电动力学第三版答案郭硕鸿著

合集下载

电动力学第六章 郭硕鸿第三版

电动力学第六章 郭硕鸿第三版

第六章 狭义相对论主要内容:讨论局限于惯性系的狭义相对论的时空理论,相对论电动力学以及相对论力学一.狭义相对论基本原理:1、相对性原理(伽利略相对性原理的自然扩展) (1)物理规律对于所有惯性系都具有完全相同的形式。

(2)一切惯性系都是等价的,不存在绝对参照系2、光速不变原理真空中光速相对任何惯性系沿任何一个方向大小恒为c ,且与光源运动速度无关。

二.洛仑兹变换:坐标变换:2x 'y 'y z 'zv t xt '⎧==⎪⎪⎪=⎪⎪⎨=⎪⎪-⎪=⎪⎪⎩逆变换:2x y y 'z z 'v t 'xt ⎧=⎪⎪⎪=⎪⎪⎨=⎪⎪-⎪=⎪⎪⎩速度变换:21x x x u v u vu c-'==-,21y x u c'=-,21z x u c'=-三.狭义相对论的时空理论:1.同时是相对的:在某一贯性参考系上对准的时钟,在另一相对运动的贯性参考系观察是不对准的。

2.运动长度缩短:沿运动方向尺度收缩。

其中v 是物体相对静止系的速度;l l =3.运动时钟延缓:运动物体内部发生的自然过程比静止的钟测到的静止物体内部自然过程经历的时间延缓。

221ct ντ-∆=∆⑴ 运动时钟延缓:τν∆>∆∴<-t c1122只与速度有关,与加速度无关;⑵ 时钟延缓是相对的,但在广义相对论中延缓是绝对的; ⑶ 时钟延缓是时空的另一基本属性,与钟的内部结构无关; ⑷ 它与长度收缩密切相关。

四.电磁场的洛仑兹变换:11223332()()γγ'=⎧⎪'=-⎨⎪'=+⎩E E E E vB E E vB 1122323322()()γγ⎧⎪'=⎪⎪'=+⎨⎪⎪'=-⎪⎩B B v B B E c v B B E c 五.相对论力学: 1.运动质量:m =2.相对论动量:p m v ==3.质能关系:物体具有的能量为24W m c c= 4.相对论动能:()222000T W W m c m m c=-==-5.相对论力学方程:dp F dtdW F v dt=⋅=本章重点:1、狭义相对论基本原理、洛仑兹变换并熟练利用洛仑兹变换解决具体问题2、理解同时的相对性和尺缩、钟慢效应,并会利用相关公式计算.3、了解相对论四维形式和四维协变量4、了解相对论力学的基本理论并解决实际问题本章难点:1、同时的相对性、时钟延缓效应的相对性2、相对论的四维形式3、电动力学的相对论不变性的导出过程。

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案
(2)在(1)中令 A B 得:
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
电动力学习题解答
电பைடு நூலகம்力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式:
( A B) B ( A) ( B ) A A ( B ) ( A ) B A ( A) 1 A 2 ( A ) A 2
3.
设r
( x x' ) 2 ( y y ' ) 2 ( z z ' ) 2 为源点 x ' 到场点 x 的距离, r 的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1 / r ) ' (1 / r ) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r ) , [ E 0 sin( k r )] 及 [ E 0 sin( k r )] ,其中 a 、 k 及 E 0 均为常向量。
所以
c dV f dV [c ( f )] dV ( f c ) ( f c ) dS

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案
解:忽略边缘效应,平行板电容器内部场强方向垂直于极板,且介质中的场强分段均匀,分别设为 和 ,电位移分别设为 和 ,其方向均由正极板指向负极板。当介质不漏电时,介质内没有自由电荷,因此,介质分界面处自由电荷面密度为
取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:
同理,在极板B内和介质2内作高斯柱面,由高斯定理得:
因此
即 只有切向分量,从而 只有切向分量,电场线与导体表面平行。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为 ,板间填充电导率为 的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求 随时间的衰减规律。
(3)求与轴相距为 的地方的能量耗散功率密度。
在介质1和介质2内作高斯柱面,由高斯定理得:
所以有 ,
由于E
所以 E
当介质漏电时,重复上述步骤,可得:
, ,
介质1中电流密度
介质2中电流密度
由于电流恒定, ,
再由E 得
E
E E
E
E
12.证明:
(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足
其中 和 分别为两种介质的介电常数, 和 分别为界面两侧电场线与法线的夹角。
其中 和 为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性, 和 均与 无关。考虑到 时 为有限值; 时 ,故拉普拉斯方程的解为:
由此 (1)
(2)
边界条件为: (3)
(4)
将(1)(2)代入(3)和(4),然后比较 的系数,可得:
于是得到所求的解为:
在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。

