第23章旋转整章测试题及答案
人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。
《第23章 旋转》2013年单元检测训练卷C(一)

《第23章 旋转》2013年单元检测训练卷C (一)一、选择题1.(3分)下列说法中:①△ABC 在平移过程中,对应线段一定相等;②△ABC 在旋转过程中对应线段一定不平行;③△ABC 在旋转过程中周长和面积均不变;④△ABC 在旋转过程中形状一定不变 其中正确的个数是( )A . 1个B . 2个C . 3个D . 4个2.(3分)如图,△ABC 绕点A 按逆时针方向转动一个角度后成为△A′B′C′,在下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;(3)∠ABC=∠A′B′C′;④.其中正确的个数是( ) A . 3个 B . 2个 C . 1个 D . 0个3.(3分)一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是( ) ①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化 ④对应角相等.A . ①②③B . ②③④C .①②④ D . ①③④4.(3分)请你仔细观察A 、B 、C 、D 四个全等的正六边形,其中与图的正六边形完全相同的是( )A .B .C .D .5.(3分)(2014•上城区一模)下列图形中,是轴对称图形但不是中心对称图形的是( ) A . B .C .D .6.(3分)(2011•扬州)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A . 30,2B . 60,2C . 60,D . 60,7.(3分)(2009•崇左)已知点A 的坐标为(a ,b ),O 为坐标原点,连接OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA 1,则点A 1的坐标为( )A . (﹣a ,b )B . (a ,﹣b )C . (﹣b ,a )D . (b ,﹣a )8.(3分)(2012•黑河)Rt △ABC 中,AB=AC ,点D 为BC 中点.∠MDN=90°,∠MDN 绕点D 旋转,DM 、DN 分别与边AB 、AC 交于E 、F 两点.下列结论:①(BE+CF )=BC ;②S △AEF ≤S △ABC ;③S 四边形AEDF =AD•EF ;④AD≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是( )A . 1个B . 2个C . 3个D . 4个二、填空题9.(3分)如图,等边三角形OAB 绕点O 顺时针旋转120°后得到△ODE ,那么点B 的对应点是 _________ OA 的对应线 _________ ,∠B 的对应角 _________ ,旋转角是 _________ 和 _________ ,都等于 _________ .10.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为_________度.11.(3分)以直角三角形一条直角边的中点为对称中心,作该直角三角形的中心对称图形,则所得的四边形是_________.12.(3分)平行四边形的对称中心是_________.13.(3分)(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_________.14.(3分)(2012•吉林)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD 绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是_________.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG在旋转过程中,DG的最大值是_________.16.(3分)(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD (如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题17.(2007•金东区模拟)在图②和③中,用涂黑的方法分别画出由图①所示的图形(阴影部分),绕点P逆时针方向旋转90°、180°后所成的图形.18.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=AB,请你用旋转的方法说明线段BE和DF之间的关系.19.(2007•岳阳)如图,在一个10×10的正方形DEFG网格中有一个△ABC.①在网格中画出△ABC向下平移3个单位得到的△A1B1C1;②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C;③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标.20.(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.新人教版九年级上册《第23章旋转》2013年单元检测训练卷C(一)参考答案与试题解析一、选择题1.(3分)下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在旋转过程中对应线段一定不平行;③△ABC在旋转过程中周长和面积均不变;④△ABC在旋转过程中形状一定不变其中正确的个数是()A.1个B.2个C.3个D.4个考点:旋转的性质;平移的性质.专题:计算题.分析:根据平移的性质对①进行判断;把△ABC旋转180°时有对应变平行,则可对②进行判断;根据旋转的性质对③④进行判断.解答:解:△ABC在平移过程中,对应线段一定相等,所以①正确;△ABC在旋转过程中对应线段可能平行,所以②错误;△ABC在旋转过程中周长和面积均不变,所以③正确;△ABC在旋转过程中形状一定不变,所以④正确.故选C.