大学物理(第三版)热学 第一章PPT课件

合集下载

大学物理热力学PPT课件

大学物理热力学PPT课件

02
对应态原理
不同物质在相同的对应状态下具有相同 的热力学性质。对应态参数包括对比压 强、对比体积和对比温度。
03
范德华方程与对应态 原理的应用
预测真实气体的性质,如液化温度、临 界参数等。
真实气体行为描述
压缩因子
描述真实气体与理想气体偏差程度的物理量,定义为Z = pV/nRT。对于理想气体,Z = 1;对于真实气体,Z ≠ 1。
细管电泳等。
固体熔化与升华过程分析
固体熔化
升华过程
熔化与升华的应用
固体在加热过程中,当温度达到 熔点时开始熔化,由固态转变为 液态。熔化过程中吸收热量,温 度保持不变。
某些物质在固态时可以直接升华 为气态,而无需经过液态阶段。 升华过程中也吸收热量,但温度 同样保持不变。
熔化与升华是物质相变的重要过 程,对于理解物质的热力学性质 和相变规律具有重要意义。同时, 在实际应用中也具有广泛用途, 如金属冶炼、材料制备等领域。
阿马伽分体积定律
混合气体的总体积等于各组分气体分体积之和,即V_total = V_1 + V_2 + ... + V_n。
理想气体混合物的性质
各组分气体遵守理想气体状态方程,且相互之间无化学反应。
范德华方程与对应态原理
01
范德华方程
对真实气体行为的描述,考虑了分子体 积和分子间相互作用力,形式为(p + a/V^2)(V - b) = RT,其中a、b为与物 质特性相关的常数。
维里方程
描述真实气体行为的另一种方程形式,考虑了高阶分子间 相互作用项,形式为pV = nRT(1 + B/V + C/V^2 + ...), 其中B、C等为维里系数。

大学物理热学ppt课件

大学物理热学ppt课件
一级相变与二级相变的区别
热力学函数变化特点、相变潜热的计算
临界点及超临界现象
临界点的定义及性质、超临界流体的特点及应用
05 热辐射与黑体辐 射理论
热辐射基本概念及性质
热辐射定义
01
物体由于具有温度而辐射电磁波的现象。
热辐射特点
02
不依赖介质传播,具有连续光谱,温度越高辐射越强。
热辐射与光辐射的区别
气体输运现象及粘滞性、热传导等性质
粘滞性
气体在流动时,由于分子间的动量交换,会 产生阻碍流动的粘滞力。气体的粘滞性与温 度、压强有关。
热传导
气体中热从高温部分传向低温部分的现象 称为热传导。热传导是由于分子间的碰撞传 递能量实现的。气体的热传导系数与温度、
压强有关。
04 固体、液体与相 变现象
大学物理热学ppt课件
目录
• 热学基本概念与定律 • 热力学过程与循环 • 气体动理论与分子运动论 • 固体、液体与相变现象 • 热辐射与黑体辐射理论 • 热学在生活和科技中应用
01 热学基本概念与 定律
温度与热量
温度
表示物体冷热程度的物理量, 是分子热运动平均动能的标志。
热量
在热传递过程中所传递内能的 多少。
绝热过程
系统与外界没有热交换的热力学过程。 在绝热过程中,系统的温度变化完全 由做功引起。例如,绝热膨胀和绝热 压缩是常见的绝热过程。
多方过程与准静态过程
多方过程
系统状态变化时,其压强和体积同时发生变化的过程。多方过程的特征在于压强和体积的乘积(PV)的n次方保 持恒定,其中n为多方指数。多方过程包括等温过程、等压过程和等容过程等特例。
最概然速率
在麦克斯韦速率分布曲线中,有一个峰值对应的速率称为最概然速率,表示在该速率附 近分子数最多。

