(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学复习题目

电动力学复习题目一. 选择题1. 在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线与导体表面的关系;在恒定电流情况下,导体内的电场线与导体表面的关系。
【 】A. 静电时,电场线垂直于导体表面,恒定电流时,电场线平行于导体表面;B. 静电时,电场线平行于导体表面,恒定电流时,电场线垂直于导体表面;C. 两种情况下,电场线都垂直于导体表面;D. 两种情况下,电场线都平行于导体表面。
2. 两个无限大的接地导体平面组成一个060的二面角,在二面角内与两导体平面等距离处放一个点电荷Q ,则它的像电荷的个数为。
【 】A. 3;B. 5;C. 7;D. 无限多个.3. 阿哈罗诺夫-玻姆效应说明了: 【 】A. 磁场B 不能唯一地确定矢势A ;B. 磁场可以用磁标势描述;C. 磁场的物理效应不能完全用B 描述;D. 超导体内部的磁感应强度0B =.4. 横截面半径为b 的无线长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能量为: 【 】A. 与b 无关;B. 正比于2b ;C. 与I 无关;D. 正比于I .5. 三角形相对于参考系∑'静止,且它的一边与x 轴平行,设参考系∑'相对于参考系∑以速度为0.6C (C 为光速)沿x 轴运动,在∑和∑'分别测得的该三角形面积S 与S '之比:A. 3:5;B. 5:4;C. 25:16;D. 4:5. 【 】6. 已经知道0z B B e =,则对应的矢势A 为: 【 】A. ()0,0,0A B y =-;B. ()00,,0A B y B x =;C. ()00,,0A B x =-;D. ()00,,0A B y B x =--.7. 如果有下面的原因,高斯定理不成立 【 】A. 存在磁单极;B. 导体为非等势体;C. 平方律不能精确成立;D. 光速为非普适常数.8. 介电常数为ε的无限均匀介质中的电场为E ,如果在介质中沿电场方向挖一窄缝,则缝中的电场强度为: 【 】 A. 0E εε; B. 0E εεε-; C. 0E εε; D. E . 9. 一飞船空间仓以相对于地面的速度v 运动,一物体从仓顶部落下,空间仓上观察者所测的时间是地面上观察者的则空间仓的飞行速度为: 【 】;B. 15c ;;D. 45c . 10. 区域内任意一点r 处的静磁场可用磁标势描述,只当: 【 】A. 区域内各处电流密度为零;B. H 对区域任意封闭路径积分为零;C. 电流密度守恒;D. r 处的电流密度为零11. 在半径为R 的球内充满三种介电常数分别为123,,εεε的均匀介质,它们对球心立体角分别为,,αβγ,在球心放一点电荷,球面为接地导体壳,如图,则三种对应的导体壳内表面上的自由电荷密度之比为:【 】A. 1:1:1;B.123::εεε;C. ::αβγ;D. 123::αεβεγε.12. 两个半无限大的接地导体平面组成一个两面角,在两面角内与两导体平面等距离放一个点电荷Q ,它的像电荷的个数为7,则两面角的度数为:【 】A. 300;B. 450;C. 600;D. 900.13. 一截面半径为b 的无限长直圆柱导体,均匀地流过电流I ,则储存单位长度导体内的磁场能为:【 】A. 与无关b ;B. 正比于2b ;C. 与I 无关;D. 正比于I .14. 已知电磁场的任一组矢势和标势为(,)A φ,根据一个标量函数ψ获得另一组势(,)A φ''的规范变换式为【 】A. , A A ψφφ''=+∇=;B. , A A t ψφφ∂''==-∂;C. ,A A tψψφφ∂''=+∇=-∂; D. , A A φφ''==.15. 位移电流是由麦克斯韦首先引入的,其实质是【 】A. 电场的变化率;B. 磁场的变化率;C. 电介质不均匀引起的;D. 磁介质不均匀引起的.16. 接地无限大平面导体板附近有点电荷Q ,到导体板的距离为a ,则真空中点电荷Q 所受电场力的大小为:【 】 A.2204Q aπε; B.2208Q a πε; C. 22016Q a πε;D. 22032Q a πε. 17. 某磁场的矢势在直角坐标系(,,x y z e e e 用来表示三个坐标轴方向的单位矢量)中的表达式为01()2x y A B ye xe =-+,则磁场为:【 】 A.0x B e ; B.0y B e ; C. 0z B e ; D. ()0x y B e e +.18. 半径为R 的导体球上带Q 的电荷,则此电荷体系的电偶极矩和电四极矩分别为:【 】A.2, QR QR ;B.20, QR ;C. , 0QR ;D. 0, 0.19. 微波谐振腔的长、宽、高分别为3cm 、2cm 、1cm ,则谐振电磁波最大波长的谐振波模为【 】A.1,0,0;B.1,1,0;C. 1,1,1;D. 3,2,1.20. 当电磁波由介质1入射介质2(设12εε>)发生全反射时,则:DA. 介质2内不可能存在电磁波;B. 入射波与反射波的能流密度矢量的数值相等C. 入射波与反射波电场强度矢量的幅度相等,且相位相同;D. 入射波与反射波电场强度矢量的幅度相等,且相位不同.21. 一电磁波垂直入射到一个理想的导体表面上时AA. 反射波的E 矢量的相位改变π;B. 放射波的H 矢量的相位改变π;C. 放射波的E 矢量和H 矢量的相位都改变π;D. 放射波的E 矢量合H 矢量的相位都不改变.22. 当电磁波在矩形波导中传播时,该电磁波的频率CA. 可以任意的;B.唯一限制是频率必须是分立的;C. 不能低于某一值;D. 不能高于某一值.23. 由两介质分界面上磁场的边值关系可知,在两介质分界面上,矢势A :AA. 是连续的;B. 是不连续的;C. 切向分量连续,法向方向不连续;D. 切向分量不连续,法向方向连续.24. 用矢势和电流分布表示的静磁场的总能量为:B A.012W A JdV μ=⋅⎰; B . 12W A JdV =⋅⎰ C. 012W A JdV μ=⨯⎰; D. 01W A JdV μ=⨯⎰二. 判断题1. 任何包围电荷的曲面都有电通量,但是散度只存在于有电荷分布的区域内。