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平移的性质.2.(3分)如图,△ABC绕点A按逆时针方向转动一个角度后成为△A′B′C′,在下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;(3)∠ABC=∠A′B′C′;④.其中正确的个数是()A.3个B.2个C.1个D.0个考点:旋转的性质.分析:根据旋转的性质得BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠A′B′C′,则有∠BAB′=∠CAC′;由于弧BB′与弧CC′所对的圆心角相等,而所在圆的半径不相等,所以可判断弧BB′与弧CC′不相等.解答:解:∵△ABC绕点A按逆时针方向转动一个角度后成为∴BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠A′B′C′,∴∠BAB′=∠CAC′;∵弧BB′与弧CC′所对的圆心角相等,而所在圆的半径不相等,∴弧BB′与弧CC′不相等.∴正确的有①②③.故选A.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.(3分)一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④考点:旋转的性质;平移的性质.分析:根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.解答:解:①平移后对应线段平行,旋一定平行,故本小题错误;②无论平移还是旋转,对应线段相等,故本小题正确;③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;④无论平移还是旋转,对应角相等,故本小题正确.综上所述,说法正确的是②③④.故选B.点评:本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.4.(3分)请你仔细观察A、B、C、D四个全等的正六边形,其中与图的正六边形完全相同的是()A.B.C.D.考点:生活中的旋转现象.分析:将选项中的图形绕正六边形的中心旋转,与题干的图形完全相同的即为所求.解答:解:观察图形可知,只有选项A中的图形旋转后与图中的正六边形完全相同.故选A.点评:考查了生活中的旋转现象,旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.5.(3分)(2014•上城区一模)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、是轴对称图形,不是中心对称图形,故本选项正确;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选A.点评:此题考查了中心对称及轴对称的知识,关键是掌握中心对称图形与轴对称图形的概念,属于基础题.6.(3分)(2011•扬州)如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()D.60,A.30,2 B.60,2 C.60,考点:旋转的性质;含30度角的直角三角形.专题:压轴题.分析:先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.解答:解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选C.点评:本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.(3分)(2009•崇左)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA 绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为()A.(﹣a,b)B.(a,﹣b)C.(﹣b,a)D.(b,﹣a)考点:坐标与图形变化-旋转.专题:压轴题.分析:根据旋转的概念结合坐标系的特点,利用全等三角形的知识,即可解答.解答:解:设点A(a,b)坐标平面内一点,逆时针方向旋转90°后A1应与A分别位于y轴的两侧,在x轴的同侧,横坐标符号相反,纵坐标符号相同.作AM⊥x轴于M,A′N⊥x轴于N点,在直角△OAM和直角△A1ON中,OA=OA1,∠AOM=∠OA1N,∠AMO=∠ONA1=90°,∴△OAM≌△A1ON∴A1N=OM,ON=AM∴A1的坐标为(﹣b,a)故选C.点评:本题涉及图形旋转,体现了新课标的精神,应抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.8.(3分)(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形;旋转的性质.专题:几何综合题.分析:先由ASA证明△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,从而判断①;设AB=AC=a,AE=CF=x,先由三角形的面积公式得出S△AEF=﹣(x﹣a)2+a2,S△ABC=×a2=a2,再根据二次函数的性质即可判断②;由勾股定理得到EF的表达式,利用二次函数性质求得EF最小值为a,而AD=a,所以EF≥AD,从而④错误;先得出S四边形AEDF=S△ADC=AD,再由EF≥AD得到AD•EF≥AD2,∴AD•EF>S四边,所以③形AEDF错误;如果四边形AEDF为平行四边形,则AD与EF互相平分,此时DF∥AB,DE∥AC,又D为BC中点,所以当E、F分别为AB、AC的中点时,AD与EF互相平分,从而判断⑤.解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CF D(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE =AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△AB C.故②正确;EF2=AE2+AF2= x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.