
1200 983 400-1000
1900 984
1100
4.36 3.42 3300 984
4.5 3.6 6800 989 5.42 4.64 18500 995
1200 1900
2、地震波在地球内部的传播
地核的发现者——奥尔德姆(1858~1936年)
地球内核的发现
地
球1
内8
核8
的 发 现
8 ~
者1
9
英9
格· 3 莱年
曼
英格·莱曼的论文中引用的两幅俄国地震台记录的新西兰 1929年6月16日 地震图(a)和穿过简单3层地球模型的
简化的波的路径(b)
地球内部圈层结构及各圈层的主要地球物理数据
7.23 5.56 135200 1069
0 9.98 0 11.42 252000 760
0 12.25 328100 427
3.46
3.50 12.51 361700
0
3700 4300 4500
岩石圈(固态)
软流圈(部分熔融) (固 态)
(液态地核) 固-液态过渡带
固态地核
奥尔德姆绘制的P波和S波走时曲线
远震: 震中距1000公里以上
1、地震波在介质界面上
2、地震波在地球内部的传播
地 球 的 结 构 及 波 的
传 播
地地 震下 图核年 上试 的验月 记在 录蒙日 曲大在 线 拿内
州华 达 进 行 的 代 号 为 “ 无 暇 ” 的
1968 1 19
地震波理论

地震波理论读书报告通过课程的学习以及自己课外的一些读书认识和实习经验,对地震波理论有了一个初步的认识。
一:地震波的基本概念1.地震波是在岩石中传播的弹性波。
2.波前:介质中某一时刻刚刚开始震动的点组成的一个面,叫波前。
3.波面:介质中某时刻同时开始震动的点组成的面,叫做波面。
4.波后:介质中某时刻刚刚开始震动结束的点组成的面,叫波后。
5.波线:在特定条件下,可以认为波及其能量是沿着一条路径传播的,然后又沿着那条路径向外传播,这样的理想路径叫做波线。
6.震动曲线:震动中某一质点在不同时刻的情况描述图一震动曲线7.波形曲线:将同一时刻各点的震动情况画在同一个图上,来反映各点震动之间的关系图二波形曲线不同的质点可能有不同的震动曲线,不同的时刻有不同的波形曲线,在地震勘探中通常把沿着测线画出来的波形曲线叫做“波刨面”。
8.正弦波:各点的震动都是谐震动。
对于正弦波各部分震动频率等于波源频率,周期t和频率有固定值。
9.波长:在一个周期内波沿着波线传播的距离,在此处键入公式。
V=λf或λ=TV公式一图三10.视速度:不是沿着波传播方向来确定波速和波长时,所得的结果叫做波的视速度和波长时如图四A̅B′̅为沿着测线方向的视波长A̅B̅=λA̅B′̅=λa公式二波沿着测线方向传播速度:V a=λaT有:V=λT =>V a=Vsin(θ)公式三二:地震波的传播规律1.反射和透射:图五波的传播波阻抗:第一种介质ρ1V1第二种介质ρ2V2当两种介质的波阻抗不等时才会发生反射。
2.反射定律和透射定律:入射面:入射线和法线所确定的平面垂直分界面。
反射定律:反射性位于入射面内,反射角等于入射角图六透射定律:透射线也位于入射面内,公式四图七全反射:图八开始出现全反射时的入射角叫------临界角。
3.斯奈儿定律:图九对于水平层装介质,各层的纵波横波速度分别用Vρ1,V s1,Vρi,V si则:sin(θp1)Vρ1=sin(θs1)V s1=……=sin(θp i)V pi=sin(θs i)V si=p 公式五4.费马原理:图十波在介质中传播满足时间最短条件。
地震正演课程设计

地震正演课程设计一、课程目标知识目标:1. 让学生了解地震波的传播原理,掌握正演模拟的基本概念。
2. 使学生理解地震正演在地质勘探和地震预测中的应用,了解相关技术发展。
3. 帮助学生掌握地震正演模拟的基本步骤,了解影响正演结果的各种因素。
技能目标:1. 培养学生运用地震正演模拟方法分析地质结构的能力。
2. 提高学生运用地震正演软件进行数据处理和分析的技能。