郭硕鸿《电动力学》课后答案

取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:
同理,在极板B内和介质2内作高斯柱面,由高斯定理得:
因此
即 只有切向分量,从而 只有切向分量,电场线与导体表面平行。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为 ,板间填充电导率为 的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求 随时间的衰减规律。
(3)求与轴相距为 的地方的能量耗散功率密度。
在介质1和介质2内作高斯柱面,由高斯定理得:
所以有 ,
由于E
所以 E
当介质漏电时,重复上述步骤,可得:
, ,
介质1中电流密度
介质2中电流密度
由于电流恒定, ,
再由E 得
E
E E
E
E
12.证明:
(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足
其中 和 分别为两种介质的介电常数, 和 分别为界面两侧电场线与法线的夹角。
其中 和 为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性, 和 均与 无关。考虑到 时 为有限值; 时 ,故拉普拉斯方程的解为:
由此 (1)
(2)
边界条件为: (3)
(4)
将(1)(2)代入(3)和(4),然后比较 的系数,可得:
于是得到所求的解为:
在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。
电动力学答案(郭硕鸿+第三版) chapter3

(ρ > a)
a ∴ r = xr − xr' = (ρ cosϕ − a cosϕ')2 + (ρ sinϕ − a sinϕ')2 + z'2
d = ρ 2 + a2 + z'2 −2aρ cos(ϕ −ϕ') h rr = xr − xr'= ( ρ cosϕ − a cosϕ')erx (ρ sinϕ − a sinϕ')ery − z'erz k dlr = −adϕ'⋅sinϕ'erx + adϕ'⋅cosϕ'ery . ∴ dlr × rr = −az'cosϕ'dϕ'erx − az'sinϕ'dϕ'ery + [a2 − aρ cos(ϕ'−ϕ)]dϕ'erz
第三章 静磁场
场是均匀强磁场 故只须求出其中轴线上的磁感应强度 即可知道管内磁场 由其无限长的特性 不妨取场点为零点 以柱坐标计算
rr = −a cosϕ 'erx − a sin ϕ 'ery − z'erx
dlr = −adϕ '⋅sinϕ'erx + adϕ'⋅cosϕ 'ery ∴ dlr × rr = (−adϕ '⋅sin ϕ 'erx + adϕ '⋅cosϕ'ery ) × (−a cosϕ'erx − a sin ϕ'ery − z'erx )
erθ
ww ∴ Hr 2 − Hr1 = 0,满足边界条件 nr × (Hr 2 − Hr1) = 0
电动力学 第三版_郭硕鸿_课后答案[第3章]
![电动力学 第三版_郭硕鸿_课后答案[第3章]](https://img.taocdn.com/s3/m/96c1ce326fdb6f1aff00bed5b9f3f90f77c64d45.png)
电动力学习题解答参考 第三章 静磁场1. 试用A r 表示一个沿z 方向的均匀恒定磁场0B r写出A r的两种不同表示式证明两者之差是无旋场解0B r 是沿z 方向的均匀的恒定磁场即ze B B r r =0且AB r r×∇=0在直角坐标系中zx y y z x x y z e yA x A e x A z A e z A y A A r r rr )()()(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇如果用A r 在直角坐标系中表示0B r 即=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂000y A x A x A z A z A y A xy zx yz 由此组方程可看出A r有多组解如解1)(,00x f y B A A A x Z y +−=== 即 xe xf y B A rr )]([0+−= 解2)(,00y g x B A A A Y z x +=== 即 ye y g x B A rr )]([0+=解1和解2之差为yx e y g x B e x f y B A r r r )]([)]([00+−+−=∆则zx y y z x x y z e y A xA e x A z A e z A y A A r r r r ])()([])()([])()([)(∂∆∂−∂∆∂+∂∆∂−∂∆∂+∂∆∂−∂∆∂=∆×∇这说明两者之差是无旋场2.均匀无穷长直圆柱形螺线管每单位长度线圈匝数为n电流强度为I 试用唯一性定理求管内外磁感应强度B解根据题意得右图取螺线管的中轴线为z 轴本题给定了空间中的电流分布故可由∫×='43dV r rJ B rr r πµ求解磁场分布又J r 在导线上所以∫×=34r r l Jd B r r r πµ1 螺线管内由于螺线管是无限长理想螺线管故由电磁学的有关知识知其内部磁内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场场是均匀强磁场故只须求出其中轴线上的磁感应强度即可知道管内磁场 由其无限长的特性不妨取场点为零点以柱坐标计算x y x e z e a e a r r r r r ''sin 'cos −−−=ϕϕyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−=)''sin 'cos ()'cos ''sin '(x y x y x e z e a e a e ad e ad r l d r r r r r r r −−−×⋅+⋅−=×∴ϕϕϕϕϕϕ zy x e d a e d az e d az rrr'''sin '''cos '2ϕϕϕϕϕ+−−= 取由'''dz z z +−的以小段此段上分布有电流'nIdz ∫++−−=∴232220])'([)'''sin '''cos '('4z a e d a e d az e d az nJdz B z y x rr r r ϕϕϕϕϕπµ I n az a z d nI e nI z a dz a d z 0232023222200]1)'[()'(2])'([''4µµϕπµπ=+=⋅+=∫∫∫∞+∞−∞∞−r 2)螺线管外部:由于是无限长螺线管不妨就在xoy 平面上任取一点)0.,(ϕρP 为场点)(a >ρ 222')'sin sin ()'cos cos ('z a a x x r +−+−=−=∴ϕϕρϕϕρrr )'cos(2'222ϕϕρρ−−++=a z a ('=−=x x r r r r x e a r )'cos cos ϕϕρ−zy e z e a rr ')'sin sin (−−ϕϕρyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−= zy x e d a a e d az e d az r l d r r r r r ')]'cos([''sin '''cos '2ϕϕϕρϕϕϕϕ−−+−−=×∴+−+−⋅=∴∫∫∫∫∞∞−∞∞−'''sin '''''cos ''[43203200dz e r d az d dz e r d az d nI B y x rr r ϕϕϕϕϕϕπµππ]')'cos('3220∫∫∞∞−−−+z e dz r a a d rϕϕρϕπ由于磁场分布在本题中有轴对称性而螺线管内部又是匀强磁场且螺线管又是无限长故不会有磁力线穿出螺线管上述积分为0所以0=B r内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场3. 设有无穷长的线电流I 沿z 轴流动以z<0空间充满磁导率为µ的均匀介质z>0区域为真空试用唯一性定理求磁感应强度B 然后求出磁化电流分布解本题的定解问题为×∇=×∇=<−=∇>−=∇===010020212201211)0(,)0(,z z z A A AA z J A z J A r r r rrr rr µµµµ由本题具有轴对称性可得出两个泛定方程的特解为∫∫==rl Id x A rl Id x A rr r rr r πµπµ4)(4)(201由此可推测本题的可能解是<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 验证边界条件1)(,12021=−⋅==B B n A A z r rr r r 即 题中,=⋅=θe e e n z z rr r r 且所以边界条件1满足2)(,11120102=−××∇=×∇==H H n A A z z r r rr r即µµ本题中介质分界面上无自由电流密度又θθπµπµe r I B H e rI B H r r r r r r 2222011====,012=−∴H H r r 满足边界条件0)(12=−×H H n r r r综上所述由唯一性定理可得本题有唯一解<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 在介质中MB H r r r −=0µ故在z<0的介质中22H B M r rr −=µ内部资料料料内部资料内部即θθθµππµπe r e r e r M )1(22200−=−⋅= ∴介质界面上的磁化电流密度r z M e r I e e r I n M r r r r r r )1(2)1(200−=×−=×=µµπµµπαθ总的感应电流)1()1(20200−=⋅⋅⋅−=⋅=∫∫µµϕµµππθθI e d r e r I l d M J Mr r rr 电流在z<0的空间中沿z 轴流向介质分界面4. 设x<0 半空间充满磁导率为µ的均匀介质x>0 空间为真空今有线电流I 沿z 轴流动求磁感应强度和磁化电流分布解假设本题中得磁场分布仍呈轴对称则可写作ϕπµe rI B vv 2′=其满足边界条件0)(0)(1212==−×=−⋅αvv v v v vv H H n B B n 即可得在介质中ϕµπµµe r I B H vv v 22′== 而Me r I M B H v v v v v −′=−=ϕµπµµ0022∴在x<0的介质中ϕµµµµπµe r I M vv 002−′= 则∫=ld M I Mvv 取积分路线为B A C B →→→的半圆,ϕe AB vQ ⊥ AB ∴段积分为零 002)(µµµµµ−′=I I M ϕπµe r I I B M v v 2)(0+=∴∴由ϕϕπµπµe rI B e r I I M v v v 22)(0′−==+可得02µµµµµ+=′内部资料料料内部资料内∴空间ϕπµµe rB 0+= I I M 0µµµµ+−=沿z轴5.某空间区域内有轴对称磁场在柱坐标原点附近已知)21(220ρ−−≈z C B Bz 其中B 0为常量试求该处的ρB 提示用,0=⋅∇B r 并验证所得结果满足0Hr×∇解由B v 具有轴对称性设zz e B e B B v v v +=ρρ其中 )21(220ρ−−=z c B B z 0=⋅∇B v Q 0)(1=∂∂+∂∂∴z B zB ρρρρ即02)(1=−∂∂cz B ρρρρ A cz B +=∴2ρρρ(常数) 取0=A 得ρρcz B =z e z c B e cz B vv v )]21([220ρρρ−−+=∴10,0==D j v vQ 0=×∇∴B v 即 0)(=∂∂−∂∂θρρe B z B z v2代入1式可得2式成立∴ρρcz B = c 为常数6. 