华师大版九年级数学上册一元二次方程 单元测试卷
华师大版九年级数学上册《一元二次方程》单元试卷检测练习及答案解析

华师大版九年级数学上册《一元二次方程》单元试卷检测练习及答案解析一、选择题1、下列方程中是一元一次方程的是( )A.B.C.D.2、若方程(m-1)x2+x-2=0是关于x的一元二次方程,则m的取值范围是()。
A.m = 0 B.m ≠ 1C.m ≥0且m ≠ 1 D.m 为任意实数3、下列方程是一元二次方程的一般形式的是()A.5x2-3x=0 B.3(x-2)2=27C.(x-1)2=16 D.x2+2x=84、下列方程中,两个实数根的和为4的是()A.x2-4x+5=0 B.x2+4x-l=0C.x2-8x+4=0 D.x2-4x-1=05、方程经过配方法化为的形式,正确的是A.B.C.D.6、方程x2=5x的根是().A.x1=0,x2=5 B.x1=0,x2=-5C.x=0 D.x=57、若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.7 B.-7 C.3 D.-38、若、是一元二次方程的两个根,则的值是()A.-1 B.0 C.1 D.29、某农家前年水蜜桃的亩产量为800千克,今年的亩产量为1200千克.假设从前年到今年水蜜桃亩产量的年平均增长率都为x,则可列方程()A.800(1+2x)=1200 B.800(1+x2)=1200C.800(1+x)2=1200 D.800(1+x)=120010、某商品计划以每件600元的均价对外销售,后来为加快资金周转,对价格经过两次下调后,决定以每件486元的均价销售.则平均每次下调的百分率是().A.30% B.20% C.15% D.10%二、填空题11、已知(a-1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3a+6>0的解集_______。
12、若关于的一元二次方程的一个根是0,则=_______________。
13、关于的方程的一个根是2 ,则_______ 。
14、已知(x2+y2+1)2=81,则x2+y2=________________。
最新华师大版2022年九年级上册《一元二次方程》单元测试题 (解析版)

《一元二次方程》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程的是()A.x2+2xy=1B.x2+x+1C.x2=4D.ax2+bx+c=0 2.方程2x2+4x﹣3=0的二次项系数、一次项系数、常数项分别是()A.2,﹣3,﹣4B.2,﹣4,﹣3C.2,﹣4,3D.2,4,﹣3 3.用配方法解一元二次方程x2﹣4x﹣9=0,可变形为()A.(x﹣2)2=9B.(x﹣2)2=13C.(x+2)2=9D.(x+2)2=134.如果关于x的方程x2﹣2x﹣k=0有实根.那么以下结论正确的是()A.k>lB.k=﹣1C.k≥﹣1D.k<﹣15.已知k为一元二次方程x2+7x﹣1=0的一个根,则2k2+14k+2016的值是()A.2016B.2017C.2018D.20196.用求根公式法解方程x2﹣2x﹣5=0的解是()A.x1=1+,x2=1﹣B.x1=2+,x2=2﹣C.x1=1+,x2=1﹣D.x1=2+,x2=2﹣7.方程=5﹣x的解是()A.x=3B.x=8C.x1=3,x2=8D.x1=3,x2=﹣8 8.设方程x2+x﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于()A.﹣3B.﹣1C.1D.39.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=93110.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5二.填空题(共6小题,满分24分,每小题4分)11.若关于x的方程+3x+5=0是一元二次方程,则a应满足.12.方程x2=2020x的解是.13.已知关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,则a=.14.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.15.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.16.关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0.其根的判别式的值为1,则该方程的根为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)(2x﹣5)2=9(2)x2﹣4x=96(3)x2﹣9x﹣8=0(4)3(x﹣2)2=x(x﹣2)18.(6分)今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10件,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?19.(7分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC 的长为5.(1)k为何值时,△ABC是等腰三角形?并求△ABC的周长.(2)k为何值时,△ABC是以BC为斜边的直角三角形?20.(7分)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.21.(8分)如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)两根,那么x1+x2=﹣,x1•x2=,这就是著名的韦达定理.已知m,n是方程2x2﹣5x﹣1=0的两根,不解方程计算:(1)+;(2).22.(8分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?23.(9分)已知关于x的一元二次方程x2﹣(8+k)x+8k=0.(1)证明:无论k取任何实数,方程总有实数根.(2)若,求k的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.24.(9分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y 化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、该方程属于二元二次方程,故本选项不符合题意.B、它不是方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.故选:C.2.解:方程2x2+4x﹣3=0的二次项系数是2,一次项系数是4、常数项是﹣3,故选:D.3.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.4.解:由题意知△=(﹣2)2﹣4×1×(﹣k)≥0,解得:k≥﹣1,故选:C.5.解:∵k是一元二次方程x2+7x﹣1=0的一个根,∴x=k满足该方程,即k2+7k﹣1=0,解得k2+7k=1.∴2k2+14k+2016=2(k2+7k)+2016=2018故选:C.6.解:△=(﹣2)2﹣4×1×(﹣5)=24,x==1±,所以x1=1+,x2=1﹣.故选:A.7.解:两边平方,得x+1=x2﹣10x+25,即x2﹣11x+24=0,(x﹣3)(x﹣8)=0,则x﹣3=0,x﹣8=0,解得:x=3或8.检验:当x=3时,左边=2,右边=2,则左边=右边,则x=3是方程的解;当x=8时,左边=3,右边=﹣3,则x=8不是方程的解.总之,方程的解是x=3.故选:A.8.解:∵α,β是方程x2+x﹣2=0的两个根,∴α+β=﹣1,αβ=﹣2,∴原式=﹣1﹣(﹣2)=1.故选:C.9.解:由题意,得n2+n+1=931,故选:C.10.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:是方程二次项,即a2﹣1=2,a2=3,∴a=±.12.