生活中的圆周运动
生活中的圆周运动

水不能通过最高点,实际上小桶还没有到达最高点时水 水不能通过最高点, 就已经流出来了。 就已经流出来了。
4。离心现象 。
绳栓着小球做圆周运动时, 绳栓着小球做圆周运动时,小球所需的向心力由 绳的弹力提供。向心力F=mω2r,如果 增大, 增大, 绳的弹力提供。向心力 ,如果ω增大 也增大, 增大到一定程度 绳会被拉断, 增大到一定程度, 则F也增大,F增大到一定程度,绳会被拉断, 也增大 致使F=0,向心力消失,小球将沿切线方向飞出 致使 ,向心力消失, 而远离圆心运动。 而远离圆心运动。 同样, F小于它做圆 同样,若F小于它做圆 周运动的所需的向心力, 周运动的所需的向心力, 即F<mω2r,小球也要 , 沿一条曲线运动, 沿一条曲线运动,而且 离圆心越来越远。 离圆心越来越远。
B
)
A、作匀速圆周运动的物体,在所受合外力突然消失时,将 、作匀速圆周运动的物体,在所受合外力突然消失时, 沿圆周半径方向离开圆心 B、作匀速圆周运动的物体,在所受合外力突然消失时, 、作匀速圆周运动的物体,在所受合外力突然消失时, 将沿圆周切线方向离开圆心 C、作匀速圆周运动的物体,它自己会产生一个向心力, 、作匀速圆周运动的物体,它自己会产生一个向心力, 维持其作圆周运动 D、作离心运动的物体,是因为受到离心力作用的缘故 、作离心运动的物体,
离心现象的本质: 离心现象的本质: 合外力不足以提供物体作圆周运动 所需要的向心力
பைடு நூலகம்
“供不应求” 供不应求” 供不应求
离心现象事例
在实际中,有一些利用离心运动的机械, 在实际中,有一些利用离心运动的机械,这些机械叫做离心机 离心机械的种类很多,应用也很广。例如,离心干燥( 械。离心机械的种类很多,应用也很广。例如,离心干燥(脱 离心分离器,离心水泵。 水)器,离心分离器,离心水泵。
1.8生活中的圆周运动

1.8 生活中的圆周运动一、车辆的转弯1.火车的弯道火车拐弯时做圆周运动,需要向心力,若内外轨一样高,则外轨需要对外侧车轮有弹力来提供向心力,而火车质量太大,需弹力极大,车轮对外轨的弹力也大,则铁轨和车轮极易受损。
因此,在修筑铁路时,常使外轨高于内轨,使火车转弯时的向心力由重力mg 和轨道的支持力F N 来提供,不产生弹力。
如图所示:2.火车转弯时的速度设内外轨间的距离为L ,内外轨的高度差为h ,火车转弯的半径为R ,火车转弯的规定速度为v 0,F 合=mgtanα≈mgsinα=mgh/L由牛二定律F=ma 得:F 合=F 向=m v 02/R∴ mgh/L= m v 02/R∴ LRgh v 0 (1)当火车以规定速度转弯时,合力F 等于向心力,这时轮缘于内外轨均无侧压力;(2)当火车转弯速度v > v 0时,外轨对轮有向内的侧压力;(3)当火车转弯速度v < v 0时,内轨对轮有向外的侧压力3.汽车的转弯汽车在水平路面上转弯时,受重力、支持力和路面的静摩擦力,此静摩擦力为汽车提供转弯的向心力。
注:公路转弯处也应设计成内地外高的倾斜路面,原理同铁路;二、拱形桥航天器中的宇航员受地球的引力(约等于重力mg )和飞船座舱对他的支持力F N ,二者的合力即宇航员绕地飞行的向心力,即F N =G-m v 2/R ,当v =gR 时,F N =0,航天员处于完全失重状态。
四、离心运动做匀速圆周运动的物体,在所受合力突然消失或者不足以提供所需的向心力的情况下,就会逐渐远离圆心,这种运动叫做离心运动。
离心运动的条件:F合<F向注:离心运动的物体做以沿抛出点切线方向的初速度做直线运动或抛体运动。
