生活中的圆周运动专项练习
最新物理生活中的圆周运动练习题20篇

(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。
【答案】(1) (2)
【解析】
【详解】
(1)在最低点,由向心力公式得:
解得:
(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。
(1)若h=0,求小球在B点的速度大小;
(2)若h=0.8m,求小球落点到C点的距离;(结果可用根式表示)
(3)若在斜面中点竖直立一挡板,使得无论h为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度 为多少?
【答案】(1) (2) (3)1.25m
【解析】
【分析】
【详解】
(1)从释放小球至A点根据速度与位移关系有
(1)小物块从 点出发时对管道的作用力;
(2)小物块第一次经过 点时的速度大小;
(3)小物块在直管道 上经过的总路程。
【答案】(1)106N,方向向下(2)4 m/s(3) m
【解析】
【详解】
(1)物块在C1点做圆周运动,由牛顿第二定律有:
可得:
由牛顿第三定律可知,小物块对管道的作用力大小为106N,方向向下
2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着 、 两个物块,转盘中心 处固定一力传感器,它们之间用细线连接.已知 两组线长均为 .细线能承受的最大拉力均为 . 与转盘间的动摩擦因数为 , 与转盘间的动摩擦因数为 ,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数 , 取 .求:
高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J (3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
生活中的圆周运动练习全集含解析

生活中的圆周运动练习全集含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】 【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则水平方向上有: 竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。
64生活中的圆周运动训练题(Word版含答案)

6.4生活中的圆周运动 精选训练题一、选择题1.当汽车驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应() A .增大速度通过桥顶 B .以尽可能小的速度通过桥顶 C .和通过桥顶的速度无关D .使通过桥顶的向加速度尽可能小2.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( ) A .是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的 B .是由于赛车行驶到弯道时,没有及时加速造成的 C .是由于赛车行驶到弯道时,没有及时减速造成的 D .是由于在弯道处汽车受到的摩擦力比在直道上小造成的3.一汽车通过拱形桥顶点时速度为10m/s ,车对桥顶的压力为车重的34,如果要使汽车在桥顶对桥面没有压力,车速至少为( ) A .15m/sB .20m/sC .25m/sD .30m/s4.下列关于离心运动的叙述中不正确的是( ) A .离心运动是由于合力不足以提供向心力而引起的 B .离心运动的轨迹一定是直线C .洗衣机的脱水筒是利用离心运动把湿衣服甩干的D .汽车转弯时速度过大,会因离心运动造成交通事故5.通过阅读课本,几个同学对生活中的圆周运动的认识进行交流.甲说:“ 洗衣机甩干衣服的道理就是利用了水在高速旋转时会做离心运动.” 乙说:“ 火车转弯时,若行驶速度超过规定速度,则内轨与车轮会发生挤压.” 丙说:“ 汽车过凸形桥时要减速行驶,而过凹形桥时可以较大速度行驶.” 丁说:“ 我在游乐园里玩的吊椅转得越快,就会离转轴越远,这也是利用了离心现象.” 你认为正确的是( ) A .甲和乙B .乙和丙C .丙和丁D .甲和丁6.如图所示,汽车在炎热的夏天沿不平的曲面行驶,其中最不容易发生爆胎的点是(假定汽车运动速率a c v v =,b d v v =)( )A .a 点B .b 点C .c 点D .d 点7.如图所示,质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为( )A .mω2RB .242m g R ω-C .242m g R ω+D .不能确定8.铁道转弯处内、外铁轨间设计有高度差,可以使火车顺利转弯,下列说法中正确的是( )A .主要是为了减少车轮与铁轨间的摩擦B .主要是为了减少轮缘与铁轨间的挤压C .内轨应略高于外轨D .重力和支持力的合力为火车转弯提供了向心力9.2013年6月11日至26日,“神舟十号”飞船圆满完成了太空之行,期间还成功进行了人类历史上第二次太空授课,女航天员王亚平做了大量失重状态下的精美物理实验。
高考物理生活中的圆周运动专项训练100(附答案)含解析

高考物理生活中的圆周运动专项训练100(附答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