解:∵x2﹣2020x=0,∴x(x﹣2020)=0,则x=0或x﹣2020=0,解得x1=0,x2=2020,故答案为:x1=0,x2=2020.13.解:∵关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,∴a2﹣9=0,即a=3或a=﹣3,当a=3时,方程为﹣2x=0,不符合题意,则a=﹣3.故答案为:﹣3.14.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.15.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.16.解:根据题意△=(3m﹣1)2﹣4m(2m﹣1)=1,解得m1=0,m2=2,而m≠0,∴m=2,此时方程化为2m2﹣5x+3=0,(2x﹣3)(x﹣1)=0,∴x1=,x2=1.故答案为x1=,x2=1.三.解答题(共8小题,满分66分)17.解:(1)(2x﹣5)2=9,2x﹣5=±3,所以x1=1,x2=4;(2)x2﹣4x=96,x2﹣4x﹣96=0,(x﹣12)(x+8)=0所以x1=12,x2=﹣8;(3)x2﹣9x﹣8=0,∵a=1,b=﹣9,c=﹣8,△=(﹣9)2﹣4×1×(﹣8)=113,∴x=,所以x1=,x2=;(4)3(x﹣2)2=x(x﹣2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3.18.解:设应将每个口罩涨价x元,则每天可售出(200﹣10×)件,依题意,得:(1+x)(200﹣10×)=480,化简,得:x2﹣9x+14=0,解得:x1=2,x2=7.又∵要让顾客得到实惠,∴x=2.答:应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.19.解:(1)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,4k2+12k+9﹣4k2﹣12k﹣8=0,方程无解,k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16;(2)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2﹣2AB•AC,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或﹣5(不合题意舍去).故k为2时,△ABC是以BC为斜边的直角三角形.20.解:(1)设1月份到3月份销售额的月平均增长率为x,由题意得:40×100(1+x)2=5760∴(1+x)2=1.44∴1+x=±1.2∴x1=0.2=20%,x2=﹣2.2(舍去)∴1月份到3月份销售额的月平均增长率为20%.(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,由题意得:(40﹣y)(100+10y)=5760∴y2﹣30y+176=0∴(y﹣8)(y﹣22)=0∴y1=8,y2=22当y=22时,3月份该玩具的销售价格为:40﹣22=18<30,不合题意,舍去∴y=8,3月份该玩具的销售价格为:40﹣8=32元∴3月份该玩具的销售价格为32元.21.解:∵m,n是方程2x2﹣5x﹣1=0的两根,∴m+n=,mn=﹣.(1)+===﹣10;(2)===.22.解:(1)∵两条人行横道的长分别为a米和b米,宽均为2米,∴人行横道的面积为:2a+2b﹣4;(2)∵a:b=3:2,∴设a=3x,则b=2x,根据题意得:(3x﹣2)(2x﹣2)=2204解答:x=20或x=﹣(舍去)∴3x=60,2x=40,答:原长方形的长与宽各为60米和40米.23.解:(1)∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)∵x1+x2=8+k,x1•x2=8k,,(x1+x2)2=x+x+2x1•x2,∴(8+k)2=68+16k,解得:k=±2(3)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为8时,则k=8,8+5=13>8周长=8+8+5=21;②当底边为8时,∴k=5,∴周长=5+5+8=18.24.解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.。
第22章 一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)

第22章一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、一元二次方程x2+2x=0的根是()A.x=0B.x=﹣2C.x=0或x=﹣2D.x=0或x=22、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4403、已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a<2B.a>2C.a<2且a≠1D.a<-24、若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.﹣1D.﹣25、用配方法解一元二次方程x2﹣6x﹣8=0,下列变形正确的是()A.(x﹣6)2=﹣8+36B.(x﹣6)2=8+36C.(x﹣3)2=8+9 D.(x﹣3)2=﹣8+96、用配方法解方程2-4 +2=0,下列配方正确的是()A.( -2) 2 =2B.( +2) 2 =2C.( -2) 2 =-2D.(-2) 2 =67、若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围是()A.k<1B.k<1且k≠0C.k≠0D.k>18、矩形ABCD的一条对角线长为5,边AB的长是方程x2﹣6x+8=0的一个根,则矩形ABCD的面积为()A.12B.20C.2D.12或29、下列方程是关于X的一元二次方程的是()A.x 2+3y-4=0B.2x 3-3x-5=0C.D.x 2+1=0.10、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均每月增率是x,则可以列方程();A.500(1+2x)=720B.500(1+x)2=720C.500(1+x2)=720 D.720(1+x)2=50011、若关于x的一元二次方程的两根分别为,,则p、q的值分别是()A.-3、2B.3、2C.-2、3D.2、312、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为()A.120(1-x)2=100B.100(1-x)2=120C.100(1+x)2=120 D.120(1+x)2=10013、方程x2﹣9=0的根是()A.x=﹣3B.x1=3,x2=﹣3 C.x1=x2=3 D.x=314、关于x的方程x2-2x+m=0有两个相等的实数根,则实数m的取值范围为( )A.m≥1B.m<1C.m=1D.m<-115、方程x2﹣2(x+2)(x﹣4)=10化为一般形式为()A.x 2﹣4x﹣6=0B.x 2+2x+14=0C.x 2+2x﹣14=0D.x 2﹣2x+14=0二、填空题(共10题,共计30分)16、一元二次方程+px-2=0的一个根为2,则p的值________.17、一元二次方程x(x﹣5)=0的根为________.18、已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是________.19、一元二次方程的根是________.20、若是方程的一个根,那么k的值等于________.21、方程x2+(k﹣1)x﹣3=0的一个根是1,则k的值是________,另一个根是________.22、若0是一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根,则m的值为________;23、不解方程3x2+5x﹣4=0,可以判断它的根的情况是________.24、方程x2﹣3x+1=0的一次项系数是________.25、把方程x(x+1)=2化成一般形式是________ .