两个半径为a 的同轴线圈形线圈位于L z ±=面上每个线圈上载有同方向的电流I1 求轴线上的磁感应强度2 求在中心区域产生最接近于均匀的磁场时的L 和a 的关系提示用条件022=∂∂z B z解1由毕萨定律L 处线圈在轴线上z 处产生得磁感应强度为内部资料料料内部资料内,11z z e B B = ∫∫−+==θπαπd L z a r B z 232231])([4sin 4 232220])[(121a z L Ia +−=µ同理L 处线圈在轴线上z处产生得磁感应强度为zz e B B vv 22=2322202])[(121a z L Ia B z++=µ∴轴线上得磁感应强度zz z e a z L a z L Ia e B B v v v++++−==2322232220])[(1])[(121µ 20=×∇B vQ 0)()(2=∇−⋅∇∇=×∇×∇∴B B B v v v 又0=⋅∇Bv0,0222=∂∂=∇∴z B zB v 代入1式中得62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−+−−++−+−−−+−−−62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−++−−++ ++++++−−0取z得)(12])(2)(2[)(22522212222122322=+++−+−+−L a L a L L a L a L 2225a L L +=∴内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场a L 21=∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上试解矢势A r的微分方程设导体的磁导率为0µ导体外的磁导率为µ解定解问题为×∇=×∇=∞<>=∇<−=∇外内内外内外内A A A A A a r A a r J A a a v v v vvv vv µµµ11)(,0)(,00202选取柱坐标系该问题具有轴对称性且解与z 无关令ze r A A v v )(内内=z e r A A vv )(外外代入定解问题得=∂∂∂∂−=∂∂∂∂0))(1))((10r r A r rr J r r A r r r 外内µ 得43212ln )(ln 41)(C r C r A C r C Jr r A +=++−=外内µ由∞<=0)(r r A 内 得01=C 由外内A A v v ×∇=×∇µµ110 得 232Ja C µ−=内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场由aaA A 内外v v =令0==aaA A 内外v v 得 a Ja C Ja C ln 2,4124202µµ==−=∴ra a J A r a J A ln 2)(412220v v v vµµ外内8.假设存在磁单极子其磁荷为Qm它的磁场强度为304r rQ H m r r πµ=给出它的矢势的一个可能的表示式并讨论它的奇异性解rm m e rQ r r Q H v v v 2030144πµπµ== 由rm e rQ H B A v v v v 204πµ===×∇ 得=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂0])([10)](sin 1[14])(sin [sin 12θφθπφθθθθφθφrr m A rA r r rA r A r r Q A A r (1)令,0==θA A r得rQ A m πθθθφ4sin )(sin =∂∂θθπθπθθφθφsin cos 144sin sin 0r Q A d rQ A mm −=∴=∴∫显然φA 满足1式∴磁单极子产生的矢势φθθπe r Q A m vv sin cos 14−=内部资料料料内部资料内部当2πθ→时φπe rQ A m v v 4→当πθ→时∞→A v故A v的表达式在πθ=具有奇异性A v不合理9. 将一磁导率为µ半径为R 0的球体放入均匀磁场0H r内求总磁感应强度B r 和诱导磁矩mr解根据题意以球心为原点建立球坐标取0H v 的方向为zev此球体在外界存在的磁场的影响下极化产生一个极化场并与外加均匀场相互作用最后达到平衡保持在一个静止的状态呈现球对称本题所满足的定解问题为−=∞<=∂∂=∂∂=>=∇<=∇∞==θϕϕϕµϕµϕϕϕϕcos )(,,,0,0000002221212121R H R R R R R R R R R m R m m m m m m m 由泛定方程和两个自然边界条件得∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++−=010)(cos cos 2n nn nm P R d R H θθϕ由两个边界条件有+−−=+−=∑∑∑∑∞=+∞=−∞=+∞=0200001100100000)(cos )1(cos )(cos )(cos cos )(cos n n n nn n n n n nn n n n nn P R d n H P nR a P R d R H P R a θµθµθµθθθ得内部资料料料内部资料内≠==+−=+)1(,0223000101n d a R H d n n µµµµµµ>⋅+−+−=<+−=∴00230000000,cos 2cos ,cos 2321RR H R R R H R R R H m m θµµµµθϕθµµµϕ+==+=+−+=−∇=00011000000012323sin 23cos 231H H B H e H e H H r m v v v v vv v µµµµµµµµθµµµθµµµϕθ−⋅+−+==−⋅+−+=⋅+−−−⋅+−+=−∇=])(3[2])(3[2sin ]21[cos ]221[3050300000020230503000003300003300022R H R R R H R H H B R H R R R H R H e H R R e H R R H r m v v v v v v v vv v v v vv v µµµµµµµµµµµθµµµµθµµµµϕθ >−⋅+−+<+=∴)()(3[2)(,230305030000000000R R R H R R R H R H R R H B vv v v v vv µµµµµµµµµµ当B v在R>R 0时表达式中的第二项课看作一个磁偶极子产生的场θµµµµϕcos 20230002H RR m ⋅+−∴中可看作偶极子m v产生的势即R H R R H R R R Rm v v v v ⋅⋅+−=⋅+−=⋅⋅02300002300032cos 241µµµµθµµµµπ HR m v v300024⋅+−=∴µµµµπ10. 