针对练习1.一辆汽车匀速通过半径为R的圆弧形拱形桥,关于汽车的受力情况,下列说法中正确的是()A. 汽车对路面的压力大小不变,总是等于汽车的重力B. 汽车对路面的压力大小不断发生变化,总是小于汽车所受的重力C. 汽车的牵引力不发生变化D. 汽车的牵引力逐渐变小2.下列关于离心现象的说法正确的是()A. 当物体所受的离心力大于向心力时产生离心现象B. 做匀速圆周运动的物体,当它所受一切力都突然消失时,它将做背离圆心的圆周运动C. 做匀速圆周运动的物体,当它所受一切力都突然消失时,它将沿切线做直线运动D. 做匀速圆周运动的物体,当它所受一切力都突然消失时,它将做曲线运动3.质量为m的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v,到达最低点时的速度变为24vgR ,则两位置处绳子所受的张力之差是()A. 6mgB. 5mgC. 4mgD.2mg4.水平转盘上放以小木块,当转速为60r/min时,木块离轴8cm,且恰好与转盘无相对运动,当转速增加到120r/min时,为保证木块相对转盘无滑动,则木块应放在离轴cm处。
生活中的圆周运动

小结: 小结:
汽车对桥面的压力 超重失重状态
最高点
v N = G− m < G r
2
最低点
v N = G+ m > G r
2
用模拟实验验证分析
注意观察指针的偏转大小
举一反三
一辆卡车在丘陵地匀速行驶, 一辆卡车在丘陵地匀速行驶,地形如 所示,由于轮胎太旧 由于轮胎太旧,途中爆 图6-8-5所示 由于轮胎太旧 途中爆 胎,爆胎可能性最大的地段应是 爆胎可能性最大的地段应是
• 【学生活动】设计火车弯道 • 学生分组讨论,提出可行性方案
【最佳方案】 最佳方案】
外轨略高于内轨
实际应用中的处理: 实际应用中的处理:外轨比内轨高
FN
F
G
θ
【方案剖析】 方案剖析】
FN
解析: 解析: F合 = Fn
2
F合
v ∴ mg tan α = m R
火车转弯规定临界速度: 火车转弯规定临界速度: 临界速度
7、
生活中的圆周运动
实例
一、铁路的弯道
思考: 思考:
• 在平直轨道上匀 速行驶的火车, 速行驶的火车, 火车受几个力作 用?这几个力的 关系如何? 关系如何?那火 车转弯时情况会 有何不同呢? 有何不同呢? • 火车转弯时是在 做圆周运动, 做圆周运动,那 么是什么力提供 向心力? 向心力?
车轮的构造
火车车轮有突出的轮缘
——内外轨道一样高 铁路的弯道 ——内外轨道一样高
v2 =m r
F = F向心力
N
.
G
F
外轨对轮缘的弹力提供向心力
靠这种办 法得到的向 心力缺点是 什么? 什么?如何 解决这一实 际问题? 际问题?
生活中的圆周运动

人圆周运动
一个人在夜里走路,他 的家在山谷的另一边。他离 开一个樵夫的小屋,朝着山 谷走去,夜里大雪纷飞,看 不清四周的道路。他一直按 着自己认为正确的方向前 行,但很快就不知不觉地偏离了原来的路线,结果 又回到了那个樵夫的小屋。但他没有气馁,再次出 发,结果还是一样。他四次都朝那同一个方向穿过 山谷,可每次他都回到原来的那个小屋,仿佛有什 么魔力牵引着他似的。
(2)如果物体的向心力突然消失,则物体 的速度方向不再改变,由于惯性物体会沿着 此方向(即切线方向)并按此时的速度大小 飞出。这时 FN 0 。
(3)如果提供的外力小于物体做匀速圆周 运动所需要的向心力,虽然物体的速度方向 还要改变,但速度方向变化较慢,因此物体 偏离原来的圆周做离心运动,其轨迹为圆周 2 F mr 和切线间的某条线。这时 。
在游乐场里, 坐过上车惊险又 有趣,当乘客头 朝下高速飞行乘 客为什么不会从 车上栽下来呢? 这是因为设 计师们按照圆周运动的知识对过山车的安 全性进行了精心的设计。
一、铁路的弯道
在平直轨道上匀速行驶的火车,所受的合力为 0,而火车转弯时实际在做圆周运动,是什么力提 供的向心力呢?火车转弯时有一个规定的行驶速 度,按此速度行驶最安全,那么,规定火车以多 大的速度行驶?