大学物理热力学基础PPT课件

大学物理热力学基础PPT课件
传热的微观本质是分子的无规则运动能量从高 温物体向低温物体传递。热量是过程量
d Q 微小热量 :
> 0 表示系统从外界吸热; < 0 表示系统向外界放热。
等价
2
精选PPT课件
上页 下页 返回 退出
二、热力学第一定律 (The first law of thermodynamics)
某一过程,系统从外界吸热 Q,对外界做功 W,系 统内能从初始态 E1变为 E2,则由能量守恒:
循环过程
V
1. 热力学第一定律适用于任何系统(固、液、气);
2. 热力学第一定律适用于任何过程(非准静态过程亦 成立)。
6
精选PPT课件
上页 下页 返回 退出
四、 W、Q、E的计算
1.W的计算(准静态过程,体积功)
F
(1)直接计算法(由定义)
系统对外作功,
2
W=1
Fdx
=
2
1
PS
dx
V2
W = PdV
W = 1 P dV =
RT
2
1
dV V
W
RTl nV( 2 ) V1
P1V1
ln(V2 V1
)
P1V1
ln(P1 P2
)
系统吸热全部用来对外做功。
思考:CT ( 等温摩尔热容量)应为多大?
15
精选PPT课件
上页 下页 返回 退出
§7.4 理想气体的绝热过程 (Adiabatic process of the ideal gas)
吸热一部分用于对外做功,其余用于增加系统内能。
14
精选PPT课件
上页 下页 返回 退出
三.等温过程(isothermal process) P

大学物理 热力学基础A1

大学物理 热力学基础A1
一、内能 E(焦耳J)
理想气体内能: 内能是状态参量
E M M
mol
i 2
RT
T 的单值函数。
E = E 2- E 1 只取决于系
内能的增量
统的始末状态,而与过程无关。
注意:一个内能可以对应多个状态
系统内能改变的两种方式: 做功 热传递
1、 功是能量传递与转化的量度。 功是过程量而非态函数。两个平衡态之间可经历 不同的准静态过程,系统所做的功不同。 2、热量是系统与外界存在温度差而传递的能量
摩尔数为M/Mmol的理想气体在等压过程中吸收的 M 热量 M Q C PT dQ P C P dT
M
mol
M
mol
Q
i 2 2
A
三、比热容比
CP ( i 2 1 )R i2 2 R
CV
i 2
R
(摩尔热容比) 定义比热容比 :

C
P
CV
1 . 33 i 2 1 . 40 i 1 . 67

V2
PdV
V1
P
A
PdV
V1
功的大小等于
P~V 图上过程曲线 P=P(V)下的面积。 功与过程路径有关。

V1
PdV
B
V2
V1
0
V
对比沿着不同路径从状态A到B所做的功
•公式适用条件:
• (1)准静态过程
(2)外界压力保持恒定情况下的非准静态过 程,此时P应理解为外界压强。
如:气体的自由膨胀过程中,系统对 外作的功A=0
Q acb A cb
例题: 一定量的理想气体经历acb过程时吸 热500J, 则经历acbda过程时吸热为? P(105Pa) (A) -1200J d (B) 700J 4 a

大学物理第一章课件

大学物理第一章课件

04
大学物理第一章:电磁学基础
电场与电场强度
电场
电荷和电流在空间中激发的场,对其 中运动的电荷产生力的作用。
电场强度
描述电场对电荷作用力大小的物理量, 用矢量表示,单位是伏特/米(V/m) 或牛顿/库仑(N/C)。
电场线
用来形象地描述电场的强弱和方向的 假想线,电场线上每一点的切线方向 表示该点的电场强度方向。
动量与角动量
动量
一个物体的质量与它的速度的乘 积,表示物体运动的量。
角动量
一个旋转物体的转动惯量与它的 角速度的乘积,表示物体旋转运 动的量。
功与能