有一个内外半径为R 1和R 2的空心球位于均匀外磁场0H r内球的磁导率为µ求空内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场腔内的场Br讨论0µµ>>时的磁屏蔽作用解根据题意以球心为原点取球坐标选取0H v的方向为z e v在外场0H v的作用下 球壳极化产生一个附加场并与外场相互作用最后达到平衡B v的分布呈现轴对称定解问题−=∞<∂∂=∂∂∂∂=∂∂==>=∇<<=∇<=∇∞======θϕϕϕµϕµϕµϕµϕϕϕϕϕϕϕcos ,,,0,0,00000322121231223121232121321R H RR R R R R R R R R R R m R m R R m m R R m m R R m m R R m m m m m 由于物理模型为轴对称再有两个自然边界条件故三个泛定方程的解的形式为∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++=01)(cos (2n n n nn n m P Rc R b θϕ∑∞=++−=010)(cos cos 3n nn nm P Rd R H θθϕ因为泛定方程的解是把产生磁场的源0H v做频谱分解而得出的分解所选取的基本函数系是其本征函数系)}(cos {θn P 在本题中源的表示是)(cos cos 100θθRP H R H −=−所以上面的解中)0(,0≠====n d c b a n n n n 故解的形式简化为θθϕθϕθϕcos cos cos )(cos 2102111321RdR H Rc R b R a mm m +−=+==内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场代入衔接条件得−=−−−=+−=++=2(22(32113210031110122120221212111111R c b R d H R c b a R d R H R c R b R c R b R a µµµµµ解方程组得3200312032000320001)2)(2()(2)(3)2(3R R R H R H a µµµµµµµµµµµµ++−−−++= 32003120320001)2)(2()(2)2(3R R R H b µµµµµµµµµ++−−+= 3200312031320001)2)(2()(2)(3R R R R H c µµµµµµµµµ++−−−= 320320031203132000620001)2)(2()(2)(3)2(3R H R R R R H R H d +++−−−++=µµµµµµµµµµµµ而 )3,2,1(,00=∇−==i H B i m i i ϕµµvv ze a B v v 101µ−=∴ 003212000321])()(2)2)(2()(11[HR R R R v µµµµµµµ−−++−−=当0µµ>>时1)(2)2)(2(2000≈−++µµµµµµ 01=∴B v 即球壳腔中无磁场类似于静电场中的静电屏障11. 设理想铁磁体的磁化规律为000,M M H B µµ+=rr 是恒定的与H r无关的量今将一个内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场理想铁磁体做成均匀磁化球0M为常值浸入磁导率为'µ的无限介质中求磁感应强度和磁化电流分布解根据题意取球心为原点做球坐标以0M v的方向为z e v本题具有球对称的磁场分布满足的定解问题为=∞<=∂∂′−∂∂=>=∇<=∇∞===0cos ,,0,021021021*******02R m R m R m m R R m m m m M R RR R R R ϕϕθµϕµϕµϕϕϕϕ ∴∑∞==0)(cos 1n n n nm P R aθϕ∑∞=+=01)(cos )(2n n n nm P R b θϕ代入衔接条件对比)(cos θn P 对应项前的系数得)1(,0≠==n b a nn µµµ+′=2001Ma 30012R M b µµµ+′=)(,cos 20001R R R M m <+′=∴θµµµϕ)(,cos 20230002R R RR M m>+′=θµµµϕ由此µµµµµµ+′′=+=<22,0000110M M H B R R v r v v ,0R R > )(3[2305030022RM R R R M R B m v r v v v −⋅+′′=∇′−=µµµµϕµ >−⋅+′′<+′′=∴)()(3[2)(,2203050300000R R R M R R R M R R R M B v r v v vv µµµµµµµµ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场又0)()(0120其中αααµv v v vv v+=−×M R B B n 代入B v的表达式得ϕθµµµαe M Mvv sin 230′′12. 将上题的永磁球置入均匀外磁场0H r中结果如何解根据题意假设均匀外场0H v 的方向与0M v的方向相同定为坐标z 轴方向定解问题为−=∞<=∂∂−∂∂=>=∇<=∇∞===θϕϕθµϕµϕµϕϕϕϕcos cos ,,0,00000002022102102121R H M R RR R R R R m R m R m m R R m m m m 解得满足自然边界条件的解是)(,cos 011R R R a m <=θϕ)(,cos cos 02102R R R d R H m >+−=θθϕ代入衔接条件0013010020100012M a R d H R d R H R a µµµµ=+++−=得到 0000123µµµµ+−=H M a 3000012)(R H M d µµµµµ+−+=)(,cos 23000001R R R H M m <+−=∴θµµµµϕ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场)(,cos 2)(cos 0230000002R R RR H M R H m>+−++−=θµµµµµθϕ]sin 23cos 23[000000000011θθµµµµθµµµµϕe H M e H M H r m v v v +−−+−−=−∇=∴ µµµµ+−−=0000023H M v v )(,22230002000001R R M H M H B <+++=+=v v v v v µµµµµµµµµ−+−+−−−=−∇=r m e R R H M H H v v )cos 22)(cos [(23000000022θµµµµµθϕ 350230000000)(3])sin 2)(sin (Rm R R R m H e R R H M H v v r r v v−⋅+=+−++−−θθµµµµµθ ])(3[3500202RmR R R m H H B v v r r v v v −⋅+==µµ030003000022H R R M m v vv µµµµµµµ+−++=13. 