在所受合力突然消失,或者不足以提
供圆周运动所需的向心力的情况下,
就做逐渐远离圆心的运动。这种运动
叫做离心运动。
2.物体做离心运动的条件:
F 合 0或F合 mr
2
说明:离心现象的解释
(1)向心力的作用效果是改变物体的运动 方向,如果它们受到的合外力恰好等于物体 的向心力,物体就做匀速圆周运动,此 2 时 F合 mr 。
(4)离心力的性质是惯性的表
生活中的圆周运动

2.宇航员在围绕地球做匀速圆周运动的空间站中处于完全 失重状态,下列说法正确的是( AC )
A.宇航员仍受重力的作用
B.宇航员受力平衡 C.宇航员受的重力等于所需的向心力 D.宇航员不受重力的作用
3.一轻杆一端固定一个质量为M的小球,以另一端O为圆 心,使小球在竖直面内做圆周运动,以下说法正确的是 ( ACD ) A.小球过最高点时,杆所受的弹力可以等于零
逐渐远离圆心的运动,叫做离心运动。
2.离心运动的应用与防止 离 心 甩 干 离 心 抛 掷
离 心 脱 水
离 心 分 离
1.一辆汽车匀速通过半径为R的凸形路面,关于汽车的受 力情况,下列说法正确的是( BC )
A.汽车对路面的压力大小不变,总是等于汽车的重力
B.汽车对路面的压力大小不断发生变化,总是小于汽车所受 重力 C.汽车的牵引力不发生变化 D.汽车的牵引力逐渐变小
设计?
实际铁路弯道是倾斜的,外轨高于内轨。原因是如果弯 道是水平的,仅靠轨道挤压产生的弹力提供向心力容易 损坏车轮与轨道。所以采取倾斜路面,让重力和支持力
的合力提供部分向心力的方法。
FN
F
mg
例2.当火车提速后,如何对旧的铁路弯道进行改造?内外 轨的高度差h如何确定?
v0 2 m mg tan r
B.小球过最高点时的最小速率为 gR
C.小球过最高点时,杆所受的力可以等于零也可以是压 力和拉力 D.小球过最高点时,速率可以接近零
4. (2012·梁山高一检测)如图所示,杂技演员在表演 “水流星”, 用长为1.6m轻绳的一端,系一个总质量为
0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做
力条件是什么?
v2 2 必须有向心力作用 F m 或F m R或F mv R
生活中的圆周运动

v
gr 时,压力FN为零。处于
完全失重状态。
二、竖直面的圆周运动
完全失重
太空中的圆周运动
1、汽车静止在桥上与通过桥时的状态是否相同?
2、汽车过凹桥,在最低点时,车对凹桥的压力怎样?
v Fn FN G m r
v FN G m r
2
2
FN
v
G FN>G,即汽车对桥的压力大于其所受重力,处于超 重状态。
火车车轮结构
一、水平面的圆周运动 2、火车转弯:
问题:火车在水平轨道面上转弯,做圆周运动,所受力怎么样? 什么力充当向心力?
N
Fn N
一、水平面的圆周运动 2、火车转弯: 火车转弯 外轨略高于内轨
FN
F合
Fn F合
G
问题:若刚好合力提供向心力,此时最理想, 理想转弯速度 v=?
列车速度过快,造成翻车事故
力学是关于运动的科学,它的 任务是以完备而又简单的方式描述 自然界中发生的运动。
第五章
曲线运动
——基尔霍夫
8
生活中的圆周运动
生活中常见的圆周运动
一、水平面的圆周运动 1、汽车转弯:
f静
Fn f静
赛道的设计
FN
问题:若刚好合力提供 向心力,必须规定此时 的转弯速度 v ?
F合
G
一、水平面的圆周运动 2、火车转弯:
汽车过凸桥时,在最高点时,车对凸桥的压力又怎样?
v Fn G FN m r
v FN G m r
2
2
FNLeabharlann vGFN<G 即汽车对桥的压力小于其所受重力,处 于失重状态。
若汽车的运动速度变大,压力如何变化?
5.7生活中的圆周运动

v gR tan
总结:(1)当v gr 向心力由重力和绳的拉力共同提 供,小球做圆周运动能过最高点。
gr绳的拉力为0,只有重力提供向心力 ,(2)当v ,小球做圆周运动刚好能过最高点。
gr小球不能通过最高点,在到达最高点之 (3)当v 前要脱离圆周。
2.杆球模型
OHale Waihona Puke O 管道杆小球在轻杆的约束下在竖直平面内做匀速圆周运动,小球 质量为m,杆长为r, (1)在最低点时,对小球受力分析,向心力的来源是
平抛运 动!
2)当 v gr 时,汽车将脱离桥面,发生危险.