2.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M gR 1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t 2RgR g2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,22044(24)0.480.8M M R Ry v t v v gx gR x g gμμ⋅=--⋅=-==由图可得:y2=0.48-0.16x,所以,μ=0.160.8=0.2;(3)要使物体从某点出发后的运动过程中不会在N到M点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R或物体能通过M点;物体能到达的最大高度0<h≤R时,由动能定理可得:−μmgx−mgh=0−12mv02,所以,22122mv mgh v hxmg gμμμ--==,所以,3.5m≤x<4m;物体能通过M点时,由(1)可知v M≥gR=1m/s,由动能定理可得:−μmgx−2mgR=12mv M2−12mv02;所以22221124 222MMmv mv mgR v v gRxmg gμμ----==,所以,0≤x≤2.75m;【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.3.如图所示,A、B两球质量均为m,用一长为l的轻绳相连,A球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B球水平向右的初速度v0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l/2处.(忽略轻绳形变)求:(1)B球刚开始运动时,绳子对小球B的拉力大小T;(2)B球第一次到达最高点时,A球的速度大小v1;(3)从开始到B球第一次到达最高点的过程中,轻绳对B球做的功W.【答案】(1)mg+m2vl(2)212v glv-=3)24mgl mv-【解析】【详解】(1)B球刚开始运动时,A球静止,所以B球做圆周运动对B球:T-mg=m2 0 v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -4.如图所示,在竖直平面内有一“∞”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。
圆周运动——向心力专项练习

圆周运动——向心力专项练习一.选择题(共15小题)1.如图所示,旋转雨伞时,水珠会从伞的边缘沿切线方向飞出,这属于()A.扩散现象B.超重现象C.离心现象D.蒸发现象2.下列实例中和离心现象有关的是()A.汽车开进泥坑里轮胎打滑B.汽车通过圆形拱桥C.坐在直线行驶中的公共汽车内的乘客突然向前倾倒或向后倾倒D.洗衣机脱水桶停止工作时衣服紧贴在桶壁上3.下列有关生活中的圆周运动实例分析,其中说法正确的是()A.公路在通过小型水库泄洪闸的下游时,常常用修建凹形桥,也叫“过水路面”,汽车通过凹形桥的最低点时,车对桥的压力小于汽车的重力B.在铁路的转弯处,通常要求外轨比内轨高,目的是减轻轮缘与外轨的挤压C.杂技演员表演“水流星”,当“水流星”通过最高点时,处于完全失重状态,不受力的作用D.洗衣机脱水桶的脱水原理是:水滴受到的离心力大于它受到的向心力,从而沿切线方向甩出4.洗衣机的甩干筒在旋转时有衣服附在筒壁上,则此时()A.衣服受重力,筒壁的弹力和摩擦力,及离心力作用B.衣服随筒壁做圆周运动的向心力由筒壁的弹力和重力的合力提供C.筒壁对衣服的摩擦力随转速的增大而增大D.筒壁对衣服的弹力随着衣服含水量的减少而减少5.如图甲所示,一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F N,小球在最高点的速度大小为v,F N﹣v2图象如图乙所示.下列说法正确的是()A.当地的重力加速度大小为B.小球的质量为C.当v2=c时,杆对小球弹力方向向上D.若v2=2b,则杆对小球弹力大小为2a6.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R7.如图所示,水平转台上放着A、B、C三物,质量分别为2m、m、m,离转轴距离分别为R、R、2R,与转台动摩擦因数相同,转台旋转时,下列说法错误的是()A.若三物均未滑动,C物向心加速度最大B.若三物均未滑动,B物受摩擦力最小C.转速增加,C物比A物先滑动D.转速增加,A物比B物先滑动8.如图所示,用细线吊着一个小球,使小球在水平面内做匀速圆周运动,小球所受向心力是()A.小球的重力B.细绳对小球的拉力C.小球所受重力与拉力的合力D.以上说法都不正确9.如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是()A.f的方向总是指向圆心B.圆盘匀速转动时f=0C.在物体与轴O的距离一定的条件下,f跟圆盘转动的角速度成正比D.在转速一定的条件下,f跟物体到轴O的距离成正比10.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.2mg B.3mg C.2.5mg D.mg11.如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是()A.A球的角速度等于B球的角速度B.A球的线速度大于B球的线速度C.A球的运动周期小于B球的运动周期D.A球对筒壁的压力大于B球对筒壁的压力12.两个质量分别为2m和m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L,a、b之间用长为L的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是()A.a比b先达到最大静摩擦力B.a、b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为13.