三、解答题(共5题,共计25分)26、用配方法解方程:x2﹣2x﹣8=0.27、设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值范围.28、如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.29、已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.30、如图,某小区规划在一个长40米,宽为26米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为144平方米,求道路的宽度.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、C6、A8、D9、D10、B11、A12、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
第22章 一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)

第22章一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列对一元二次方程x2+x﹣3=0根的情况的判断,正确是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根2、用配方法解下列方程时,配方错误的是()A. 化为B. 化为C. 化为D.化为3、一元二次方程(x﹣2)2=1可转化为两个一元一次方程,其中一个一元一次方程是x﹣2=﹣1,则另一个一元一次方程是()A.x﹣2=1B.x+2=1C.x+2=﹣1D.x﹣2=﹣14、下列方程一定是一元二次方程的是()①ax2+bx+c=0;②(k2+1)x2+kx+1=0;③2(x+1)(x﹣4)=x(x﹣2);④(2x+3)(2x﹣3)=4x(x﹣3)A.①②B.③④C.②③D.①③5、已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1B.k>1C.k≥﹣1D.k>﹣16、下列关于x的方程:(1)2x2﹣x﹣3=0(2)x2+=5(3)x2﹣2+x3=0(4)x2+y2=1,其中是一元二次方程的有()A.4个B.3个C.2个D.1个7、下列方程属于一元二次方程的是()A. B. C. D.8、已知整数,且满足,则关于的一元二次方程的解为()A. 或B.C.D.9、因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A.15%﹣5%=xB.15%﹣5%=2xC.(1﹣5%)(1+15%)=2(1+x) D.(1﹣5%)(1+15%)=(1+x)210、已知关于x的一元二次方程(m-1)x2+1=2x有两个不相等的实数根,则m的取值范围为()A.m<2B.m<-2C.m<2且m≠1D.无法确定11、一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤112、方程x2-7=3x的根的情况为( )A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根 D.没有实数根13、下列四个方程中,是一元二次方程的是()A. B. C. D.14、用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=415、把方程,化成(x+m)2=n的形式得()A. B. C.D.二、填空题(共10题,共计30分)16、已知一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c=________17、已知方程的两根恰好是Rt△ABC的两条直角边长,则Rt△ABC内切圆的半径为________.18、设a、b是方程的两个不等的根,则a2+2a+b的值为________.19、若关于x的一元二次方程有两个相等的实数根,则常数的值________.20、阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则的值为________.21、已知x,y均为实数,且满足关系式x2﹣2x﹣6=0,y2﹣2y﹣6=0,则=________22、已知a是关于x方程的一个根,则的值为________.23、方程x2=2020x的解是________.24、若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是________.25、若a是关于方程x2﹣2006x+1=0的一个根,则a+ =________.三、解答题(共5题,共计25分)26、解方程:(用公式法)27、如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200,求鸡场靠墙的一边长;(2)养鸡场面积能达到250吗?如果能,请给出设计方案,如果不能,请说明理由.28、如图所示,在△ABC中,∠B=90°,BC=8cm,AB=6cm.点P从点A开始沿AB边向点B 以1cm ∕s的速度移动,点Q从点B开始沿BC边向点C以4 cm ∕ s的速度移动.如果点P、Q分别从点A、B同时出发,经过几秒钟,△PBQ的面积等于10cm2?29、解关于x的方程(k-1)x2+(k-2)x-2k=0.( )30、已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2﹣4x+b=0有两个相等的实数根,试判断△ABC的形状.参考答案一、单选题(共15题,共计45分)2、C3、A4、C5、D6、D7、C8、A9、D10、C11、D12、A13、B14、D15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
华师大版九年级数学上册第22章 一元二次方程达标测试卷 含答案

第22章达标测试卷一、选择题(每题3分,共30分)1.下列各方程中,是一元二次方程的是()A.3x+2=3 B.x3+2x+1=0C.x2=1 D.x2+2y=02.关于x的方程x2+3x+a=0有一个根为-1,则a的值为() A.1 B.-1 C.2 D.-23.将一元二次方程-3x2-2=-4x化成一般形式,下列正确的为() A.3x2-4x+2=0 B.3x2-4x-2=0C.3x2+4x+2=0 D.3x2+4x-2=04.[2018·宜宾]一元二次方程x2-2x=0的两根分别为x1和x2,则x1x2为() A.-2 B.1 C.2 D.05.方程x2+6x-5=0的左边配成完全平方式后所得方程为() A.(x+3)2=14 B.(x-3)2=14C.(x+3)2=4 D.(x-3)2=46.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为()A.1 B.3 C.0 D.1或37.已知a、b、c为实数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.有一根为08.[2018·舟山]欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2,如图,则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长9.已知关于x的一元二次方程kx2-2x+1=0有实数根,若k为非负整数,则k 等于()A.0 B.1 C.0,1 D.210.如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15 cm2的是()A.2秒B.3秒C.4秒D.5秒二、填空题(每题3分,共18分)11.