2.凹形桥
泸 定 桥
求汽车过凹形路段最低点时对路面的压力?
【解】G和N的合力提供汽车做圆周运动
的向心力,由牛顿第二定律得:
N
v2 N G m r
v2 N Gm G r
v
由于a竖直 向上,属超 重现象。
G
可见汽车的速度越大对桥的压力越大。
当v=v0时: 轮缘不受侧向压力 当v>v0时:
F弹 F弹
轮缘受到外轨向内的挤压力, 外轨易损坏。
当v<v0时:
轮缘受到内轨向外的挤压力, 内轨易损坏。
◆圆周运动(Circular motion)
生 活 中 的 圆 周 运 动
1.火车转弯
(1)内外轨高度相同时,转弯所需的向心力由 外轨对轮缘的侧压力 ___________________提供. (2)外轨高度高于内轨,火车按设计速度行驶时, 重力和弹力的合力 火车转弯所需的向心力由________________提供. 火车实际行驶速度大于设计速度时,其转弯所需的 重力、弹力的合力和外轨对轮缘的侧压力 向心力由_______________________________提供. (3)若两轨间距为L,外轨比内轨高h,轨道转弯半
生活中的圆周运动

生活中的圆周运动圆周运动是一种非常常见的运动形式,它在我们的日常生活中无时不在。
圆周运动是指物体在做一个圆形的运动,圆形的路径是被称为圆周,这个运动的性质和特点非常有趣,这篇文章将会围绕圆周运动展开,介绍一些我们日常生活中圆周运动的应用。
工业机器上的圆周运动做圆周运动的机器往往有一个能够旋转的部分,这个部分需要以稳定的速度旋转。
这种运动可以在工业机器上找到。
例如,汽车的发动机,它的活塞每一个上下运动就是一个圆周运动,而发动机的曲轴则完成了一个完整的圆周运动,从而将活塞的运动转换为转向轮的动力。
在机械工程中,圆锥齿轮和齿轮的设计常常涉及到圆周运动的速度和方向的控制。
在流水线工厂生产线上,各种机器的控制电机、伺服马达和开关也需要使用圆周运动来实现。
儿童乐园上的圆周运动在儿童乐园上,圆周运动也起到了非常大的作用。
这种运动是指将一个圆形结构转动起来,从而使小孩可以坐在圆形结构上摆动。
这种运动可以经常看到在露天游乐场上的旋转木马、回旋螺旋梯和旋转视角等游乐设施上。
圆周运动给人们带来的感觉是非常愉悦的,而且还能锻炼小孩的平衡感和协调能力。
运动员的圆周运动在许多体育项目中,运动员也需要以一定的速度、强度和频率进行圆周运动。
例如,田径运动员在跑步时会使用“弯道战术”,在圆形赛道的弯道处以稍微缓慢一些的速度跑,而在直道处以更快的速度跑,以此来实现最快的比赛成绩。
在手球、篮球和足球等室内外运动项目中,运动员经常需要在场地上绕圆形的轨道移动,跳跃和弯曲,从而打出配合和进攻的配合。
天文学中的圆周运动圆周运动在天文学中也扮演着非常重要的角色。
例如,地球在绕着太阳运动时,它的轨道就是一个圆周,绕着自己的轴旋转一周所需要的时间也是固定的。
太阳系中其他星球的运动轨迹也是类似的。
这些圆周运动的规律性对于天文学家来说非常重要,因为它能够帮助他们了解星球和行星的轨迹、运动速度和方向,这些都是研究天文学的重要基础。
总的来说,圆周运动是我们日常生活中非常常见的运动形式,它不仅存在于机械工程、儿童乐园和体育运动中,还存在于天文学研究中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
υ2 Ffmax<m r
υ
Ff
汽车
② 高速转动的砂轮、飞轮等
高速转动的砂轮、飞轮等,都不得超过允许的最大转速,如果转 速过高,砂轮、飞轮内部分子间的作用力不足以提供所需的向心力 时,离心运动会便它们破裂,甚至酿成事故。为了防止事故的发生, 通常还要在砂轮和飞轮的外侧加装一个防护罩。
关于制作"棉花"糖的原理
1.不要求对离心运动进行定量计算。 说 2.不要求对火车转弯有侧力情况下通过列方程进行定量计算。 明 3.不要求分析与计算两个物体联结在一起做圆周运动时的问题 。
生活中的圆 周运动
向心力公式的理解
提供物体做匀 速圆周运动的 力(受力分析)
v2 m r 2 F合 = m r 2 2 r m T
②链球运动
在田径比赛中,链球项目就是得用 离心现象来实现投掷的。链球的投掷 是通过预摆和旋转来完成的,运动员 手持链球链条的一端,在链球高速旋 转时,突然松手,拉力消失,链就沿切线 方向飞出去。
③离心干燥器 把湿布块放在离心干燥器的金属网笼里,网笼转得比 较慢时,水滴跟物体的附着力 F足以提供所需要的向心力, 使水滴做圆周运动,当网笼转的比较快时,附着力 F 不足 以提供所需要的向心力,于是水滴做离心运动,穿过网孔, 飞到网笼外面。洗衣机的脱水筒也是利用离心运动把湿 衣服甩干的。
转弯处的路面 内低外高!