3. 培养学生通过团队合作,解决实际地震正演问题的能力。
情感态度价值观目标:1. 培养学生对地球科学研究的兴趣,激发探索自然现象的热情。
2. 增强学生的环境保护意识,认识到地震预测和防范的重要性。
3. 培养学生尊重科学、严谨求实的态度,树立正确的价值观。
本课程针对高年级学生,结合地震学原理和实际应用,注重培养学生的理论知识和实践技能。
课程目标旨在帮助学生深入理解地震正演技术,提高解决实际问题的能力,同时培养学生的科学素养和责任感。
在教学过程中,教师需关注学生的个体差异,因材施教,确保课程目标的实现。
通过本课程的学习,学生将具备地震正演模拟的基本能力,为地质勘探和地震预测工作打下坚实基础。
二、教学内容本章节教学内容主要包括以下三个方面:1. 地震波传播原理:介绍地震波的类型、传播速度、反射折射现象等基本概念,重点讲解地震波在地下介质中的传播规律。
教学内容:地震波分类、传播速度、反射折射定律、折射率、反射系数等。
2. 地震正演模拟方法:讲解正演模拟的基本原理,介绍常见的正演方法及其优缺点。
教学内容:正演模拟原理、射线理论正演、波动方程正演、有限差分法、有限元法、边界元法等。
3. 地震正演应用与案例分析:分析地震正演在地质勘探和地震预测中的应用,结合实际案例,让学生了解正演技术在解决实际问题中的具体运用。
教学内容:正演在地质勘探中的应用、正演在地震预测中的应用、国内外典型地震正演案例分析。
教学安排与进度:1. 第一周:地震波传播原理2. 第二周:地震正演模拟方法3. 第三周:地震正演应用与案例分析教材章节:《地震勘探原理》第三章 地震波传播理论,第四章 地震正演模拟,第五章 地震数据处理与应用。
地震波及其传播

柱面波,在一定条件下,地震勘探中往往认为波面为平 面。
波前以外的质点还没有开始振动, 波尾以内的质点已经停止振动,只有 波前与波尾之间的质点正处于不同强 度的振动状态,这个区间称为振动带。
波从一点传播到另一点的路径叫 做射线(波线)。
周期振动的频谱
一个复杂的周期振动可以分解为若干个不同频率 与振幅的振动,并且这种关系是唯一的。
一般用振幅谱和相位谱可以表示一个复杂的周期 振动。振幅谱表示分振动的振幅与频率的关系,记为 A(ω),相位谱表示分振动的相位与频率的关系,记 为φ(ω),只有同时应用振幅谱和相位谱,才能确定 已知的周期振动。
地震波是一种非周期振动。
u t
非周期振动图
A f
频谱图Biblioteka 地震波的频谱4)波前和射线
某一时刻空间所有 刚刚开始振动的点构成 的曲面,称为该时刻的 波前(波阵面)。
所有刚刚停止振动 的点构成的曲面,称为 该时刻的波尾(波后)。
s2
s1
v 震源 0
v1 v2
波面—等相面:介质中所有同时开始振动的点连成的
波数:波长的倒数,k 传播速度:v
v f f
A
λ
T
k
x
u( x)
u( x)
x
t2时刻波剖面
t1时刻波剖面
x
地面
振动是一点的运动,波动是振动的传播,即介质整体 的运动。 振动传播的速度为波速,与质点本身运动的速度无关。 波速有限是波动的必要条件。 波动伴随能量传播。 频率、周期、振幅、波长、速度、视速度、视波长
射线和波前是互相垂直的。
与物理学中的几何光学相类似,地震波的运动学是研究 地震波波前的空间位置与其传播时间的关系,采用波前、 射线等几何图形来描述波的运动过程和规律(如反射定律、 透射定律、斯奈尔定律、费马原理、惠更斯原理等),因 此称作几何地震学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
界面R上,因为波前与射线垂直,则波前面和界面R的夹角等于
α。设波前A´B´在t 时刻到达了分界面R上的A´点,按惠更斯原 理,A´点此时可以看成是一个新的点震源,由该点产生新的扰 动,向分界面两边的介质里传播。其中一部分扰动以V1速度在 W1介质中传播,另外一部分以V2速度在W2介质中传播。
第三章 地震波传播理论x) 1 dx V1