[2018·淮安]一元二次方程x2-x=0的根是__________.12.写出一个二次项系数为1,且一个根是3的一元二次方程__________.13.[2018·黔西南州]三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的解,则此三角形的周长是__________.14.[2018·南通]若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为__________.15.有三个连续偶数,第三个数的平方等于前两个数的平方和,则这三个数分别为__________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分)17.用适当的方法解下列方程:(1)2x2-4x=1;(2)(2x+3)2-2(2x+3)=0.18.已知关于x的方程2x2-kx+1=0的一个解与方程2x+11-x=4的解相同.求:(1)k的值;(2)方程2x2-kx+1=0的另一个解.19.已知关于x的一元二次方程x2-3x+m-1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1 600辆,3月份投放了2 500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?21.[2018·德州]为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?22.[2018·常州]阅读材料:各类方程的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C.求AP的长.答案一、1.C 2.C 3.A 4.D 5.A6.B 点拨:把x =1代入(m -1)x 2+x +m 2-5m +3=0,得m 2-4m +3=0,解得m 1=3,m 2=1,而m -1≠0,所以m =3.故选B .7.C 点拨:∵(a -c )2=a 2+c 2-2ac >a 2+c 2,∴ac <0.在方程ax 2+bx +c =0中,Δ=b 2-4ac ,∵b 2≥0,ac <0,∴Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:C.8.B 点拨:x 2+ax =b 2可化为⎝ ⎛⎭⎪⎫x +a 22=b 2+⎝ ⎛⎭⎪⎫a 22,结合勾股定理可得该方程的一个正根是AD 的长,故选:B.9.B 点拨:由题意可知:⎩⎨⎧4-4k ≥0,k ≠0,k ≥0,∴0<k ≤1,由于k 是整数,∴k =1.10.B 点拨:设动点P ,Q 运动t 秒后,能使△PBQ 的面积为15 cm 2,则BP为(8-t )cm ,BQ 为2t cm ,由三角形的面积计算公式得,12×(8-t )×2t =15,解得t 1=3,t 2=5(不合题意,舍去).故动点P ,Q 运动3秒时,能使△PBQ 的面积为15 cm 2.二、11.x 1=0,x 2=112.x 2-3x =0(答案不唯一)13.1314.72 点拨:由题意可知:4m 2-4×12×(1-4m )=4m 2+8m -2=0,∴m 2+2m =12,∴(m -2)2-2m (m -1)=-m 2-2m +4=-12+4=72.15.6,8,10或-2,0,2 点拨:设最小的偶数为x ,根据题意得(x +4)2=x 2+(x +2)2,解得x =6或-2.当x =6时,x +2=8,x +4=10;当x =-2时,x +2=0,x +4=2,因此这三个数分别为6,8,10或-2,0,2.16.x =0或x =-3 点拨:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=-1(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=-1,解得x =0或x =-3.三、17. 解:(1)二次项系数化为1,得x 2-2x =12.配方,得x 2-2x +1=12+1,即(x -1)2=32. 直接开平方,得x -1=±62.故x 1=2+62,x 2=2-62.(2)原方程可化为(2x +3)(2x +3-2)=0,即(2x +3)(2x +1)=0.可得2x +3=0或2x +1=0.解得x 1=-32,x 2=-12.18.解:(1)解方程2x +11-x =4得x =12.经检验,x =12是分式方程的解,且符合题意. 将x =12代入方程2x 2-kx +1=0,有2×⎝ ⎛⎭⎪⎫122-12k +1=0,解得k =3. (2)当k =3时,一元二次方程即为2x 2-3x +1=0,解得x 1=12,x 2=1,故另一个解为x =1.19.解:(1)∵方程有两个不相等的实数根,∴Δ=(-3)2-4(m -1)>0. 解得m <134.(2)当方程有两个相等的实数根时,Δ=0,即(-3)2-4(m -1)=0,解得m =134.当m =134时,方程为x 2-3x +134-1=0,即⎝ ⎛⎭⎪⎫x -322=0, 故x 1=x 2=32.20.解:设月平均增长率为x ,根据题意,得1 600(1+x )2=2 500, 解得:x 1=0.25=25%,x 2=-2.25(不合题意,舍去),∴月平均增长率为25%,∴4月份投放了2 500(1+x )=2 500×(1+25%)=3 125(辆).21.解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b (k ≠0),将(40,600)、(45,550)代入得:⎩⎨⎧40k +b =600,45k +b =550,解得:⎩⎨⎧k =-10,b =1000,∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)每台设备的利润为(x -30)万元,销售量为(-10x +1 000)台,根据题意得: (x -30)(-10x +1 000)=10 000,整理,得:x 2-130x +4 000=0,解得:x 1=50,x 2=80.∵此设备的销售单价不得高于70万元.∴该设备的销售单价应是50万元.22.解:(1)-2;1(2)方程的两边平方,得2x +3=x 2,即x 2-2x -3=0,(x -3)(x +1)=0,∴x 1=3,x 2=-1,当x =-1时,2x +3=1=1≠-1,当x =3时,2x +3=3=x , 所以方程2x +3=x 的解是x =3.(3)因为四边形ABCD 是矩形,所以∠A =∠D =90°,AB =CD =3 m. 设AP =x m ,则PD =(8-x )m ,因为BP +CP =10,BP =AP 2+AB 2,CP =CD 2+PD 2, ∴9+x 2+(8-x )2+9=10, ∴(8-x )2+9=10-9+x 2,两边平方,得(8-x )2+9=100-209+x 2+9+x 2, 整理,得5x 2+9=4x +9,两边平方并整理,得x 2-8x +16=0,即(x -4)2=0,∴x 1=x 2=4.经检验,x =4是方程的解.答:AP 的长为4 m.。
九年级上册数学单元测试卷-第22章 一元二次方程-华师大版(含答案)