力在物体运动轨迹上所做的乘积,表 示力对物体运动所做的贡献。

一个物体由于它的运动或位置而具有 做功的能力,表示物体运动或位置的 量。
03
大学物理第一章:热学基础
大学物理课程是高等教育的必修基础课程之一,旨在为学生提供物理学的 基本概念、原理和方法,培养其科学素养和解决实际问题的能力。
课程目标
01
掌握物理学的基本概念和原理,理解物质的基本性 质和运动规律。
02
学会运用物理学原理和方法分析、解决实际问题, 培养科学思维和创新能力。
03
培养学生对自然界的敬畏和好奇心,激发探索未知 世界的热情和追求科学的动力。
偏振分类
偏振分为线偏振、椭圆偏振和圆偏振三种类型。
偏振应用
偏振现象在光学仪器、通信和信息处理等领域有 广泛应用,如偏振眼镜、液晶显示等。
06
大学物理第一章:近代物理简介
量子力学基础
量子态与波函数
01
描述微观粒子状态的数学函数,具有波粒二象性。
薛定谔方程
02
描述粒子在给定势能下的运动状态的偏微分方程。

热力学 第一章

热力学 第一章


(3)状态参量:描述热力学系统平 衡状态的宏观性质的物理量。

描述系统状态的宏观参量一般可以 直接测量。
广延量和强度量
3、均匀系与非均匀系
(1)均匀系:一个系统各部分的性质完全
一致,称为一个均匀系。(也称为一个相 —单相系) (2)非均匀系:复相系
§1.2 热平衡定律和温度

一、热平衡定律(热力学第零定律) 实验
2 3 3 6 1
如果保持温度不变,将1mol的水从1 1000 pn ,求:外界所做的功。
pn
加压到
§1.5 热力学第一定律
一、热量:系统与外界仅由于温度差,通过边界 所传递的能量。(通过分子间的碰撞来实现)
Q 过程量 热量是能量传递的另一种方式 Q 0 系统从外界吸收热量
Q 0 系统向外界放出热量
3 6 2 3
1
§1.6 热容量和焓
一、热容量
1、引入:桶的装水量(水容量)
M 水容: C h
Q 电容: C U
2、热容量:一个系统在某一过程中温度升 高1K所吸收的热量。
Q C lim T T dQ C dT
单位:焦耳/开尔文 J / K
3、系统的质量对热容量的影响:
an2 ( p 2 )(V nb) nRT V
1mol : a ( p 2 )( v b) RT v
3、简单固体和液体:
V (T , p) V0 (T0 ,0)1 (T T0 ) KT p
例1、一个简单可压缩系统,已知
nR 1 a ; KT pV p V
作业:1、1mol理想气体,在27℃的恒温下 发生膨胀,其压强由 20Pn 准静态地降到 1Pn ,求:气体所做的功和所吸取的热量。 2、在27℃,压强在0至 1000pn 之间,测得 水的体积为V (18.066 0.71510 p 0.04610 p )cm mol 如果保持温度不变,将1mol的水从1 pn 加压至 1000pn ,求:外界所做的功。

大学物理ppt课件完整版

大学物理ppt课件完整版

物理学的发展历史
01
02
03
古代物理学
以自然哲学为主要形式, 探讨自然现象的本质和规 律,如古希腊的自然哲学。
经典物理学
以牛顿力学、电磁学等为 代表,建立了完整的经典 物理理论体系。
现代物理学
以相对论、量子力学等为 代表,揭示了微观世界的 奥秘和宇宙大尺度的结构。
大学物理课程的目的和要求
1 2
掌握物理学的基本概念和原理
放射性衰变
阐述了α衰变、β衰变、γ衰变等放射性衰变过程及 其规律。
粒子物理简介
介绍了基本粒子、相互作用、粒子加速器等基本 概念。
THANKS
感谢观看
麦克斯韦-安培定律
将磁场的变化与电场联系起来,是电磁场理论的基础。
麦克斯韦电磁场理论
麦克斯韦方程组 描述电磁场的基本规律,包括高 斯定律、高斯磁定律、法拉第电 磁感应定律和麦克斯韦-安培定律。
电磁波的应用 如无线电通信、雷达、微波炉等。
电磁波 由变化的电场和磁场相互激发而 产生的在空间中传播的电磁振荡。
大学物理ppt课件完 整版
目 录
• 绪论 • 力学 • 热学 • 电磁学 • 光学 • 近代物理学基础
01
绪论
物理学的研究对象
物质的基本结构和相互作用
研究物质的基本组成、性质以及相互作用,包 括微观粒子和宏观物体之间的相互作用。
物质的运动和变化规律
研究物质在不同条件下的运动状态、变化过程 以及相应的物理量之间的关系。
热力学第二定律
热力学第二定律的表述
热力学第二定律指出,不可能从单一热源取热使其完全转换为有用的功而不产生其他影响。也就是说,热 机的效率不可能达到100%。
卡诺定理和热力学温标