x h2 x2
1 V2
( L x) r 2 ( L x) 2
( L x) r 2 ( L x) 2
1 x 1 V1 h 2 x 2 V2
射线AOB的走时为:
t ( x) 1 1 h2 x2 r 2 ( L x) 2 V1 V2
地震学基础
(1) Fermat原理
A
inc
Snell定律
反射点 x 应使t达到最小值。即:
Fermat原理
B
ref
V1 V2
h
x
o
L x
r
L
dt( x) 1 x ( L x) 0 2 2 2 2 dx V1 h x r ( L x) x ( L x) h2 x2 r 2 ( L x) 2
1 t CB A C sin
' '
t s in ' AC 1
整理后:
1 t A D A C sin
' '
2 t A E A C sin
' '
第三章 地震波传播理论
t s in ' AC 1 t s in ' AC 2
高频近似:地震波的特征波长远小于所研究问题的 特征尺度。
注: 当高频近似条件不满足时,地震波的传播不能够用 Fermat定理来描述,必须严格求解原始的波动方程。
第三章 地震波传播理论
地震学基础
地震射线(Seismic Ray)
• 能量束,能量分布呈高斯分布(Gaussian Beam)
• 能量束的宽度(d)反比于频率(f):
据资料处理和定性定量解释的依据。下面就地震波
传播中有关的运动学和动力学中的定律定理介绍给 大家。
第三章 地震波传播理论
地震学基础
1、惠更斯原理
在均匀弹性介质中,点振源产生球面波向周围传播,当距 离r 趋向无穷大时,球面波前的半径很大,曲率很小,此时球 面波蜕变成了平面波。若已知某时刻 t 在同一时刻波前面上的
第三章 地震波传播理论
地震学基础
设震动由A点出发,沿途径s传播到B,传播速度是 v( x, y, z ) 所用的时间是t,则费马原理就是
ds t 0 A v
B
δ 是变分。根据这个原理,若A和B各在一个分界面的两边或 一边,就立刻得到斯涅耳的折射或反射定律。
第三章 地震波传播理论
地震学基础
地震学基础
sin sin sin 从上式中可得: 1 2 1
令上式等于P,则写成下式:
sin sin sin P v1 v1 v2
P为射线参数,沿不同方向入射的地震波,射线参数P都不相等。
第三章 地震波传播理论
地震学基础
上式反映在弹性分界面R上,入射波、透射波和反射波之间
地震学基础
第三章 地震波传播理论
第一节 地震波传播的基本概念 第二节 地震波传播的基本理论 第三节 体波各种震相和走时表
第三章 地震波传播理论
地震学基础
第一节 地震波传播的基本概念 一、地球介质和弹性波 • 地震波是地下传播的震动,必然与岩石 的弹性有关,一般都假定岩石是一种完全 弹性体。 • 在一般的地震波计算中,地球介质可以 做为各向同性的完全弹性体来对待。
地震学基础
第三章 地震波传播理论
地震学基础
第三章 地震波传播理论
地震学基础
经过Δt时间后,即在t+Δt 时刻平面波B´点旅行了r=V1· Δt
距离的路程,到达分界面R上的C点。在分界面 R上新的点震源A´ 点产生的子波以V2的速度在W2介质中传播。在t+Δt时刻的波前, 是以A´点为园心以 r=V2· Δt 的路程为半径园弧。过C点分别作两 个圆弧的切线,分别交于D和E点。则 CD和CE就是,当波前A`B`经
V1
inc
ref
V1
V2
sin( inc ) sin( ref ) sin( t ) V1 V1 V2
t
透射波 (Transmitted Wave)
Snell定律:
第三章 地震波传播理论
sin( inc ) sin( ref ) sin( t ) V1 V1 V2
费尔马原理 (Fermat’s Principle)
光学中的Fermat定理:
“光在介质中传播的路径为走时(traveltime)最小的路径”
地震学中的Fermat定理:
地震波在介质中传播的路径为走时最小的路
径.