有一个均匀带电的薄导体壳其半径为R 0总电荷为Q今使球壳绕自身某一直径以角速度ω转动求球内外的磁场Br提示本题通过解m ϕ或A r的方程都可以解决也可以比较本题与5例2的电流分布得到结果解根据题意取球体自转轴为z 轴建立坐标系定解问题为=∞<=∂∂=∂∂−=∂∂−∂∂>=∇<=∇∞===0)(,4sin )(1,0,021211221000000202R m R m m m R R m m m m R R R R R Q R R R R R ϕϕϕµϕµπθωθϕθϕϕϕ其中4sin R Q πθωσ=是球壳表面自由面电流密度解得满足自然边界条件的解为内部资料料料内部资料内部)(,cos 0212R R Rb m >=θϕ代入衔接条件=+−=−024301102101R b a R Q R b R a πω解得 016R Q a πω−= πω12201R Q b =)(,cos 6001R R R R Q m <−=∴θπωϕ)(,cos 1202202R R R R Q m>=θπωϕ00016sin 6cos 61R Q e R Q e R Q H r m πωθπωθπωϕθv vv v =−=−∇=∴ωπµµvr v 001016R Q H B == ])(3[41sin 12cos 1223532032022Rm R R R m e R R Q e R R Q H r r m r v v v vv v −⋅=+=−∇=πθπωθπωϕ其中ωvv 320QR m =])(3[4350202RmR R R m H B r v v v v v −⋅==πµµ14. 电荷按体均匀分布的刚性小球其总电荷为Q 半径为R 0它以角速度ω绕自身某以直径转动求1 它的磁矩2 它的磁矩与自转动量矩之比设质量M 0是均匀分布的 解1磁矩∫×=dV x J x m )(21v v v v内部资料料料内部资料内又 rR x e R == )(34)(30R R v x J ×==ωπρ∫∫×=××=∴φθθπωφθθωπφd drd R e e R Q d drd R R R R Q m r 2430230sin )(4321sin )(4321v v v v r v 又 )sin cos (cos sin y x z r e e e e e e vv v v v v φφθθθφ−−+=−=×∫∫∫−−+=∴ππφθθφφθθπω20243sin )sin cos (cos [sin 83R y x z d drd R e e e R Q m vv v v ωφθθπωππv v 5sin 8320200043300QR d drd R e R Q R z ==∫∫∫2)自转动量矩∫∫∫∫××=×=×==dV R R R M dm v R P d R L d L )(43300v v v v v v v v vωπ52sin 43sin )sin cos (cos [sin 43sin )(sin 43sin )sin (43sin )(43200203430200024302230022300223000ωφθθπωφθθφφθθπωφθθθωπφθθθωπφθθωπππππθφv v vv v v v v v v v R M d drd R R M d drd R e e e R M d drd R e R R M d drd R e e R R M d drd R e e e R R M R R y x z r r z r ==−−+=−=×−=××=∫∫∫∫∫∫∫∫∫ 0200202525M Q R M QR L m ==∴ωωv v v v15. 有一块磁矩为m r的小永磁体位于一块磁导率非常大的实物的平坦界面附近的真空中求作用在小永磁体上的力F r.内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场解根据题意因为无穷大平面的µ很大则可推出在平面上所有的H v均和平面垂直类比于静电场构造磁矩m r 关于平面的镜像m ′r则外场为=⋅=∇−=2304cos 4r m R R m B m m e πθπϕϕµv v v)sin cos (4]sin cos 2[430330θθθθαπµθθπµe e r m e r e r m B rr e vv r v v +=−−−=∴m v∴受力为za r ee a m B m F v v vv )cos 1(643)(24022απµαθ+−=⋅∇⋅===内部资料料料内部资料内部。
电动力学_知识点总结

第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则为稳恒电流,电流线闭合。
稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。
2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。
介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。
向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。
2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。
电动力学答案(郭硕鸿+第三版) chapter6

w.