九年级上册数学单元测试卷-第22章一元二次方程-华师大版(含答案)一、单选题(共15题,共计45分)1、下列方程中,是关于x的一元二次方程为()A.x 2﹣4x+5=0B.x 2+x+1=yC. +8x﹣5=0D.(x﹣1)2+y 2=32、已知方程 x2-2x-3=0 的两个实数根为,则代数式的值为()A.-5B.5C.-1D.13、方程的解是()A. B. C. D.4、方程x(x+2)=x+2的解是()A.x=1B.x1=0, x2=-2 C.x1=-2,x2=1 D.x1=1 ,x2=25、用配方法解一元二次方程,下列变形正确的是()A. B. C. D.6、用配方法解一元二次方程,将化成的形式,则、的值分别是()A.−3,11B.3,11C.−3,7D.3,77、将方程左边变成完全平方式后,方程是()A. B. C. D.8、下列方程中,关于 x 的一元二次方程是()A. B. C. D.9、关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.0或2C.1或2D.010、方程的二次系数、一次项系数、常数项分别是A.3,2,9B.3,-2,9C.-3,-2,-9D.3,-2,-911、已知是关于x的一元二次方程的一个根,则m的值是()A. B.0 C.1 D.0或112、已知a是方程x2-4x-3=0的一个根,则代数式2a2-8a+2006的值为( )A.1996B.1999C.-2012D.201213、下列关于x的方程中,一定有实数解的是()A. =-1B. =xC. +mx﹣1=0D. =14、已知关于的一元二次方程的一个根为,则另一个根为().A. B. C. D.15、方程x2=2x的根是()A.0B.2C.0或2D.无解二、填空题(共10题,共计30分)16、方程的解是________.17、已知α,β是方程的两实根,则的值为________.18、《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为________.19、一个三角形的两边分别为3,5,另一边是的解,则此三角形的面积为________.20、某型号的手机连续两次降价,单价由原来的5200元降到了1300元.设平均每次降价的百分率为x,则可以列出的一元二次方程是________.21、已知:一元二次方程ax2+bx+c=0的一个根为1,且满足 b= +3,则a=________,b=________,c=________.22、若a,b是一元二次方程x2-2018x+1=0的两根,则的值是________.23、如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=________.24、关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是________.25、方程的解为________.三、解答题(共5题,共计25分)26、用配方法解方程27、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答问题:当t为何值时,△PBQ是直角三角形?28、已知关于x的方程x2-2x+2m-1=0有实数根,且m为正整数,求m的值及此时方程的根。
第22章 一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)

第22章一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1B.-3或1C.3D.-1或32、有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中:正确的个数有()①如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根;②如果ac<0,方程M、N都有两个不相等的实数根;③如果2是方程M的一个根,那么是方程N的一个根;④如果方程M和方程N有一个相同的根,那么这个根必是x=1.A.4个B.1个C.2个D.3个3、一元二次方程x2-5x-6=0的根是()A. 1,-6B. 2,-3C. -1,6D. -2,34、用配方法解一元二次方程-4x=5时,此方程可变形为().A. =1B. =1C. =9D. =95、某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1-x) 2=20B.20(1-x) 2=13C.20(1+x) 2=13 D.13(1+x) 2=206、如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(32+x)(20+x)=540B.(32﹣x)(20﹣x)=540C.(32+x)(20﹣x)=540D.(32﹣x)(20+x)=547、设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2B.4C.5D.68、一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3B.﹣1C.﹣3D.﹣29、若关于x的一元二次方程为ax2-3bx-5=0(a≠0)有一个根为x=2,那么4a-6b的值是( )A.4B.5C.8D.1010、用公式法x=解一元二次方程3x2+5x﹣1=0中的b是()A.5B.﹣1C.﹣5D.111、将方程化成的形式是( )A. B. C. D.12、下列方程是一元二次方程的是()A.3x+1=5x+7B. +x﹣1=0C.ax 2﹣bx=5(a和b为常数) D.m 2﹣2m=313、方程的根是()A. B. C. D.14、已知一元二次方程a(x-x1)(x-x2)=0(a≠0,x1≠x2)与一元一次方程dx+e=0有一个公共解x=x1,若一元二次方程a(x-x1)(x-x2)+(dx+e)=0有两个相等的实数根,则( )A.a(x1-x2)=d B.a(x2-x1)=d C.a(x1-x2)²=d D.a(x2-x1)=d15、一元二次方程2x2﹣5x﹣7=0的二次项系数、一次项系数、常数项分别是()A.5;2;7B.2;﹣5;﹣7C.2;5;﹣7D.﹣2;5;7二、填空题(共10题,共计30分)16、设,是方程的两个实数根,则的值为________.17、将方程x(x﹣2)=x+3化成一般形式后,二次项系数为________.18、用配方法解方程2x2﹣x=4,配方后方程可化为(x﹣)2=________19、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=________.20、若是方程的一个根,则c=________.21、一元二次方程的解是________.22、如果关于x的方程x2+2x+m=0有两个实数根,那么m的取值范围是________.23、两个连续的奇数的积为195,设较小的奇数为x,则依题意可列方程为________ .24、设x1, x2是方程x2﹣x﹣2016=0的两实数根,则x13+2017x2﹣2016=________.25、若方程两根为,则=________.三、解答题(共5题,共计25分)26、解关于x的方程:27、已知:关于x的方程是否存在实数m,使方程的两个实数根的平方和等于?若存在,请求出满足条件的m值;若不存在,请说明理由.28、已知关于x的方程x2﹣2mx+3+4m2﹣6=0的两根为α,β,试求(α﹣1)2+(β﹣1)2的最大值与最小值.29、解方程组:30、已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、D5、D6、B7、C9、B10、A11、D12、D13、A14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、。
2019年华师大版数学上册九年级《第22章一元二次方程》单元测试卷(解析版)