如图所示,摩天轮是日常生活中典型的匀速圆周运动实例,若将摩天轮箱体及其中乘客视作质点,则下列说法正确的是()A.某时刻所有乘客运动的线速度都相同B.某时刻所有乘客运动的加速度都相同C.某一乘客分别经过最高点和最低点时,所受的合外力大小相等D.某一乘客分别经过最高点和最低点时,受到箱体作用力大小相等14.“水流星”是在一根彩绳一端,系一只玻璃碗,内盛彩色水,演员甩绳舞弄,晶莹的玻璃碗飞快的旋转飞舞,在竖直面内做圆周运动,而碗中之水不洒点滴;下列说法正确的是()A.水流星到最高点时,水对碗底的压力一定为零B.水流星到最高点时,水流星的速度可以为零C.若水流星转动时能经过圆周最高点,则在最高点和最低点绳子对碗拉力之差随转动线速度增大而增大D.若水流星转动时能经过圆周最高点,则在最高点和最低点碗对水弹力之差与绳长无关15.如图所示,半径为R,内径很小的光滑半圆管道竖直放置,质量为m的小球以某一速度进入管内,小球通过最高点P时,对管壁的压力为0.5mg,则()A.小球从管口飞出时的速率一定为B.小球从管口飞出时的速率一定为C.小球落地点到P点的水平距离可能为RD.小球落地点到P点的水平距离可能为圆周运动——向心力专项练习参考答案与试题解析一.选择题(共15小题)1.(2016•怀化学业考试)如图所示,旋转雨伞时,水珠会从伞的边缘沿切线方向飞出,这属于()A.扩散现象B.超重现象C.离心现象D.蒸发现象【分析】当物体受到的合力的大小不足以提供物体所需要的向心力的大小时,物体就要远离圆心,此时物体做的就是离心运动.【解答】解:当旋转雨伞时,由向心力可知,所需要的向心力增加,由于提供向心力不足以所需要的向心力,从而远离圆心运动,故C正确,ABD错误;故选:C.【点评】合力大于需要的向心力时,物体要做向心运动,合力小于所需要的向心力时,物体就要远离圆心,做的就是离心运动.2.(2016•濠江区校级学业考试)下列实例中和离心现象有关的是()A.汽车开进泥坑里轮胎打滑B.汽车通过圆形拱桥C.坐在直线行驶中的公共汽车内的乘客突然向前倾倒或向后倾倒D.洗衣机脱水桶停止工作时衣服紧贴在桶壁上【分析】当物体受到的合力的大小不足以提供物体所需要的向心力的大小时,物体就要远离圆心,此时物体做的就是离心运动.【解答】解:A、汽车开进泥坑里轮胎打滑,是摩擦力不足,离心运动无关,故A错误;B、汽车通过圆形拱桥,并没有飞起,故不是离心运动,故B错误;C、坐在直线行驶中的公共汽车内的乘客突然向前倾倒或向后倾倒是惯性现象,故C错误;D、洗衣机脱水桶是利用离心原理工作的,故D正确;故选D.【点评】合力大于需要的向心力时,物体要做向心运动,合力小于所需要的向心力时,物体就要远离圆心,做的就是离心运动.3.(2016春•揭阳校级期末)下列有关生活中的圆周运动实例分析,其中说法正确的是()A.公路在通过小型水库泄洪闸的下游时,常常用修建凹形桥,也叫“过水路面”,汽车通过凹形桥的最低点时,车对桥的压力小于汽车的重力B.在铁路的转弯处,通常要求外轨比内轨高,目的是减轻轮缘与外轨的挤压C.杂技演员表演“水流星”,当“水流星”通过最高点时,处于完全失重状态,不受力的作用D.洗衣机脱水桶的脱水原理是:水滴受到的离心力大于它受到的向心力,从而沿切线方向甩出【分析】利用圆周运动的向心力分析过水路面、火车转弯、水流星和洗衣机脱水原理即可,如防止车轮边缘与铁轨间的摩擦,通常做成外轨略高于内轨,火车高速转弯时不使外轨受损,则拐弯所需要的向心力由支持力和重力的合力提供.【解答】解:A、汽车通过凹形桥最低点时,具有向上的加速度(向心加速度),超重,故对桥的压力大于重力,故A错误;B、当火车按规定速度转弯时,由重力和支持力的合力完全提供向心力,从而减轻轮缘对外轨的挤压,故B正确;C、演员表演“水流星”,当“水流星”通过最高点时,处于完全失重状态,仍然受重力的作用,故C错误;D、衣机脱水桶的脱水原理是:是水滴需要提供的向心力较大,力无法提供,所以做离心运动,从而沿切线方向甩出,故D错误.故选:B.【点评】本题是实际应用问题,考查应用物理知识分析处理实际问题的能力,本题与圆锥摆问题类似,基础是对物体进行受力分析4.(2015春•邵阳县校级月考)洗衣机的甩干筒在旋转时有衣服附在筒壁上,则此时()A.衣服受重力,筒壁的弹力和摩擦力,及离心力作用B.衣服随筒壁做圆周运动的向心力由筒壁的弹力和重力的合力提供C.筒壁对衣服的摩擦力随转速的增大而增大D.筒壁对衣服的弹力随着衣服含水量的减少而减少【分析】衣物附在筒壁上随筒一起做匀速圆周运动,衣物的重力与静摩擦力平衡,筒壁的弹力提供衣物的向心力,根据向心力公式分析筒壁的弹力随筒转速的变化情况.【解答】解:A、衣服受到重力、筒壁的弹力和静摩擦力作用.故A错误.B、衣服随筒壁做圆周运动的向心力是筒壁的弹力.故B错误.C、衣物附在筒壁上随筒一起做匀速圆周运动,衣物的重力与静摩擦力平衡,筒壁的弹力F提供衣物的向心力,得到F=mω2R=m(2πn)2R,可见.转速n增大时,弹力F也增大,而摩擦力不变.故C错误.D、如转速不变,筒壁对衣服的弹力随着衣服含水量的减少,则所需要的向心力减小,所以筒壁对衣服的弹力也减小.故D正确.故选:D.【点评】本题是生活中圆周运动问题,要学会应用物理知识分析实际问题.知道衣服做圆周运动向心力的来源,结合牛顿第二定律分析.5.(2017•崇川区校级学业考试)如图甲所示,一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F N,小球在最高点的速度大小为v,F N﹣v2图象如图乙所示.下列说法正确的是()A.当地的重力加速度大小为B.小球的质量为C.当v2=c时,杆对小球弹力方向向上D.