第三章 地震波传播理论
地震学基础
地震学中的Fermat定理不是永远成立, 是高频情况下地震波波动方程的渐近解。 Fermat定理是地震波的高频近似解。
在均匀层状介质中,地震波沿满足斯涅尔定律的射线方向传播
所用旅行时间才能最少短。
第三章 地震波传播理论
地震学基础
射线理论
在研究问题的尺度远大于地震波波长的情况下,可将地 震波传播当作射线来处理,从而使复杂的波动问题简化成为 射线问题。地震射线问题这和几何光学很相似。所谓地震射 线,就是地震波传播时,波阵面法线的轨迹,也即是震动由 一点传播到另一点所经过的途径。 射线地震学,也叫几何地震学,是波动地震学在波长很 短时的近似。它可以由波动地震学推演出来,但更直接的是 根据费马原理。这个原理说:当一个震动由介质中一点传播 到另一点时,它所经过的途径是使其传播时间为一稳定值(最 大、最小或拐点)。在一般的地震波计算中,地球介质可以做 为各向同性的完全弹性体来对待。
第三章 地震波传播理论
地震学基础
二、首波(或侧面波)
若介质是分层的,当地震波由低速的一方向高速的一方入 射时,还存在一种波,叫做侧面波(或叫首波、折射波、衍射波、 行走反射波,等等) 。 虽然首波的传播路径总是比直达波长,但是因为首波在分 界面上是以深层介质中的速度来传播的,因此超过一定临界距 离之后,首波就会比直达波率先到达台站。 P波和S波都会有相应的首波。
射线AOB的走时为:
1 t ( x) V1
h x
2
2
r 2 ( L x) 2
sin( inc ) sin( ref )
第三章 地震波传播理论
地震学基础
(2) Fermat原理
A
inc
Snell定律
Fermat原理
反射点 x 应使t大到最小值。即:
V1
h
x o
L L x
第三章 地震波传播理论
地震波传播的定律、定理
地震学基础
波动本身的描述常使用T、λ、γ、φ等物理量,但要描述 地震波在介质中的传播过程,还需要使用波前和波射线等念。 波动是质点振动状态在介质里的传播过程,振动是在外力 作用下质点离开平衡位置附近作来回往复运动,但振动是波动 产生的根源。在弹性介质中,各个质点是以弹性力互相联系着 的。某质点A受到外界扰动离开平衡位置时,周围的质点对A产 生的作用力,使A回到平衡位置,并在平衡位置附近振动,同时 A点周围的质点也受到A的作用力,离开各自的平衡位置振动起
当 f 时, d 0 能量束成为“线”(射线)
1 d f
d
第三章 地震波传播理论
地震学基础
非均匀介质中的地震射线
射线(Ray)
第三章 地震波传播理论
地震学基础
Fermat原理在地震学中的应用
Snell定律
入射波 (Incident Wave)
ref
反射波 (Reflected Wave)
永远是一系列垂直于波前面的直线。
费马原理是说地震波沿射线的旅行时间(传播)与沿其它任 何路径的旅行时间相比为最小。即波总是沿所使用旅行时间最 少的路径传播,又叫费马最小原理和射线原理。
第三章 地震波传播理论
地震学基础
费马原理是从波射线的角度描述波的传播特点,在均匀介 质中,显然波射线应当是从震源发出的一系列直线。因为地震 波只有沿着这样的射线传播,路程最短,旅行时间才是最少。
sin( inc ) sin( t ) V1 V2
第三章 地震波传播理论
地震学基础
3、斯涅尔定律
和光波在非均匀介质中传播相同,当地震波遇到突变的弹 性分界面时,地震波也在分界面上发生反射透射和折射并可能 发生波类型的转变(分裂),可以用斯涅尔定律来说明。 如图所示,若在W1介质中有一平面波AB,以α角投射到分
第三章 地震波传播理论
地震学基础
三、地震波的吸收和衰减
将地球介质当作是完全弹性体是一种近似,实际上在波 动传播过程中,介质会吸收波动的能量转化为热能。 振幅随时间的衰减可用 A A0 e t 表示, 为衰减系数。 波传播 x距离后,因介质对能量的吸收而导致振幅的减 小,可用 A A0 e x 表示, 称为吸收系数。 表示能量消耗的另一个重要参数Q叫做品质因子,这是由 电路理论借用来的一个概念,定义 1 1 E Q 2 E
来。所以介质中一个质点的振动会引起临近质点的振动,周围
介质的振动又会引起较远质点一起振动,这样一来,振动就会 在弹性介质中由近及远的向各个方向传播,形成了波动。
第三章 地震波传播理论
地震学基础
传播定律定理: 用射线和波前来描述波的传播 位置和能量随时间变化的关系,这种关系是工程地 震勘察资料处理中的重要组成部分,是进行地震数