FN
Ff
G
FN
v gR
mg
Ff
O
由此可见:当汽车以沿圆盘转弯时,存在一 个安全通过的最大速度,如果超过了这个速 度,汽车将发生侧滑现象。
改进措施: (1)增大圆盘半径 (2)增加路面的粗糙程度 (3)增加路面高度差——外高内低 (4)最重要的一点:司机应该减速慢行!
实例研究——火车转弯
火车以半径R= 300m在水平轨道上转弯,火车质量 为8×105kg,速度为30m/s。铁轨与轮之间的动摩 擦因数μ=0.25。
FN
Ff 设向心力由轨道指向圆心的静摩擦 2 力提供 v
O
Ff m "供需"不平衡,如何解决 ? R
代入数据可得:Ff=2.4×106N
但轨道提供的静摩擦力最大值:
mg
2
G
v FN G m r
2
FN
FN = G
G
飞车走壁
摩托车飞车走壁, 请分析受力情况, F 解释现象。
N
F
mg
过 山 车
思考:过山车为什么在最高点也不会掉下来?
理论研究
① 绳和内轨模型
v2 当FN=0时,mg m r
v2 最高点:FN mg m r
v
FN mg
v临= gr vmin
v 解:由mg m 可知: r 此时: v gr 9.8 64001000m / s 7.9km / s
2
第一宇 宙速度
你见过凹形桥吗?
泸 定 桥
拓展:质量为m的汽车以恒定的速率v通过半 径为r的凹形桥面,如图所示,求汽车在最低点 时对桥面的压力是多大?
解:汽车通过底部时,受力如图:
θ 离心 向心
F
若火车车轮无轮缘,火车速度 过大或过小时将向哪侧运动? 过大时:火车向外侧运动
mg
内侧
过小时:火车向内侧运动
"供需"不平衡
列车速度过快,造成翻车事故
实例研究——汽车过桥
1、汽车过拱桥
质量为m 的汽车以恒定的速率v通过半径为 r的拱桥,如图所示,求汽车在桥顶时对路面 的压力是多大?
FN
由牛顿第二定律: 2 2F v v G FN mg m FN mg m r 2 r v 由牛顿第三定律: FN FN mg m 超重 r 当汽车通过桥最低点时的速度逐渐增大时 FN和FN′怎样变化?
Ff
比较三种桥面受力的情况
FN
G FN
v G FN m r
2
mg
当汽车转弯的半径一定时,汽车的速度v越大,所需 的向心力也越大,静摩擦力也越大,当静摩擦力为 最大静摩擦力时:
v Fn m g m v gR R
2
某司机驾车在丽龙高速出口,通过水平转盘时出 了车祸。讨论其原因,交通部门有责任么?如果你 是公路的设计师,请提出你的道路改进措施?
v2 r v2 r
随着v的增大而增大,
但提供向心力的合力为静摩擦力 Ff ≤ Ffmax 当Ffmax < m 时,产生离心现象。
2、合外力与向心力的关系
做匀速圆周运动的物体,由于惯性总有沿切线方向飞 去的倾向,在合外力突然消失或者不足以提供圆周运动所 需的向心力的情况下,做逐渐远离圆心的离心运动;当合 外力大于物体做圆周运动所需的向心力时,物体做离圆心 越来越近的向心运动;只有当合外力等于所需的向心力时, 物体才可能做匀速圆周运动。
mg FN2O
A
实例研究——失重现象
航天员在航天器中绕 地球做匀速圆周运动 时,航天只受地球引力, 引力为他提供了绕地 球做匀速圆周运动所 需的向心力F引=mv2/R, 所以处于失重状态。
mg=
2 mv /R
1/2 由此可以得出v=中 的宇航员,除了地球引力外,还可能受到飞 船座舱对他的支持力FN。
FN
F
h
2
θ
mg
lv h 由几何关系得: sin h =0.14m l Rg
研究与讨论
若火车速度与设计速度不同会怎样?