若v2=2b,则杆对小球弹力大小为2a【分析】小球在竖直面内做圆周运动,小球的重力与杆的弹力的合力提供向心力,根据图象、应用向心力公式、牛顿第二定律分析答题.【解答】解:A、由图象知,当v2=0时,F=a,故有:F=mg=a,由图象知,当v2=b 时,F=0,杆对小球无弹力,此时重力提供小球做圆周运动的向心力,有:mg=m,得:g=,故A错误;B、由A分析知,当有a=时,得:m=,故B正确C、由图象可知,当v2=c时,有:0<F<a=mg,小球对杆的弹力方向向上,则杆对小球弹力方向向下,故C错误.D、由图象可知,当v2=2b时,由F合=m,故有:F+mg===2a,得:F=mg,故D错误故选:B.【点评】本题的关键要知道小球在最高点时由合力提供向心力,要掌握圆周运动向心力公式,要求同学们能根据图象获取有效信息.6.(2017•徐州学业考试)如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R【分析】小球在最高点受到重力,轨道对球的压力,两个力的合力提供向心力,根据向心力公式求出小球的速度,根据向心力公式求出加速度.根据动能定理求得高度差【解答】解:A、小球在最高点受到重力,轨道对球的压力,两个力的合力提供向心力,故A错误;C、在最高点,根据向心力公式得:mg+F=m,F=mg,联立解得:a n=2g,v=,故BC错误,D、从释放点到最高点,根据动能定理可知,解得h=R,故D正确.故选:D【点评】解决本题的关键知道在最高点,小球所受的合力提供向心力,受力分析时不能分析向心力,难度不大,属于基础题.7.(2017•南京学业考试)如图所示,水平转台上放着A、B、C三物,质量分别为2m、m、m,离转轴距离分别为R、R、2R,与转台动摩擦因数相同,转台旋转时,下列说法错误的是()A.若三物均未滑动,C物向心加速度最大B.若三物均未滑动,B物受摩擦力最小C.转速增加,C物比A物先滑动D.转速增加,A物比B物先滑动【分析】A、B、C三个物体放在匀速转动的水平转台上,随转台做匀速圆周运动,由静摩擦力提供向心力,根据牛顿第二定律分析物体受到的静摩擦力大小.当物体所受的静摩擦力达到最大值时开始滑动.根据产生离心运动的条件分析哪个物体先滑动.【解答】解:A、三物都未滑动时,角速度相同,根据向心加速度公式a=ω2r,知a∝r,故C的向心加速度最大.故A正确;B、三个物体的角速度相同,设角速度为ω,则三个物体受到的静摩擦力分别为:f A=2mω2R,f B=mω2R,f C=mω2•2R=2mω2R.所以物体B受到的摩擦力最小,故B正确;CD、物体恰好不滑动时,最大静摩擦力提供向心力,根据牛顿第二定律,有:μmg=mω2r解得:ω=∝故三个物体中,物体C的静摩擦力先达到最大值,最先滑动起来;AB同时滑动.故C正确,D错误.本题选择错误的是,故选:D.【点评】本题关键要抓住静摩擦力提供向心力,比较静摩擦力和向心加速度时要抓住三个物体的角速度相等进行比较.8.(2017•大连学业考试)如图所示,用细线吊着一个小球,使小球在水平面内做匀速圆周运动,小球所受向心力是()A.小球的重力B.细绳对小球的拉力C.小球所受重力与拉力的合力D.以上说法都不正确【分析】先对小球进行运动分析,做匀速圆周运动,再找出合力的方向,合力提供向心力,进一步对小球受力分析.【解答】解:小球在水平面内做匀速圆周运动,对小球受力分析,如图小球受重力、和绳子的拉力,靠两个力的合力提供向心力,故C正确故选:C【点评】向心力是效果力,匀速圆周运动中由合外力提供.注意向心力不是物体所受到的力.9.(2017•普陀区一模)如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是()A.f的方向总是指向圆心B.圆盘匀速转动时f=0C.在物体与轴O的距离一定的条件下,f跟圆盘转动的角速度成正比D.在转速一定的条件下,f跟物体到轴O的距离成正比【分析】木块P随圆盘一起绕过O点的竖直轴匀速转动,做匀速圆周运动,P受到的静摩擦力提供向心力,根据向心力公式研究静摩擦力方向,及大小与半径、角速度的关系.【解答】解:A、P放在水平圆盘上随圆盘一起转动,若圆盘匀速转动,P受到的静摩擦力f 提供向心力,沿PO方向指向圆心.若圆盘变速运动,f不指向圆心,故A错误.B、木块P随圆盘一起绕过O点的竖直轴匀速转动,做匀速圆周运动,P受到的静摩擦力提供向心力,P受到的静摩擦力不可能为零.故B错误.C、由f=mω2r得,在P点到O点的距离一定的条件下,P受到的静摩擦力的大小跟圆盘匀速转动的角速度的平方成正比.故C错误.D、根据向心力公式得到f=m(2πn)2r,转速n一定时,f与r成正比,即P受到的静摩擦力的大小跟P点到O点的距离成正比.故D正确.故选:D【点评】本题中由静摩擦力提供木块所需要的向心力,运用控制变量法研究f与其他量的关系.10.(2017•甘肃一模)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.2mg B.3mg C.2.5mg D.mg【分析】小球恰能过最高点的临界情况是重力提供向心力,根据牛顿第二定律求出最小速度,再根据动能定理求出最低点的速度,根据牛顿第二定律求出绳子的张力.【解答】解:小球恰好过最高点时有:mg=m解得:①根据动能定理得,mg•L=②由牛顿第二定律得:T﹣mg=m③联立①②③得,T=2mg故A正确,B、C、D错误.故选:A.【点评】本题综合运用了动能定理和牛顿第二定律,知道细线拉着小球在竖直面内做圆周运动,最高点和最低点靠竖直方向上的合力提供向心力.11.