大学物理热学完整ppt课件

大学物理热学完整ppt课件
大学物理热学完整ppt课件
contents
目录
• 热学基本概念与原理 • 气体动理论与统计规律 • 热传导、对流与辐射传热方式 • 相变与相平衡原理及应用 • 热力学循环与制冷技术基础 • 热学实验方法与技巧分享
01
热学基本概念与原理
温度与热量定义
温度
表示物体冷热程度的物理量,是物体 分子热运动的平均动能的标志。
气体分子运动论的假设
01
分子是不断运动的,分子间存在相互作用力,分子间碰撞是弹
性的。
气体分子的热运动
02
描述气体分子的热运动特征,如分子的平均速率、方均根速率
等。
气体分子的速率分布
03
介绍气体分子速率分布函数的物理意义,以及麦克斯韦速率分
布律的内容和应用。
气体分子碰撞与能量交换
气体分子的碰撞
分析气体分子间的碰撞过程,包括弹性碰撞和 非弹性碰撞。
数学表达式
ΔU=Q+W,其中ΔU表示系统内能的增量,Q表示系统吸收 的热量,W表示外界对系统做的功。
热力学第二定律
内容
不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源 取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微 增量总是大于零。
数学表达式
对于可逆过程,有dS=(dQ/T);对于不可逆过程,有dS>(dQ/T),其中S表示熵 ,T表示热力学温度。
利用统计规律研究气体分子的热 运动特征、速率分布、碰撞频率 等问题。
03
统计规律与热力学 第二定律的关系
探讨统计规律与热力学第二定律 之间的联系和区别,以及它们在 描述自然现象方面的互补性。
03
热传导、对流与辐射传热 方式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从微观上考虑,理想气体有两点不同于实际气体:
(1)气体分子本身的体积可以忽略; (2)在任何情况下,理想气体的分子之间不具有相互作用。
理想气体是一个科学的抽象概念,客观上并不存在理想 气体,它只能看作是实际气体在压力很低时的一种极限 情况。
.
2.状态 平衡态 定义:在不受外界影响的条件下 对一个孤立系 统 经过足够长的时间后 系统达到一个宏观 性质不随时间变化的状态
地位: 相当于力学中的牛顿定律
.
三、 本课程中研究对象的理想特征
1.对象 理想气体
宏观定义:
严格遵守玻意耳定律
实际气体理想化: P 不太高 T 不太低
若高压 低温?
1) 在理想气体理论基础上加以修正 2) 经验 .
理想气体----是一种假想的、在任何情况下都能严 格遵循气体定律PV/T=R的气体。
1. 宏观描述方法---热力学方法 ·由实验确定的基本规律,研究热现象的宏观特性和规律。 ·对系统进行整体描述。
2. 微观描述方法---统计物理方法 ·从物质的微观结构出发,用统计平均的方法,研究热 现象及规律的微观本质。
.
第一 气体分子系统的统计分布
• 统计物理的基本思想----- 宏观上的一些物理量是组
驰豫 时间
< 103 s
实际过程太迅速了 怎么办? 1)修正原理论 2)更普遍的理论或经验
本课介绍 • 气体分子动理论
平衡态下 理想气体的状态量与微观量的关系 •热力学基础 实验的总结---必定涉及过程
结论是普适的(对象 过程不限) 但 具体的理论计算 必是. 理气、准静态过程
第 1 章 理想气体状态方程 一、几个基本概念 1.温度—物体的冷热程度 处于热平衡的系统所具有的共同的宏观性质 2.热平衡定律(热力学第零定律) 实验表明:若 A与C热平衡 B与C热平衡
小球数按空间 位置 x 分布曲线
x Δx
.
.
什么叫统计规律? 在一定的宏观条件下 大量偶然事件在整体上 表现出确定的规律 统计规律必然伴随着涨落 什么叫涨落? 对统计规律的偏离现象 涨落有时大 有时小 有时正 有时负 例如:伽耳顿板实验中
.
第二 热力学基础
从实验归纳总结
定律
热力学第一定律 ---能量转化 热力学第二定律 ---过程方向性 基础定律