2019年华师大版数学上册九年级《第22章一元二次方程》单元测试卷一.选择题(共15小题)1.下列方程是一元二次方程的是()A.x2+2y=1B.x3﹣2x=3C.x2+=5D.x2=02.下列方程是一元二次方程的是()A.ax2+bx+c=0B.x2+2x=x2﹣1C.(x﹣1)(x﹣3)=0D.=23.方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9B.2;﹣6;﹣9C.2;﹣6;9D.﹣2;6;9 4.方程2x2﹣6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,﹣6,9C.2,6,9D.2,﹣6,﹣9 5.x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A.﹣2B.﹣3C.﹣1D.﹣66.一元二次方程x2+kx﹣3=0的一个根是x=1,则k的值为()A.2B.﹣2C.3D.﹣37.方程x2=1的解是()A.x=1B.x=±1C.x=﹣1D.x=8.方程x2﹣4=0的解为()A.2B.﹣2C.±2D.49.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15 10.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 11.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=12.一元二次方程x2﹣4x+3=0的解是()A.x=1B.x1=﹣1,x2=﹣3C.x=3D.x1=1,x2=313.方程x2﹣3x=0的解是()A.x=3B.x=0C.x=1或x=3D.x=3 或x=0 14.方程x2﹣4x=0的解是()A.x=4B.x1=1,x2=4C.x1=0,x2=4D.x=015.若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A.8B.7C.8或7D.9或8二.填空题(共8小题)16.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.17.一元二次方程x2﹣3x=4的一般形式是.18.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.19.方程x2﹣4=0的解是.20.用配方法解方程x2﹣6x=2时,方程的两边同时加上,使得方程左边配成一个完全平方式.21.方程ax2+bx+c=0(a≠0)的判别式是,求根公式是.22.一元二次方程x2+3x=0的解是.23.关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是.三.解答题(共3小题)24.已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.25.已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.26.已知关于x的方程x2+2x+a﹣2=0的一个根为1,求a的值及该方程的另一根.2019年华师大版数学上册九年级《第22章一元二次方程》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列方程是一元二次方程的是()A.x2+2y=1B.x3﹣2x=3C.x2+=5D.x2=0【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、x2+2y=1是二元二次方程,故A错误;B、x3﹣2x=3是一元三次方程,故B错误;C、x2+=5是分式方程,故C错误;D、x2=0是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.下列方程是一元二次方程的是()A.ax2+bx+c=0B.x2+2x=x2﹣1C.(x﹣1)(x﹣3)=0D.=2【分析】根据一元二次方程的定义分别判断即可.【解答】解:A、没有说明a是否为0,所以不一定是一元二次方程;B、移项合并同类项后未知数的最高次为1,所以不是一元二次方程;C、方程可整理为x2﹣4x+3=0,所以是一元二次方程;D、不是整式方程,所以不是一元二次方程;故选:C.【点评】本题主要考查一元二次方程的定义,注意有的方程需要整理成一元二次方程的一般形式后再进行判断.3.方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9B.2;﹣6;﹣9C.2;﹣6;9D.﹣2;6;9【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.要确定二次项系数、一次项系数和常数项,首先要把方程化成一般形式.【解答】解:∵方程一般形式是2x2﹣6x﹣9=0,∴二次项系数为2,一次项系数为﹣6,常数项为﹣9.故选:B.【点评】本题考查了一元二次方程的一般形式,注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.4.方程2x2﹣6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,﹣6,9C.2,6,9D.2,﹣6,﹣9【分析】首先把方程化为一般式,然后可得二次项系数、一次项系数、常数项.【解答】解:2x2﹣6x=9可变形为2x2﹣6x﹣9=0,二次项系数为2、一次项系数为﹣6、常数项为﹣9,故选:D.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;b叫做一次项系数;c叫做常数项.5.x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A.﹣2B.﹣3C.﹣1D.﹣6【分析】先把x=1代入方程x2+ax+2b=0得a+2b=﹣1,然后利用整体代入的方法计算2a+4b的值.【解答】解:把x=1代入方程x2+ax+2b=0得1+a+2b=0,所以a+2b=﹣1,所以2a+4b=2(a+2b)=2×(﹣1)=﹣2.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.一元二次方程x2+kx﹣3=0的一个根是x=1,则k的值为()A.2B.﹣2C.3D.﹣3【分析】x2+kx﹣3=0的一个根是x=1,那么就可以把x=1代入方程,从而可直接求k.【解答】解:把x=1代入x2+kx﹣3=0中,得1+k﹣3=0,解得k=2,故选:A.【点评】本题考查了一元二次方程的解,解题的关键是理解根与方程的关系.7.方程x2=1的解是()A.x=1B.x=±1C.x=﹣1D.x=【分析】此问题相当于求1的平方根.【解答】解:开方得,x=±1.故选:B.【点评】本题考查了用直接开方法求一元二次方程的解,基本形式有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a (x+b)2=c(a,c同号且a≠0).8.方程x2﹣4=0的解为()A.2B.﹣2C.±2D.4【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【解答】解:移项得x2=4,解得x=±2.故选:C.【点评】本题考查了解一元二次方程﹣直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.9.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:C.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.10.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.【解答】解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.11.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=【分析】求出b2﹣4ac的值,再代入公式求出即可.【解答】解:﹣3x2+5x﹣1=0,b2﹣4ac=52﹣4×(﹣3)×(﹣1)=13,x==,故选:C.【点评】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.12.一元二次方程x2﹣4x+3=0的解是()A.x=1B.x1=﹣1,x2=﹣3C.x=3D.x1=1,x2=3【分析】利用公式法即可求解.【解答】解:a=1,b=﹣4,c=3△=16﹣12=4>0x=解得:x1=3,x2=1;故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.13.方程x2﹣3x=0的解是()A.x=3B.x=0C.x=1或x=3D.x=3 或x=0【分析】利用因式分解法即可求得.【解答】解:x2﹣3x=0x(x﹣3)=0∴x=0或x﹣3=0,∴x1=0,x2=3.故选:D.