(2017•临渭区一模)如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是()A.A球的角速度等于B球的角速度B.A球的线速度大于B球的线速度C.A球的运动周期小于B球的运动周期D.A球对筒壁的压力大于B球对筒壁的压力【分析】分别对AB受力分析,可以发现它们都是重力和斜面的支持力的合力作为向心力,并且它们的质量相等,所以向心力的大小也相等,再根据线速度、加速度和周期的公式可以做出判断.【解答】解:A、如右图所示,小球A和B紧贴着内壁分别在水平面内做匀速圆周运动.由于A和B的质量相同,小球A和B在两处的合力相同,即它们做圆周运动时的向心力是相同的.根据F=mω2r可知,由于球A运动的半径大于B 球的半径,F和m相同时,半径大的角速度小,故A错误;B、再由向心力的计算公式F=m,由于球A运动的半径大于B球的半径,F和m相同时,半径大的线速度大,所以B正确.C、由周期公式T=,所以球A的运动周期大于球B的运动周期,故C错误.D、由A的分析可知,球A对筒壁的压力等于球B对筒壁的压力,所以D错误.故选:B.【点评】对物体受力分析是解题的关键,通过对AB的受力分析可以找到AB的内在的关系,它们的质量相同,向心力的大小也相同,本题能很好的考查学生分析问题的能力,是道好题.12.(2017•河北一模)两个质量分别为2m和m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L,a、b之间用长为L的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是()A.a比b先达到最大静摩擦力B.a、b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为【分析】木块随圆盘一起转动,静摩擦力提供向心力,而所需要的向心力大小由物体的质量、半径和角速度决定.当圆盘转速增大时,提供的静摩擦力随之而增大.当需要的向心力大于最大静摩擦力时,物体开始滑动.因此是否滑动与质量无关,是由半径大小决定.【解答】解:A、木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力f=mω2r,m、ω相等,f∝r,所以当圆盘的角速度增大时b的静摩擦力先达到最大值,故A错误;B、在B的摩擦力没有达到最大前,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力f=mω2r,a和b的质量分别是2m和m,而a与转轴OO′的距离为L,b与转轴的距离为2L,所以开始时a和b受到的摩擦力是相等的.当b受到的静摩擦力达到最大后,b受到的摩擦力与绳子的拉力的和提供向心力,即:kmg+F=mω2•2L…①而a的受力:f′﹣F=2mω2L…②联立得:f′=4mω2L﹣kmg…③可知二者受到的摩擦力不一定相等.故B错误;C、当b刚要滑动时,有2kmg+kmg=2mω2L+mω2•2L,解得:ω=,故C错误;D、当ω=时,a所受摩擦力的大小为:=.故D正确.故选:D【点评】本题的关键是正确分析木块的受力,明确木块做圆周运动时,静摩擦力提供向心力,把握住临界条件:静摩擦力达到最大,由牛顿第二定律分析解答.13.(2017•浙江模拟)如图所示,摩天轮是日常生活中典型的匀速圆周运动实例,若将摩天轮箱体及其中乘客视作质点,则下列说法正确的是()A.某时刻所有乘客运动的线速度都相同B.某时刻所有乘客运动的加速度都相同C.某一乘客分别经过最高点和最低点时,所受的合外力大小相等D.某一乘客分别经过最高点和最低点时,受到箱体作用力大小相等【分析】线速度、加速度、向心力、角速度都是矢量,据此可判断AB选项,在匀速圆周运动中合外力提供向心力,根据向心力公式可解答CD选项.【解答】解:A、线速度是矢量,摩天轮做匀速圆周运动,线速度的方向时刻改变,每一时刻的线速度都不相同,故A选项错误;B、加速度是矢量,摩天轮做匀速圆周运动,加速度时刻在改变,故B选项错误;C、摩天轮做匀速圆周运动,合外力提供向心力,由知,R、V不变,向心力不变,合外力不变,故C选项正确;D、箱体所受作用力等于箱体对乘客的弹力,在最高点箱体所受弹力:,在最低点箱体所受弹力:.所以乘客分别经过最高点和最低点时,受到箱体作用力大小不相等,故D选项错误.故选:C.【点评】了解标量和矢量的区别,即矢量既有大小也有方向,标量只有大小没有方向,理清一对作用力和反作用力的关系,明确向心力的来源并正确受力分析是解答此题的关键.14.(2017•道里区校级一模)“水流星”是在一根彩绳一端,系一只玻璃碗,内盛彩色水,演员甩绳舞弄,晶莹的玻璃碗飞快的旋转飞舞,在竖直面内做圆周运动,而碗中之水不洒点滴;下列说法正确的是()A.水流星到最高点时,水对碗底的压力一定为零B.水流星到最高点时,水流星的速度可以为零C.若水流星转动时能经过圆周最高点,则在最高点和最低点绳子对碗拉力之差随转动线速度增大而增大D.若水流星转动时能经过圆周最高点,则在最高点和最低点碗对水弹力之差与绳长无关【分析】当在最高点水对桶底无压力时,根据牛顿第二定律求出临界的最小速度,最小速度为;在最高点和最低点根据向心力公式求出最高点和最低点的绳子拉力,再根据动能定理得出最低点和最高点速度关系,即可求出拉力差.【解答】解:A、水流星到最高点时,水对碗底的压力大于或等于0,当时,水对碗底的压力为0;当时,水对碗底的压力大于0,故A错误;B、水流星在最高点的最小速度为,故B错误;CD、设最低点速度为,最高点速度为根据向心力公式,有:最低点:①最高点:②根据动能定理,有:③联立①②③得:△F=6mg,与绳长无关,故C错误,D正确;故选:D【点评】解决本题的关键搞清做圆周运动向心力的来源,运用牛顿第二定律进行求解.15.(2017•自贡模拟)如图所示,半径为R,内径很小的光滑半圆管道竖直放置,质量为m的小球以某一速度进入管内,小球通过最高点P时,对管壁的压力为0.5mg,则()A.小球从管口飞出时的速率一定为B.小球从管口飞出时的速率一定为C.小球落地点到P点的水平距离可能为RD.小球落地点到P点的水平距离可能为【分析】(1)对管壁的压力分为对上壁和下壁的压力两种情况,根据向心力公式即可求得小球从管口飞出时的速率;(2)小球从管口飞出后做平抛运动,根据平抛运动的基本规律即可求解.。