点评:本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积,函数的性质等知识,综合性较强,有一定难度.二、填空题9.(3分)如图,等边三角形OAB绕点O顺时针旋转120°后得到△ODE,那么点B的对应点是点E OA的对应线OD,∠B的对应角∠E,旋转角是∠BOE和∠AOD,都等于120°.考点:旋转的性质.分析:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角.解答:解:如图,∵等边三角形OAB绕点O顺时针旋转120°后得到△ODE,∴△OAB≌△ODE,∠AOD=∠BOE=120°,∴OB=OE,OA=OD,∠B=∠E,∴点B的对应点是点E,OA的对应线OD,∠B的对应角∠E,旋转角是∠BOE和∠AOD,都等于120°.故答案是:点E,OD,∠E,∠BOE和∠AOD,120°.点评:此题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为50度.考点:旋转的性质;余角和补角.专题:计算题.分析:根据旋转的性质和余角的定义,解答即可;解答:解:∵∠2由∠1按顺时针方向旋转110°得到,且∠1=40°,∴∠2=∠1=40°,∴∠2的余角为:90°﹣40°=50°.故答案为:50°.点评:本题考查了旋转的性质:旋转前、后的图形全等和余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.11.(3分)以直角三角形一条直角边的中点为对称中心,作该直角三角形的中心对称图形,则所得的四边形是平行四边形.考点:中心对称.分析:根据中心对称图形的性质得出AO=CO,DO=BO,进而利用对角线互相平分的四边形是平行四边形,得出即可.解答:解:如图所示:∵AO=CO,DO=BO,∴四边形ADCB是平行四边形.故答案为:平行四边形.点评:此题主要考查了中心对称图形的性质以及平行四边形的判定,得出AO=CO,DO=BO是解题关键.12.(3分)平行四边形的对称中心是两对角线的交点.考点:中心对称.分析:根据对称中心的定义,结合平行四边形的性质即可得出答案.解答:解:平行四边形的对称中心是两对角线的交点.故答案为:两对角线的交点点评:本题考查了中心对称,注意掌握平行四边形是中心对称图形,但不是轴对称图形,它的对称中心是对角线的交点.13.(3分)(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为2.考点:旋转的性质;等边三角形的性质.分析:由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.解答:解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.点评:此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.14.(3分)(2012•吉林)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD 绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是19.考点:旋转的性质;等边三角形的判定与性质.专题:压轴题;探究型.分析:先由△ABC是等边三角形得出AC=AB=BC=10,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=10,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=9,故△AED的周长=AE+AD+DE=AC+BD=19.解答:解:∵△ABC是等边三角形,∴AC=AB=BC=10,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,∴DE=BD=9,∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,熟知旋转前、后的图形全等是解答此题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG在旋转过程中,DG的最大值是6.考点:旋转的性质.分析:解直角三角形求出AB、BC,再求出CD,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG,然后根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.解答:解:∵∠ACB=90°,∠A=30°,∴AB=AC÷cos30°=4÷=8,BC=AC•tan30°=4×=4,∵BC的中点为D,∴CD=BC=×4=2,连接CG,∵△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,∴CG=EF=AB=×8=4,由三角形的三边关系得,CD+CG>DG,∴D、C、G三点共线时DG有最大值,此时DG=CD+CG=2+4=6.故答案为:6.点评:本题考查了旋转的性质,解直角三角形,直角三角形斜边上的中线等于斜边的一半的性质,根据三角形的三边关系判断出DG取最大值时是解题的关键.16.(3分)(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD (如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=80或120.考点:旋转的性质.专题:计算题.分析:本题可以图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B′,交直角边AC于B″,此时DB′=DB,DB″=DB=2CD,由等腰三角形的性质求旋转角∠B DB′的度数,在Rt△B″CD中,解直角三角形求∠CDB″,可得旋转角∠BDB″的度数.