【点评】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.方程x2﹣4x=0的解是()A.x=4B.x1=1,x2=4C.x1=0,x2=4D.x=0【分析】由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.【解答】解:∵x2﹣4x=0,∴x(x﹣4)=0,∴方程的解:x1=0,x2=4.故选:C.【点评】因式分解法是解一元二次方程的一种简便方法,要会灵活运用.15.若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A.8B.7C.8或7D.9或8【分析】由等腰三角形的性质可知“a=b,或a、b中有一个数为4”,当a=b时,由根的判别式b2﹣4ac=0即可得出关于k的一元一次方程,解方程可求出此时n的值;a、b 中有一个数为4时,将x=4代入到原方程可得出关于n的一元一次方程,解方程即可求出此时的n值,结合三角形的三边关系即可得出结论.【解答】解:∵等腰三角形三边长分别为a、b、4,∴a=b,或a、b中有一个数为4.当a=b时,有b2﹣4ac=(﹣6)2﹣4(n+1)=0,解得:n=8;当a、b中有一个数为4时,有42﹣6×4+n+1=0,解得:n=7,故选:C.【点评】本题考查了根的判别式、解一元一次方程以及三角形三边关系,解题的关键是分两种情况考虑k值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出关于未知数k的方程是关键.二.填空题(共8小题)16.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是﹣3.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意,得m(m+2)﹣1=2且m﹣1≠0,解得m=﹣3,故答案为:﹣3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.17.一元二次方程x2﹣3x=4的一般形式是x2﹣3x﹣4=0.【分析】一元二次方程的一般形式是ax2+bx+c=0,(a≠0),据此即可求解.【解答】解:一元二次方程x2﹣3x=4的一般形式是x2﹣3x﹣4=0.【点评】解决本题时一定要注意移项要变号.18.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键.19.方程x2﹣4=0的解是±2.【分析】首先移项可得x2=4,再两边直接开平方即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.20.用配方法解方程x2﹣6x=2时,方程的两边同时加上9,使得方程左边配成一个完全平方式.【分析】利用方程两边同时加上一次项系数一半的平方求解.【解答】解:x2﹣6x+32=2+32,(x﹣3)2=11.故答案为9.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.解决本题的关键是方程两边同时加上一次项系数一半的平方.21.方程ax2+bx+c=0(a≠0)的判别式是b2﹣4ac,求根公式是.【分析】答题时首先要知道根的判别式的含义,△=b2﹣4ac,知道求根公式.【解答】解:方程ax2+bx+c=0(a≠0)的判别式是b2﹣4ac,求根公式为.【点评】本题主要考查根的判别式△=b2﹣4ac这一知识点,比较简单.22.一元二次方程x2+3x=0的解是0,﹣3.【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=﹣3.故答案为0,﹣3.【点评】本题考查了解一元二次方程﹣﹣因式分解法,要根据方程特点选择合适的方法.23.关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是k≤且k≠0.【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有实数根,∴,解得:k≤且k≠0.故答案为:k≤且k≠0.【点评】本题考查了一元二次方程的定义以及根的判别式,根据二次项系数非零结合根的判别式△≥0,找出关于k的一元一次不等式组是解题的关键.三.解答题(共3小题)24.已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【分析】(1)根据一元一次方程的定义可得m2﹣1=0,m+1≠0,解即可;(2)根据一元二次方程的定义可知:m2﹣1≠0,再解不等式即可.【解答】解:(1)根据一元一次方程的定义可知:m2﹣1=0,m+1≠0,解得:m=1,答:m=1时,此方程是一元一次方程;②根据一元二次方程的定义可知:m2﹣1≠0,解得:m≠±1.一元二次方程的二次项系数m2﹣1、一次项系数﹣(m+1),常数项m.【点评】此题主要考查了一元二次方程的概念和一元一次方程的概念,关键是掌握两种方程的定义.25.已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.【分析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;(2)分别将m的值代入原式求出即可.【解答】解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.【点评】此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.26.已知关于x的方程x2+2x+a﹣2=0的一个根为1,求a的值及该方程的另一根.【分析】设方程的另一个根为x,则由根与系数的关系得:x+1=﹣2,x•1=a﹣2,求出即可.【解答】解:设方程的另一个根为x,则由根与系数的关系得:x+1=﹣2,x•1=a﹣2,解得:x=﹣3,a=﹣1,即a=﹣1,方程的另一个根为﹣3.【点评】本题考查了根与系数关系的应用,注意:如果x1,x2是一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个根,则x1+x2=﹣,x1•x2=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灿若寒星制作
灿若寒星制作
一元二次方程 单元测试卷
时间:120分钟 满分;120分
一、选择题(每题3分,共30分)
1.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是( )
A.1 B.0 C.0或1 D.0或-1
2.已知a、b为一元二次方程0922xx的两个根,那么baa2的值为( )
(A)-7 (B)0 (C)7 (D)11
3.根据下列表格中二次函数2yaxbxc的自变量x与函数值y的对应值,判断方程
2
0axbxc
(0aabc,,,为常数)的一个解x的范围是( )
x
6.17 6.18 6.19 6.20
2
yaxbxc
0.03 0.01 0.02 0.04
A.66.17x B.6.176.18x
C.6.186.19x D.6.196.20x
4.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为( )
A.8 B.10 C.8或10 D.不能确定
5.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009
年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是
A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1-x)2=300
6.现定义某种运算()abaab,若2(2)2xxx,那么x的取值范围是( )
(A)12x(B)2x或1x(C)2x (D)1x
7、已知ab,是关于x的一元二次方程210xnx的两实数根,则式子baab的值是
( )
A.22n B.22n C.22n D.