指示时间相同
∴ 在 4 式中 有 t = t ′
ww
c2 v2 t (1 − 1 − 2 ) 代入 1 式 v c
得
x′ = −
c2 v2 t (1 − 1 − 2 ) = − x v c x
相遇时
t = t′ =
c2 v2 (1 − 1 − 2 v c
即为时钟指示的时刻 火箭由静止状态加速到 v =
v v d 2x F =m 2 dt
m
o’
x’
电动力学习题参考 由伽利略变换关系有 在Σ 中
第六章 狭义相对论
v E=
x − vt y v v { ex + ey + 3 3 4πε 0 [( x − vt ) 2 + y 2 + z 2 ] 2 [( x − vt ) 2 + y 2 + z 2 ) 2 q + z [( x − vt ) 2 + y 2 + z 2 )
由变换关系
得 Σ ′ 系中的入射光线
课
∴
∫
dv = a ′dt v 2 32 ∫ 0 (1 − 2 ) c
t
k ix = k cosθ 0 , k iy = k sin θ 0 , k iz = 0, ω i = ω 0
z z’
x ′ = x − vt y′ = y z′ = z t ′ = t
1 牛顿定律在伽利略变换下是协变的 以牛顿第二定律为例
Σ
y
Σ′ v r
v v v r′
y’
o
x
在 Σ 系下
Q x ′ = x − vt , y ′ = y, z ′ = z , t ′ = t
郭硕鸿《电动力学》第三版 课后答案详细解释

证明: (1) f (u )
f (u ) f (u ) f (u ) df u df u df u ex ey ez ex ey ez x y z du x du y du z df u u u df ( ex ey ez ) u du x y z du Ax (u ) Ay (u ) Az (u ) dAx u dAy u dAz u (2) A(u ) x y z du x du y du z d Ay dA dA u u u dA ( x ex e y z ez ) ( ex ey e z ) u du du du x y z du
(2)在(1)中令 A B 得:
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
即
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
方向由原点指向场点。 证明: ( 1 / r ) r / r
3
方法(II)
mr 1 1 ) [m ( )] [( ) m ] 3 r r r 1 1 1 1 ( m ) (m ) [ ( )]m [( ) ]m r r r r 1 1 (m ) [ 2 ]m r r 2 其中 (1 / r ) 0 , (r 0) 1 A (m ) , ( r 0 ) r mr 1 又 ( 3 ) [ m ( )] r r 1 1 1 1 m [ ( )] ( ) ( m ) (m )( ) [( ) ]m r r r r 1 (m )( ) r 所以,当 r 0 时, A 7. 有一内外半径分别为 r1 和 r2 的空心介质球,介质的电容率为 ,使介质球内均匀带静 A (
电动力学郭硕鸿(第三版)第一章习题答案

U
U U (
3 H (
(
3
3 (
(
> U
U U
I U@
I
U
U U
U
I
I
3 3Q 3Q
U U Q
3Q
3 3Q
U
U U
I U U U
3
W
W U
U
-
- I
U
G9 O UGU
3
E
I O UGU
D U
O
I
OQ
E D
:
E ' (G9
E
O
I
GU
O
I
OQ E
D
D U
D
: W
O I OQ E D
I
W
O
I
OQ E D
O
O
GO GO
U U
U U
GO
GO
GO GO
O O
U U
GO
O
GO
U U
O
GO
O
GU U
GO
O
U
GO GO
O O
U U
) )
,,
O O
X G$ GX
H[
H\
$ X
[
\
H]
$]
]
\
$[ X $\ X $] X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
8. 内外半径分别为1r 和2r 的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流f J ,导体的磁导率为μ,求磁感应强度和磁化电流。
9. 证明均匀介质内部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ的)/1(0εε--倍。
10. 证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律) 11. 平行板电容器内有两层介质,它们的厚度分别为1l和2l,电容率为1ε和2ε,今在两板接上电动势为E 的电池,求:(1)电容器两极板上的自由电荷面密度1fω和2fω;(2)介质分界面上的自由电荷面密度3fω。
(若介质是漏电的,电导率分别为1σ和2σ当电流达到恒定时,上述两物体的结果如何?)12.证明:(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足1212tan tan εεθθ=其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。
(2)当两种导电介质内流有恒定电流时,分界面上电场线的曲折满足1212tan tan σσθθ= 其中1σ和2σ分别为两种介质的电导率。
13.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为fλ,板间填充电导率为σ的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求fλ随时间的衰减规律。
(3)求与轴相距为r的地方的能量耗散功率密度。
(4)求长度l的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率。
第二章静电场1. 一个半径为R的电介质球,极化强度为2/rK rP=,电容率为ε。