高中物理生活中的圆周运动试题(有答案和解析)含解析

高中物理生活中的圆周运动试题(有答案和解析)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =-解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.5.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.6.如图甲所示,粗糙水平面与竖直的光滑半圆环在N点相切,M为圈环的最高点,圆环半径为R=0.1m,现有一质量m=1kg的物体以v0=4m/s的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g=10m/s2,求:(1)物体能从M点飞出,落到水平面时落点到N点的距离的最小值X m(2)设出发点到N点的距离为S,物体从M点飞出后,落到水平面时落点到N点的距离为X,作出X2随S变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N到M点的中间离开半固轨道,求出发点到N点的距离S应满足的条件【答案】(1)0.2m;(2)0.2;(3)0≤x≤2.75m或3.5m≤x<4m.【解析】【分析】(1)由牛顿第二定律求得在M点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M点速度和x的关系,然后由平抛运动规律得到y和M点速度的关系,即可得到y和x的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解.【详解】(1)物体能从M点飞出,那么对物体在M点应用牛顿第二定律可得:mg≤2MmvR,所以,v M gR1m/s;物体能从M点飞出做平抛运动,故有:2R=12gt2,落到水平面时落点到N点的距离x=v M t2RgRg2R=0.2m;故落到水平面时落点到N点的距离的最小值为0.2m;(2)物体从出发点到M的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx−2mgR=12mv M2−12mv02;物体从M点落回水平面做平抛运动,故有:2R=12gt2,22044(24)0.480.8M M R Ryv t v v gx gR x g gμμ⋅=--⋅=-==; 由图可得:y 2=0.48-0.16x ,所以,μ=0.160.8=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−12mv 02, 所以,2200122mv mghv h x mg g μμμ--==,所以,3.5m≤x <4m ;物体能通过M 点时,由(1)可知v M ≥gR =1m /s , 由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 所以2222001124222M M mv mv mgRv v gR x mg gμμ----==, 所以,0≤x≤2.75m ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.7.如图所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑1/4圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时速度的大小为2 m /s ,离开B 点做平抛运动(g =10 m /s 2),求:(1)小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离; (2)小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.【答案】(1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 【解析】①.小球离开B 点后做平抛运动,212h gt =B x v t =解得:2m x =所以小球在CD 轨道上的落地点到C 的水平距离为2m ②.在圆弧轨道的最低点B ,设轨道对其支持力为N由牛二定律可知:2Bv N mg m R-=代入数据,解得3N N =故球到达B 点时对圆形轨道的压力为3N ③.由①可知,小球必然能落到斜面上根据斜面的特点可知,小球平抛运动落到斜面的过程中,其下落竖直位移和水平位移相等212B v t gt ⋅''=,解得:0.4s t '= 则它第一次落在斜面上的位置距B 点的距离为20.82m B S v t ='=.8.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)g rμ【解析】要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω= 而f =μN解得圆筒转动的角速度最小值为g rωμ=g rμ点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图,半径R =0.4m 的部分光滑圆轨道与水平面相切于B 点,且固定于竖直平面内.在水平面上距B 点s =5m 处的A 点放一质量m =3kg 的小物块,小物块与水平面间动摩擦因数为1=3μ.