解答:解:如图,在线段AB取一点B′,使DB=DB′,在线段AC取一点B″,使DB=DB″,∴①旋转角m=∠BDB′=180﹣∠DB′B﹣∠B=180°﹣2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋转角∠BDB″=180°﹣∠CDB″=120°.故答案为:80°或120°.点评:本题考查了旋转的性质.关键是将图形的旋转转化为点的旋转,求旋转角.三、解答题17.(2007•金东区模拟)在图②和③中,用涂黑的方法分别画出由图①所示的图形(阴影部分),绕点P逆时针方向旋转90°、180°后所成的图形.考点:利用旋转设计图案.专题:作图题.分析:分别找出阴影部分图形的各关键点绕着点P逆时针方向旋转90°、180°后的对应点,顺次连接画出旋转后的图形即可.解答:解:所画图形如下所示:点评:本题考查了利用旋转设计图案,难度适中,找出旋转后的对应点是关键.18.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=AB,请你用旋转的方法说明线段BE和DF之间的关系.考点:旋转的性质;正方形的性质.分析:根据正方形的性质得到AD=AB,∠BAD=90°,由于E是AD的中点,AF=AB,则AE=AF,再根据旋转的定义把△ABE绕点A逆时针旋转90°可得到△ADF,然后根据旋转的性质确定线段BE和DF之间的关系.解答:解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=AB,∴AE=AF,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.19.(2007•岳阳)如图,在一个10×10的正方形DEFG网格中有一个△ABC.①在网格中画出△ABC向下平移3个单位得到的△A1B1C1;②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C;③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标.考点:作图-旋转变换;作图-平移变换.专题:作图题;网格型.分析:(1)根据平移的规律找到出平移后的对应点的坐标,顺次连接即可;(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;(3)建立直角坐标系后直接写出坐标.解答:解:(1)(2)见图中.(3)A1(8,2),A2(4,9).点评:本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.20.(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形.专题:几何综合题.分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:(1)MN=AM+CN.如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=1 80°,把△ABM绕点B顺时针旋转使AB边与BC边重合,则△ABM≌△CBM ′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC ,∴∠BCM′+∠BC D=180°,∴点M′、C、N 三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC+∠CBN=∠A BM+∠CBN=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△BMN和△BM′N中,∵,∴△BMN≌△B M′N(SAS),又∵M′N=CM′+CN=AM+CN,∴MN=AM+CN ;(2)MN=CN﹣AM.理由如下:如图,作∠CBM′=∠ABM 交CN于点M′,∵∠ABC+∠AD C=180°,∴∠BAD+∠C=3 60°﹣180°=180°,又∵∠BAD+∠BA M=180°,∴∠C=∠BAM,在△ABM和△CBM′中,,∴△ABM≌△CB M′(ASA),∴AM=CM′,BM=BM′,∵∠MBN=∠ABC,∴∠M′BN=∠ABC﹣(∠ABN+∠CBM′)=∠ABC﹣(∠ABN+∠ABM)=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△MBN和△M′BN中,∵,∴△MBN≌△M′BN(SAS),∴MN=M′N,∵M′N=CN﹣CM′=CN﹣AM,∴MN=CN﹣AM.点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.。
第23章 旋转 单元测试-2022-2023学年九年级人教版数学上册(含答案)

第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。
第23章《旋转》单元测试题

图10 A B
D
A B O x
y
O B
图6
第23章《旋转》单元测试题 (测试范围:全章综合 满分120分 时间:90分钟) 一.选择题.(每题3分,共30分) 1. 下列四个图形中,既是轴对称图形又是中心对称图形的是( ) A.①②③④ B.③ C.①③ D.①③④ 2. 如图1,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A. 72 B.108 C.144 D.216 3. 如图2,已知平行四边形ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(-2,3),则点C的坐标为( ) A.(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3) 4. 如图3,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( ). A.120° B.90° C.60° D.30° 5. 如图4,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( ) A.6 B.4 C.3 D.3 6. 如图5,四边形ABCD是正方形,ΔADE绕着点A旋转90°后到达ΔABF的位置,连接EF,则ΔAEF的形状是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形 7.