(1)计算束缚电荷的体密度和面密度:(2)计算自由电荷体密度;(3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ;(2)导体球上带总电荷Q3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
提示:空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。
4. 均匀介质球(电容率为1ε)的中心置一自由电偶极子f p ,球外充满了另一种介质(电容率为2ε),求空间各点的电势和极化电荷分布。
5. 空心导体球壳的内外半径为1R 和2R ,球中心置一偶极子p 球壳上带电Q ,求空间各点的电势和电荷分布。
6. 在均匀外电场0E 中置入一带均匀自由电荷f ρ的绝缘介质球(电容率为ε),求空间各点的电势。
7. 在一很大的电解槽中充满电导率为2σ的液体,使其中流着均匀的电流J f 0。
今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布,讨论21σσ>>及12σσ>>两种情况的电流分布的特点。
8. 半径为0R 的导体球外充满均匀绝缘介质ε,导体球接地,离球心为a 处(a >0R )置一点电荷f Q ,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。
)(0R R ≥9.接地的空心导体球的内外半径为1R 和2R ,在球内离球心为a 处(a <1R )置一点电荷Q 。
用镜像法求电势。
导体球上的感应电荷有多少?分布在内表面还是外表面?'10. 上题的导体球壳不接地,而是带总电荷0Q ,或使具有确定电势0ϕ,试求这两种情况的电势。
又问0ϕ与0Q 是何种关系时,两情况的解是相等的?11. 在接地的导体平面上有一半径为a 的半球凸部(如图),半球的球心在导体平面上,点电荷Q 位于系统的对称轴上,并与平面相距为b (b >a ),试用电象法求空间电势。
(0(12. 有一点电荷Q位于两个互相垂直的接地导体平面所围成的直角空间内,它到两个平面的距离为a和b,求空间电势。
13. 设有两平面围成的直角形无穷容器,其内充满电导率为σ的液体。
取该两平面为xz面和yz面在),,(zyx和),,(zyx-两点分别置正负电极并通以电流I,求导电液体中的电势。
),z,(xQ),z-(xQ-014. 画出函数dx x d /)(δ的图,说明)()(x p δρ∇⋅-=是一个位于原点的偶极子的电荷密度。
15. 证明:(1)a x ax /)()(δδ= )0(>a ,(若0<a ,结果如何?)(2)0)(=x x δ16. 一块极化介质的极化矢量为)'(x P ,根据偶极子静电势的公式,极化介质所产生的静电势为⎰⋅=VdV r '4)'(30πεϕrx P ,另外根据极化电荷公式)'('x P ⋅-∇=p ρ及P n ⋅=p σ,极化介质所产生的电势又可表为⎰⎰⋅+⋅∇-=S V r d dV r 004')'('4)'('πεπεϕS x P x P ,试证明以上两表达式是等同的。
17. 证明下述结果,并熟悉面电荷和面偶极层两侧电势和电场的变化。
(1)在面电荷两侧,电势法向微商有跃变,而电势是连续的。
(2)在面偶极层两侧,电势有跃变012/εϕϕP n ⋅=-,而电势的法向微商是连续的。
(各带等量正负面电荷密度±σ而靠的很近的两个面,形成面偶极层,而偶极矩密度l P σσ0lim →∞→=l )18. 一个半径为R 0 的球面,在球坐标2/0πθ<<的半球面上电势为0ϕ在πθπ<<2/的半球面上电势为0ϕ-,求空间各点电势。
提示:⎰+-=-+111112)()()(n x P x P dx x P n n n ,1)1(=n P ,⎪⎩⎪⎨⎧=⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅-==偶数)(奇数)(n n n n P n n ,642)1(531)1(,0)0(2/0,写出A 的两种n ,电流B 。
3. 设有无限长的线电流I沿z轴流动,在z<0空间充满磁导率为μ的均匀介质,z>0区域为真空,试用唯一性定理求磁感应强度B,然后求出磁化电流分布。
4. 设x<0半空间充满磁导率为μ的均匀介质,x>0空间为真空,今有线电流I沿z轴流动,求磁感应强度和磁化电流分布。
5.某空间区域内有轴对称磁场。
在柱坐标原点附近已知)2/(22ρ--≈zCBBz,其中B为常量。
试求该处的ρB。
提示:用0=⋅∇B,并验证所得结果满足0=⨯∇H。
6. 两个半径为a 的同轴圆形线圈,位于L z ±=面上。
每个线圈上载有同方向的电流I 。
(1)求轴线上的磁感应强度。
(2)求在中心区域产生最接近于均匀常常时的L 和a 的关系。
提示:用条件0/22=∂∂z B z7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程。
设导体的磁导率为0μ,导体外的磁导率为μ。
8. 假设存在磁单极子,其磁荷为m Q ,它的磁场强度为304/r Q m πμr H =。
给出它的矢势的一个可能的表示式,并讨论它的奇异性。
9. 将一磁导率为μ,半径为0R 的球体,放入均匀磁场0H 内,求总磁感应强度B 和诱导磁矩m 。
(对比P49静电场的例子。
)10. 有一个内外半径为1R 和2R 的空心球,位于均匀外磁场0H 内,球的磁导率为μ,求空腔内的场B ,讨论0μμ>>时的磁屏蔽作用。
11. 设理想铁磁体的磁化规律为00M H B μμ+=,其中0M 是恒定的与H 无关的量。
今将一个理想铁磁体做成的均匀磁化球(0M 为常值)浸入磁导率为'μ的无限介质中,求磁感应强度和磁化电流分布。
12. 将上题的永磁球置入均匀外磁场0H 中,结果如何?13. 有一个均匀带电的薄导体壳其半径为0R ,总电荷为Q ,今使球壳绕自身某一直径以角速度ω转动,求球内外的磁场B 。
提示:本题通过解A 或m ϕ的方程都可以解决,也可以比较本题与§5例2的电流分布得到结果。
14. 电荷按体均匀分布的刚性小球,其总电荷为Q,半径为0R,它以角速度ω绕自身某一直径转动,求(1)它的磁矩;(2)它的磁矩与自转角动量之比(设质量M0是均匀分布的)。
15. 有一块磁矩为m的小永磁体,位于一块磁导率非常大的实物的平坦界面附近的真空中,求作用在小永磁体上的力F。