小物块在与水平面夹角θ=37o 斜向上的拉力F 的作用下由静止向B 点运动,运动到B 点撤去F ,小物块沿圆轨道上滑,且能到圆轨道最高点C .(g 取10m/s 2,sin37o =0.6,cos37o =0.8)求:(1)小物块在B 点的最小速度v B 大小;(2)在(1)情况下小物块在水平面上运动的加速度大小;(3)为使小物块能沿水平面运动并通过圆轨道C 点,则拉力F 的大小范围.【答案】(1)25/B v m s = (2)22/a m s = (3)1650N F N ≤≤(或1650N F N ≤<)【解析】【详解】(1) 小物块恰能到圆环最高点时,物块与轨道间无弹力.设最高点物块速度为v C ,则2C v mg m R= 解得:2C v gR =物块从B 到C 运动,只有重力做功,所以其机械能守恒:()2211222B C mv mv mg R =+ 解得:525m/s B v gR ==(2) 根据运动学规律22B v as =,解得222m/s 2B v a s== (3)小物块能沿水平面运动并通过圆轨道C 点,有两种临界情况:①在F 的作用下,小物块刚好过C 点:物块在水平面上做匀加速运动,对物块在水平面上受力分析如图:则Fcos N ma θμ-=Fsin N mg θ+=联立解得:16N mg ma F cos sin μθμθ+==+ ②在F 的作用下,小物块受水平地面的支持力恰好为零Fsin mg θ=, 解得:50N =F综上可知,拉力F 的范围为:16N 50N F ≤≤(或16N 50N F ≤<)。
高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的圆周运动专项练习主备人:审核人:高一物理备课组 2020年2月19日班级:高一()班姓名:座位号:组号【学习目标】1.知道向心力是圆周运动的物体半径方向的合力,不管是匀速圆周运动还是变速圆周运动。
2.通过日常生活中的常见例子,学会分析具体问题中的向心力来源。
3.能理解运用匀速圆周运动规律分析和处理生活中的具体实例。
【学习重点】能在实际情景中找出向心力是由哪些力提供,并利用公式进行求解【学习难点】具体问题中向心力的来源,对变速圆周运动的处理与分析【学习流程】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大以后,物体仍然随圆筒一起匀速转动而未滑动,则下列说法正确的是A.物体所受弹力增大,摩擦力也增大 B.物体所受弹力增大,摩擦力减小C.物体所受弹力和摩擦力都减小了 D.物体所受弹力增大,摩擦力不变问题1.物体与筒壁间动摩擦因素为μ,要使物体不掉下来,圆筒转动的角速度至少多大?练习1:(多选)如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的有A.线速度v A>v B B.运动周期T A>T BC.它们受到的摩擦力f A>f B D.筒壁对它们的弹力N A>N B例2:如图所示的圆锥摆中,质量为m的摆球在水平面作匀速圆周运动,线长L,细线与竖直方向夹角为θ,求:(1)线对球的拉力大小;(2)小球转动的线速度V和角速度ω;练习2:图为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m =40kg 的球通过长L=12.5m的轻绳悬于竖直面内的直角杆上,水平杆长L′=7.5m。
整个装置绕竖直杆转动,绳子与竖直方向成 角。
当θ=37°时,(g = 9.8m/s2,sin37°= 0.6,cos37°= 0.8)求:⑴绳子的拉力大小;⑵该装置转动的角速度。
θ练习3:(多选)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图所示,A运动的半径比B的大,则A.A所需的向心力比B的大 B.B所需的向心力比A的大C.A的角速度比B的大 D.A、B的角速度大小相等例3.(多选)一个内壁光滑的圆锥筒轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则A.球A的线速度大于球B的线速度B.球A的角速度小于B的角速度C.球A、B受到合外力大小相等D.球A对筒壁压力必定大于球B对筒壁的压力练习4:如图所示,一质量为m的小球正以角速度ω在内壁光滑的半球形碗内做水平面的匀速圆周运动,碗的半径为R,则小球做匀速圆周运动时离碗底的距离H是多少?练习5:如图所示,一根长为L=2.5 m的轻绳两端分别固定在一根竖直棒上的A、B两点,一个质量为m=0.6 kg的光滑小圆环C套在绳子上,当竖直棒以一定的角速度转动时,圆环C以B为圆心在水平面上做匀速圆周运动,(θ=37°,sin37°=0.6,cos37°=0.8,g=10 m/s2)求: (1)此时轻绳上的拉力大小等于多少?(2)竖直棒转动的角速度为多大?【反馈评学】1.(多选)上海磁悬浮线路的最大转弯处半径达到8000 m ,如图所示,近距离用肉眼看几乎是一条直线,而转弯处最小半径也达到1300 m ,一个质量为50kg 的乘客坐在以360 km/h 的不变速率行驶的车里,随车驶过半径为2500m 的弯道,下列说法正确的是A .乘客受到的向心力大小约为200NB .乘客受到的向心力大小约为539NC .乘客受到的向心力大小约为300ND .弯道半径设计特别大可以使乘客在转弯时更舒适 2.(多选)质量为m 的物体沿着半径为R 的半球形金属球壳滑到最低点时的速度大小为υ,如图所示,若物体与球壳之间的摩擦因数为μ,则物体在最低点时的A .向心加速度为υ2rB .向心力为m (g +υ2r )C .对球壳的压力为m υ2rD .受到的摩擦力为μm (g +υ2r)3.