需要轮缘提供额外的弹力满足向 2 v 心力的需求 2 F + F m v 过大时: N r F m 外侧轨道与轮之间有弹力 2
FN
v r m F -FN 过小时: r 外侧 内侧轨道与轮之间有弹力
"供""需"是否平衡决定物体做何种运动
F拉>mω2r F拉=0 F拉 <mω2r
o
F拉=mω r
2
3、离心运动的应用和防止
(1)离心运动的应用 ①甩干雨伞上的水滴
在雨天,我们可以通过旋转雨伞 的方法甩干雨伞上的水滴,旋转时,当 转动快到一定的程度时,水滴和雨伞之 间的附着力满足不了水滴做圆周运动 所需的向心力,水滴就会做远离圆心的 运动而被甩出去。
第八节 生活中的圆周运动
基 本 要 求 发 展 要 求 1.能定性分析火车外轨比内轨高的原因。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题 。 3.知道航天器中的失重现象的本质。 4.知道离心运动及其产生条件,了解离心运动的应用和防止。 1.知道牛顿第二定律是分析生活中圆周运动的基本规律。 2.进一步领会力与惯性对物体运动状态变化所起的作用。 3.逐步养成用物理知识分析生活和生产实际问题的习惯。
若在近轨道绕地球做匀速圆周运动:
由
m g-F N m
v
2
当 v = gr 时,座舱对他的支持力FN=0,航天员处 于完全失重状态?
其实对于任何一个按惯性飞行(只受重力作用)的飞 行器或容器,其中的所有物体都处于完全失重状态。
r
得
FN mg m
v
2
r
实例研究——离心现象
1、观察与思考 观察实验现象回答下列问题 (1)木块为什么会离开转盘? (2)什么叫做离心运动? 做匀速圆周运动的物体,在一定条件下,做逐渐远离圆心的 运动,这种运动叫离心运动。 原因:物所需的向心力 m
物体做圆周 运动所需 要的向心力
当"供""需"平衡时,物体 做圆周运动。
解: 先求出杆的弹力为0的速率v0
mg=mv02/l v02=gl=5 v0=2.25 m/s
(1) v1=1m/s< v0 球应受到内壁向上 的支持力N1,受力如图示:
FN1 m A mg O
mg-FN1=mv12/l
得: FN1 =1.6 N
(2) v2=4m/s > v0 球应受到外壁向下的支持力N2 如图所示: m 则 mg+ FN2 =mv22/l 得 FN2 =4.4 N 由牛顿第三定律,球对管壁的作用力分别 为:(1)对内壁1.6N向下的压力;(2)对外壁 4.4N向上的压力。
它的内筒与洗衣机的脱 水筒相似,里面加入白砂糖, 加热使糖熔化成糖汁。内 筒高速旋转,黏稠的糖汁就 做离心运动,从内筒壁的小 孔飞散出去,成为丝状,到达 温度较低的外筒时,迅速冷 却凝固,变得纤细雪白,像一 团团棉花。
求解圆周运动问题的思路
(1)根据题意,确定物体做圆周运动 的平面、半径和圆心; (2)对物体进行受理分析,找出向心 力; F -F =F
指向圆心 背离圆心 向心
(3)根据牛顿运动定律,列出运动方 2 2 程。 v 2 2
F指向圆心 -F背离圆心 =F向心 =m
或m r或m r r T
提供物体做圆 周运动的向心 力(受力分析)
v2 m r 2 F合 m r 2 m 2 r T
物体做匀速 圆周运动所 需的力
"供需"平衡 物体做匀速圆周运动
从"供""需"两方面研究做圆周运动的物体
实例研究——汽车转弯
汽车在水平地面上转弯是什么 力提供向心力的呢?
FN Ff
O
mg
汽车在水平路面上转弯所 需要的向心力来源:汽车侧 向所受的静摩擦力。
FN Ff
O
v 即:Fn Ff m R
当速度v < gr 时, 杆儿对小球是支持力;
v FN m g m r
2
2
当速度v = gr 时, 杆儿对小球无作用力。
v m g FN m r
FN=0
杆既可 以提供 拉力,也 可以提 供支持 力。