如图6,直线443yx与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AOB,则点B的坐标是( ) A. (3,4) B. (4,5) C. (7,4) D. (7,3) 8. 在等边△ABC中,点D、E分别是边AB、AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF是( ) A.矩形 B.菱形 C.正方形 D.梯形 9. 如图7,在Rt△ABC中,∠ACB=90°,∠ABC=30°, 将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰 好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150° 10.如图8,点A,点B的坐标分别是0,1,a,b ,将线段AB绕A旋转180°后得到线段AC,则点C的坐标为( ) A.a,b1 - B.a,b1 - C.a,b2 - D.a,b2 - 二.填空题.(每题3分,共18分.) 11. 直线y=x+3上有一点P(3,m),则P点关于原点的对称点P′为___ ___. 12. 如图9,ΔABC按顺时针方向旋转一个角后成为ΔADE.已知∠B=93°,∠AED=48°,则旋转角等于______°. 13.如图10,图(1)中的梯形符合 条件时,可以经过旋转和翻折成图案(2). 14. 如图11,将矩形ABCD绕点A顺时针旋转90゜后,得到矩形AB′C ′D′,如果CD=4,DA=2,那么CC′=_________. 15. 如图12,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OD,要使点D恰好落在BC边上,则OP的长等于 .
人教版九年级数学上册《第23章旋转》单元测试题有答案

九年级数学二十三章测试题一、选择题(每小题4分,共40分)1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是(C)2.下列图形中,为中心对称图形的是(B)3.下列图形中是轴对称图形,但不是中心对称图形的是(B)4.下列图标中,既是轴对称图形,又是中心对称图形的是(D)5.将点P(-2,3)向右平移3个单位长度得到点P1,则点P1关于原点的对称点的坐标是(C)A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如下所示的4组图形中,左边图形与右边图形成中心对称的有(C)A.1组 B.2组 C.3组 D.4组7.已知a<0,则点P(-a2,-a+1)关于原点对称的点在(D)A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42° B.48°C.52° D.58°9.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是(D)A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格,第10题图)10.如图,在△ABO中,AB⊥OB,OB=3,AB=1,将△ABO绕O点旋转90°后得到△A1B1 O,则点A1的坐标是(B)A.(-1,3) B.(-1,3) 或(1,-3)C.(-1,-3) D.(-1,3)或(-3,-1)二、填空题(每小题4分,共24分)11.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.,第11题图) ,第12题图) ,第13题图),第14题图) ,第16题图) 13.如图,将△ABC绕A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.14.如图,中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是__40°__.15.已知点A(m,m+1)在直线y=12x+1上,则点A关于原点的对称点的坐标是__(0,-1)__.16.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB 的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是__平行四边形__.三、解答题(本大题共8小题,共86分)17.(8分)如图,△ABC中,∠B=10° ,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.解:(1)旋转中心是点A,∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°,由旋转的性质得△ABC≌△ADE,∴AB=AD,AE=AC,又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2,∴AE=2.18.(8分)如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.解:(1)△ADC与△EDB成中心对称;(2)∵△ADC与△EDB关于点D中心对称,∴△ADC≌△EDB,∴S△ADC =S△EDB=4,∵D是BC中点,∴BD=CD,∴S△ABD =S△ACD=4,∴S△ABE=S△ABD+S△BED=8.19.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2,∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2,∴BC∥B′C′,BC=B′C′,∴四边形BCB′C′是平行四边形,∴S BCB′C′=2×6=12.20.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P 的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);(3)点P2的坐标是(-b,a).21.