(单选)质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于 A .mg 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg4.(单选)如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算知该女运动员A .受到的拉力为3GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g5.(多选)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是A .小球通过最高点时的最小速度v min =()g R r +B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力6.(单选)图所示,把一个长为20 cm ,劲度系数为360 N/m 的弹簧一端固定,作为圆心,弹簧的另一端连接一个质量为0.50 kg 的小球,当小球以360πr/min 的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长应为A .5.2 cmB .5.3 cmC .5.0 cmD .5.4 cm7.洗衣机的甩干桶竖直放置。
桶的内径为20厘米,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为0.025,(最大静摩擦近似等于滑动摩擦)若不使衣物滑落下去,甩干桶的转速至少多大?8.如图所示,已知绳长为L=20cm,水平杆长L/=0.1m,小球质量m=0.3kg,整个装置可绕竖直轴转动,问:(1)要使绳子与竖直方向成45°角,试求该装置必须以多大的角速度转动才行?(2)此时绳子的张力多大?9.如图所示,底面半径为R的平底漏斗水平放置,质量为m的小球置于底面边缘紧靠侧壁,漏斗内表面光滑,侧壁的倾角为θ,重力加速度为g.现给小球一垂直于半径向里的某一初速度v0,使之在漏斗底面内做圆周运动,求:(1)v0多大时小球恰好对漏斗底面压力为零(2)v0大于(1)问中的速度球会出现什么现象;10.如图所示,OA为轻杆,与OZ轴成θ角,杆上套有一圆环,质量为m,可沿轻杆无摩擦地滑动,当轻杆绕OZ轴以角速度ω0旋转时,圆环在距O点为L处相对于杆静止,已知θ=30°,L=3m。
(1)指出圆环受哪几个力的作用,(2)求圆环所受的杆的支持力和向心力;(3)求角速度ω0的大小若用外力将OA杆与Oz轴的夹角θ变大或变小,则环会出现什么现象?如图所示,小球沿光滑的水平面冲上一个光滑的半圆形轨道,已知轨道的半径为R,小球到达轨道的最高点时对轨道的压力大小恰好等于小球的重力。
请求出:(1)小球到达轨道最高点时的速度为多大;(2)小球落地时距离A点多远;落地时速度多大?如图所示,一个人用一根长1 m、只能承受74 N拉力的绳子,拴着一个质量为1 kg的小球,在竖直平面内做圆周运动,已知圆心O离地面h=6 m.转动中小球在最低点时绳子恰好断了。
(取g=10 m/s2)求:(1)绳子断时小球运动的角速度;(2)绳断后,小球在空中的运动时间;(3)绳断后,小球落地点与抛出点间的水平距离。
如图所示,细绳一端系着质量m=0.1 kg的小物块A,置于光滑水平台面上;另一端通过光滑小孔O与质量M=0.5 kg的物块B相连,B静止于水平地面上.当A以O为圆心做半径r=0.2 m的匀速圆周运动时,地面对B的支持力F N=3.0 N,求物块A的速度和角速度的大小.(g=10 m/s2)如图水平圆盘以通过圆盘中心'AA转动,A、B两物块质量均为m,与水平圆盘的动摩擦因数均为μ,A放在盘心处,A、B之间用长为L的轻绳相连,开始盘静止,这时绳没有绷紧,无张力,ω缓慢的增加,A、B与盘始终相对静止,设最大静摩擦力等于滑动摩擦力,则:⑴ω等于多少时,绳开始出现拉力?⑶ω等于多少时,A、B开始相对盘滑动?如图所示,质量为1kg的小球用长为0.5m的细线悬挂在O点,O点距地面高度为1m.如果使小球绕OO′轴在水平面内做圆周运动,若细线受到拉力为12.5N时就会拉断,求:(1)当小球的角速度为多大时线将断裂?(2)小球落地点与悬点的水平距离(即落地点与O′点间的距离)。
(g取10m/s如图所示,内壁光滑的导管弯成圆周轨道竖直放置,其质量为2m,小球质量为m,在管内滚动,当小球运动到最高点时,导管刚好要离开地面,求此时:(1)管道对小球作用力的大小和方向;(2)小球的速度(轨道半径为R)。
1m变式2:如图所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。
A离轴心r1=20cm,B离轴心r2=30cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。
(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?如图所示,质量为0.5 kg的小杯里盛有1 kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为 1 m,小杯通过最高点的速度为4 m/s,g取10 m/s2,求:(1) 在最高点时,绳的拉力?(2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?如图所示,小球在外力作用下,由静止开始从A点出发做匀加速直线运动,到B点时撤去外力.然后,小球冲上竖直平面内半径为R的光滑半圆环,恰能维持在圆环上做圆周运动通过最高点C,到达最高点C后抛出,最后落回到原来的出发点A处.试求:(1)小球运动到C点时的速度;(2)A、B之间的距离.。