.
飞镖
分布曲线
.
伽耳顿板演示
小球落入其中一 格是一个偶然事件
大量小球在空间的 分布服从统计规律
.......................................................................................................................................
则 A与B热平衡 意义:互为热平衡的物体必然存在一个相同的
特征--- 它们的温.度相同
第零定律 不仅给出了温度的概念 而且指 出了判别温度是否相同的方法
二、理想气体状态方程
PV M RT μ
M -- 质量
-- mol 质量
V -- 理气活动空间 R--普适气体恒量
R8.31J/K.mol
.
常用形式 系统内有 N个分子 每个分子质量 m
热学
B
.
目录 概述 第1章 理想气体状态方程 第2章 分子动理论 第3章 热力学第一定律 第4章 热力学第二定律
.
概述
热学研究对象及内容
1. 对象:热力学系统 ·由大量分子或原子组成 ·系统外的物体称外界
2. 内容:与热现象有关的性质和规律 热现象:物质中大量分子热运动的集体表现。
.
热学的研究方法
•大量粒子的行为--- 统计规律 例如:微观认为宏观量P
是大量粒子碰壁的平均作用力
先看一个 碰一次
fi
dIi dt
再看 fi
集体
i
A
.
一个粒子的多次行为
统计方法:
结果相同
多个粒子的一次行为
如:掷硬币 看正反面出现的比例 比例接近1/2
统计规律性: •大量随机事件从整体上表现出来的规律性 量必须很大 •统计规律性具有涨落性质(伽耳顿板演示)
1) 标况 T27K3 P 1atm
n P kT
1.013105Pa
1.013105 1.381023273
2.6 91205/m 3 十亿亿亿
.
2) 高真空 P1013mmHg T27K3
n P kT
7160011.3318.0110 2331205 73
3.5 4190/m 3 十亿
大量、无规则
统计方法
数学基础---概率论
.
讨论 1.理气状态方程
PV M RT PV RT NkT
P nkT
2.不漏气系统 各状态的关系
PV C T
.
3. P-V 图
P
P.V.T P.V.T
V
P V 图上一个点代表一个平衡态 一条线代表一个准静态过程
通常还画 P - T、P - V T - V 、T – E 图
MNm
NAm
PV
M
μ
RT
PV N R T NA
PVNkT
NA6.0213203/mol PnkT
常用形式
.
理想气体状态方程
PnkT
PV
M
μ
RT
R8.31J/K.mol
NA6.0213203/mol
k1.3 81 023J/K
n N V
k R NA
分子数密度 玻耳兹曼常数
.
热力学系统由大量粒子组成
成系统的大量分子进行无规运动的一些微观量的统计 平均值 宏观量---表征系统整体性质的物理量 可以实际的物理量 如 P T E 等 微观量—描写单个微观粒子运动状态的物理量
无法直接测量的量 组成系统的粒子(分子、原子、或其它) 的质量、动量、 能量等等
.
解决问题的一般思路 •从单个粒子的行为出发
统计的方法
-----宏观上的寂静状态
微观上系统并不是静止的-----动态平衡
用一组宏观量描述某时的状态 P T
P1 T1
P2 T2
非平衡态.
3.过程 准静态过程
每一时刻系统都处于平衡态 实际过程的理想化---无限缓慢(准) “无限缓慢”:系统变化的过程时间>>驰豫时 间 例1 气体的准静态压缩
过程时间 ~ 1 秒 .
.
第1章结束
第2章 分子动理论 §1 理想气体的压强和温度 §2 能量均分定理 §3 麦克斯韦速率分布律 §4气体分子的平均自由程
.
§1 理想气体的压强和温度 一、关于每个分子的力学性质的假设
1. 质点 PnkT P0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞 3. 除碰撞外 分子间无相互作用
相关文档
最新文档