2
2n
8、用配方法将代数式a2+4a-5变形,结果正确的是( )
A.(a+2)2-1 B. (a+2)2-5 C. (a+2)2+4 D. (a+2)2-9
9、关于x的一元二次方程222310xxa的一个根为2,则a的值是( )
A.1 B.3 C.3 D.3
10、某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百
分率为x,则下列方程中正确的是( )
A.55 (1+x)2=35 B.35(1+x)2=55
C.55 (1-x)2=35 D.35(1-x)2=55
灿若寒星制作
灿若寒星制作
二、填空题(每题3分,共30分)
11.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正
确的一个方程即可).
12.已知实数x满足4x2-4x+l=0,则代数式2x+x21的值为________.
13.如果、是一元二次方程231 0xx的两个根,那么2+2的值是
___________。
14.已知23是一元二次方程240xxc的一个根,则方程的另一个根是 .
15.已知01aabx,,是方程2100axbx的一个解,则2222abab的值是 .
16.在实数范围内定义一种运算“*”,其规则为22baba*,根据这个规则,方程
05)2(*x
的解为
17、在Rt△ABC中, ∠C=90°,斜边c=5,两直角边的长a、b 是关于x的一元二次方程
x2-mx+2m-2=0的两个根 ,则Rt△ABC中较小锐角的正弦值_________
18、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这
三个数分别为_________
19、甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数
项,得根为1和-10,则原方程为
20、如图1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长
为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此
长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购
回这张矩形铁皮共花了 元钱?
三、解答题(每题10分,共60分)
21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请
从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程.
①2310xx;②2(1)3x;③230xx;④224xx.
图1
灿若寒星制作
灿若寒星制作
22、关x的一元二次方程(x-2)(x-3)=m有两个不相等的实数根x1、x2,则m的取值范围
是 ;若x1、x2满足等式x1x2-x1-x2+1=0,求m的值.
23、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题
※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)
的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来。
24.在实数范围内定义运算“”,其法则为:22abab,求方程(43)
24x
的解.
灿若寒星制作
灿若寒星制作
25.小东将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多
少?
(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请
说明理由.
26.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的
利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增
长,第三天的利润是1.25万元,
(1)求第三天的销售收入是多少万元?
(2)第二天和第三天销售收入平均每天的增长率是多少?
27.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,
宽7米的长方形花圃.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃
的面积多1平方米,请你给出你认为合适的三种不同的方案;
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方
米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
灿若寒星制作
灿若寒星制作
参考答案
一、1、A;2、D;3、C;4、B;5、B;6、B;7、D;8、D;9、D;10、C;
二、11、x2-2x=0;12、2;13、4;14、23;15、5;16、3,-7;17、53;18、-3,-1,
1或15,17,19;19、x2+9x+14=0;20、700;
三、21、①12352x,;②1213x,;③10x,23x;④1215x,
22、m >-1/4 ,m=2;
23、23、方程(1)的解是x1=2,x2=0;方程(2)的解是x1=3,x2=4
24、解:∵ 22abab , ∴ 2222(43)(43)77xxxx.
∴ 22724x. ∴ 225x.
∴ 5x.
25、(1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm
由题意得:2220()()1744xx,解得:116x,24x
当116x时,20-x=4,当24x时,20-x=16
(2)不能。理由是:2220()()1244xx,整理得:2201040xx
∵ △=24160bac∴此方程无解,即不能剪成两段使得面积和为12cm2
26.(1)6.25 (2) 25%
27、(1)学校计划新建的花圃的面积是9763(平方米),比它多1平方米的长方形面积
是64平方米,因此可设计以下方案:
方案一:长和宽都是8米;
方案二:长为10米,宽为6.4米;
方案三:长为20米,宽为3.2米.
说明:显然,此方案很多,但要注意空地的大小实际.
(2)假设在计划新建的长方形周长不变的情况下长方形花圃的面积能增加2平方米.由
于计划新建的长方形的周长是2(97)32(米),设面积增加后的长方形的长为x米,
则宽是(322)2(16)xx(米),依题意,得(16)65xx,
整理,得216650xx,
因为224(16)46540bac,此方程没有实数根,
所以,在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积不能增加2平方
米.
灿若寒星制作
灿若寒星制作
初中数学试卷
灿若寒星 制作