电动力学答案(郭硕鸿+第三版) chapter3

电动力学答案(郭硕鸿+第三版) chapter3

(ρ > a)
a ∴ r = xr − xr' = (ρ cosϕ − a cosϕ')2 + (ρ sinϕ − a sinϕ')2 + z'2
d = ρ 2 + a2 + z'2 −2aρ cos(ϕ −ϕ') h rr = xr − xr'= ( ρ cosϕ − a cosϕ')erx (ρ sinϕ − a sinϕ')ery − z'erz k dlr = −adϕ'⋅sinϕ'erx + adϕ'⋅cosϕ'ery . ∴ dlr × rr = −az'cosϕ'dϕ'erx − az'sinϕ'dϕ'ery + [a2 − aρ cos(ϕ'−ϕ)]dϕ'erz
第三章 静磁场
场是均匀强磁场 故只须求出其中轴线上的磁感应强度 即可知道管内磁场 由其无限长的特性 不妨取场点为零点 以柱坐标计算
rr = −a cosϕ 'erx − a sin ϕ 'ery − z'erx
dlr = −adϕ '⋅sinϕ'erx + adϕ'⋅cosϕ 'ery ∴ dlr × rr = (−adϕ '⋅sin ϕ 'erx + adϕ '⋅cosϕ'ery ) × (−a cosϕ'erx − a sin ϕ'ery − z'erx )
erθ
ww ∴ Hr 2 − Hr1 = 0,满足边界条件 nr × (Hr 2 − Hr1) = 0

电动力学_郭硕鸿版_全部答案

电动力学_郭硕鸿版_全部答案
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)

D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
(最后一式在人 r 0 点不成立 见第二章第五节) 2 求
r r r r r r r r r r r r r r r ∇ ⋅ r , ∇ × r , (a ⋅ ∇)r , ∇(a ⋅ r ), ∇ ⋅ [ E 0 sin(k ⋅ r )]及∇ × [ E 0 sin(k ⋅ r )], 其中a , k 及E 0 均为常矢量
证明
r ∂( x − x ' ) ∂( y − y ' ) ∂( z − z ' ) ∇⋅r = + + =3 ∂x ∂y ∂z r ex r ∂ ∇×r = ∂x x − x' r ey ∂ ∂y y − y' r ez ∂ =0 ∂z z − z'
r r ∂ v ∂ v ∂ v v v v v v v (a ⋅ ∇)r = [(a x e x + a y e y + a z e z ) ⋅ ( e x + e y + e z )][( x − x' )e x + ( y − y ' )e y + ( z − z ' )e z ] ∂x ∂y ∂z
而 dl φ = (φ i dl x + φ j dl y + φ k dl z )
l l

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)(可编辑修改word版)

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)(可编辑修改word版)

电动⼒学-郭硕鸿-第三版-课后题⽬整理(复习备考专⽤)(可编辑修改word版)2 电动⼒学答案2. 设u 是空间坐标 x , y , z 的函数,证明:f (u ) = d fd uu ,A (u ) = u d A,d u第⼀章电磁现象的普遍规律1. 根据算符? 的微分性与向量性,推导下列公式:( A B ) = B ( A ) + (B ) A + A ( B ) + ( A )BA ? (? ? A ) = 1 ?A 2- (A ? ?) A ? ? A (u ) = ?u ? d Ad u证明:3. 设 r = 的距离, r 为源点 x ' 到场点 x 的⽅向规定为从源点指向场点。

4. 应⽤⾼斯定理证明 ?Vd V ? ? f= d S ? f ,应⽤斯托克斯S (1)证明下列结果,并体会对源变量求微商与对场变量求微(Stokes )定理证明 ?d S ? ?= ? d l商的关系:r = -' r = r / r ;SL(1/ r ) = -'(1/ r ) = -r / r 3; ? ? (r / r 3 ) = 0 ;(r / r 3 ) = -'(r / r 3 ) = 0 ,(r ≠ 0) 。

( 2)求 ? ?r , ? ? r , (a ? ?)r , ?(a ? r ) , ? ?[E 0 sin(k ? r )] 及 ? ?[E 0 sin(k ? r )],其中a 、 k 及 E 0 均为常向量。

(x - x ')2 + ( y - y ')2 + (z - z ')25. 已知⼀个电荷系统的偶极矩定义为 p (t ) =V( x ', t )x ' d V ',6. 若 m 是常向量,证明除 R = 0 点以外,向量 A =(m ? R )/ R 3的旋度等于标量 = m ? R / R 3 的梯度的负值,即利⽤电荷守恒定律 ? ? J + ?t= 0 证明 p 的变化率为:A = -,其中 R 为坐标原点到场点的距离,⽅向由原d p = ? J ( x ', t )d V 点指向场点。

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)要点

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)要点电动力学答案第一章电磁现象的普遍规律1. 根据算符?的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(??++??+=??AA A A )()(221??-?=A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ?=d d )(,uu u d d )(A A ?=??,uu u d d )(AA ??=??证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。

(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-?=? ; 3/)/1(')/1(r r r r -=-?=? ;0)/(3=??r r ;0)/(')/(33=?-?=??r r r r ,)0(≠r 。

(2)求r ?? ,r ?? ,r a )(?? ,)(r a ?? ,)]sin([0r k E 及)]sin([0r k E ,其中a 、k 及0E 均为常向量。

4. 应用高斯定理证明fS f ?=SVV d d ,应用斯托克斯(Stokes )定理证明??=??LSl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ?=ρ,利用电荷守恒定律0=??+tρJ 证明p 的变化率为:?=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ?=的旋度等于标量3/R R m ?=?的梯度的负值,即-?=??A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。

7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学习题解答电动力学答案第一章电磁现象的普遍规律1.根据算符' 的微分性与向量性,推导下列公式:1( A B ) =B ('、A) ■ ( B ^ ) A A (I B) ' (A '、、) B A (∖ A) ∖ A -(A '、) A 2.设U是空间坐标X, y,z的函数,证明:'、f (U)dfUd U::/∙A(U)=d AU —dU ∖ A (U) =VUd Adu证明:电动力学习题解答3. 设r = (X - χ')亠(y _ y')亠(Z -z') 为源点X'到场点X 的距离,r的方向规定为从源点指向场点。

(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:Ir= 一1 'r = r / r ;I (1 / r) _ -■• ' (1 / r) _ -r / r3;3'、(r/ r ) =0 ;∖ (r / r ) = '(r / r ) = O ,(r = 0)。

(2 )求r ,'∙∙ r,(a •''、) r ,1(a r),∖ [ E o Sin( k r)]及''、[E O Sin( k r)],其中a、k及E O均为常向量。

,应用斯托克斯(StokeS)定理证明dS = d I”^S ^L4.应用高斯定理证明 f dS f5.已知一个电荷系统的偶极矩定义为P(t) = Vj(X',t)X'dV',利用电荷守恒定律∖=0证明P的变化率为:Ctd PJ ( X',t)dVdt -V6.若m是常向量,证明除R=O点以外,向量A =( m R)/ R3 的旋度等于标量:护^m R/R3的梯度的负值,即V A --,其中R为坐标原点到场点的距离,方向由原点指向场点。

7.有一内外半径分别为r1和r2的空心介质球,介质的电容率为;,使介质球内均匀带静止自由电荷「f ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。

电动力学习题解答-郭硕鸿

7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)

D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
首先 算符 ∇ 是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题
v v ∇ 将作用于 A和B
又 ∇ 是一个矢量算符 因此 具有矢量的所有性质
利用公式 c × ( a × b ) = a ⋅ (c ⋅ b ) − (c ⋅ a )b 可得上式 后两项是 ∇ 作用于 B
v
v
v
v v v
v v v
4. 应用高斯定理证明

应用斯托克斯
V
r r r dV∇ × f = ∫ dS × f
S
Stokes 定理证明

证明
S
r r dS × ∇φ = ∫ dl φ
L
1)由高斯定理


V
r r r dV∇ ⋅ g = ∫ dS ⋅ g

电动力学郭硕鸿(第三版)第一章习题答案


U
U U (
3 H (
(

3
3 (
(

> U
U U
I U@


I
U
U U
U


I
I
3 3Q 3Q
U U Q


3Q

3 3Q

U
U U
I U U U

3
W
W U
U
-
- I
U

G9 O UGU
3
E
I O UGU
D U
O
I

OQ
E D
:
E ' (G9
E
O
I
GU

O
I
OQ E
D
D U

D
: W
O I OQ E D
I
W
O
I

OQ E D

O
O
GO GO
U U
U U
GO
GO




GO GO
O O
U U
GO
O
GO
U U
O
GO
O
GU U
GO
O
U


GO GO
O O
U U

) )
,,
O O
X G$ GX
H[
H\
$ X
[
\
H]
$]
]
\
$[ X $\ X $] X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档