(12分)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心__A__点,按顺时针方向旋转__90__度得到;(3)若BC=8,DE=2,求△AEF的面积.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=∠D=90°.又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS);(3)∵BC=8,∴AD=8,在Rt△ADE中,DE=2,AD=8,∴AE=AD2+DE2=217,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°.∴△AEF的面积=12AE2=12×4×17=34.22.(12分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1,求证:四边形OAA1B1是平行四边形.(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6,∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.23.(12分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)由旋转的性质可知,CA=CD.∵∠ACB=90°,∠B=30°,∴∠A=60°.∴△ACD为等边三角形.∴∠ACD=60°,即n=60;(2)四边形ACFD是菱形.理由:∵F是DE的中点,∴CF=12DE=DF.∵∠EDC=∠A=60°,∴△FCD为等边三角形,∴CF=DF=CD.∵△ACD为等边三角形,∴AC=AD=CD.∴AC=AD=DF=CF,∴四边形ACFD是菱形.24.(14分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.(1)解:四边形ABDF是菱形,理由如下:∵△ABD绕边AD的中点旋转180°得△DFA,∴△ABD≌△DFA,又∵AB=BD,∴AB=DF=BD=AF,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,AB=DF,∵△ABC绕边AC的中点旋转180°得△CEA,∴△ABC≌△CEA,∴AB=EC,AE=BC,∴四边形ABCE是平行四边形,∴AB=CE,AB∥CE,又∵AB∥DF,AB=DF,∴EC∥DF,EC=DF,∴四边形CDFE是平行四边形.。
最新人教版九年级数学上册《第23章旋转》单元测试题有答案

九年级数学二十三章测试题一、选择题(每小题4分,共40分)1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是(C)2.下列图形中,为中心对称图形的是(B)3.下列图形中是轴对称图形,但不是中心对称图形的是(B)4.下列图标中,既是轴对称图形,又是中心对称图形的是(D)5.将点P(-2,3)向右平移3个单位长度得到点P1,则点P1关于原点的对称点的坐标是(C)A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如下所示的4组图形中,左边图形与右边图形成中心对称的有(C)A.1组 B.2组 C.3组 D.4组7.已知a<0,则点P(-a2,-a+1)关于原点对称的点在(D)A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42° B.48°C.52° D.58°9.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是(D)A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格,第10题图)10.如图,在△ABO中,AB⊥OB,OB=3,AB=1,将△ABO绕O点旋转90°后得到△A1B1 O,则点A1的坐标是(B)A.(-1,3) B.(-1,3) 或(1,-3)C.(-1,-3) D.(-1,3)或(-3,-1)二、填空题(每小题4分,共24分)11.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.,第11题图) ,第12题图) ,第13题图),第14题图) ,第16题图) 13.如图,将△ABC绕A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB =1,则BD =.14.如图,在△ABC 中,∠CAB =70°,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数是__40°__.15.已知点A(m ,m +1)在直线y =12x +1上,则点A 关于原点的对称点的坐标是__(0,-1)__.16.如图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,则四边形ACE ′E 的形状是__平行四边形__.三、解答题(本大题共8小题,共86分)17.(8分)如图,△ABC 中,∠B =10° ,∠ACB =20°,AB =4,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE 的度数和AE 的长.解:(1)旋转中心是点A ,∵∠CAB =180°-∠B -∠ACB =150°, ∴旋转角是150°.(2)∠BAE =360°-150°×2=60°,由旋转的性质得△ABC ≌△ADE , ∴AB =AD ,AE =AC ,又∵点C 是AD 的中点,∴AC =12AD =12AB =12×4=2,∴AE =2.18.(8分)如图,D 是△ABC 的边BC 的中点,连接AD 并延长到点E ,使DE =AD ,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC 的面积为4,求△ABE 的面积. 解:(1)△ADC 与△EDB 成中心对称; (2)∵△ADC 与△EDB 关于点D 中心对称, ∴△ADC ≌△EDB ,∴S △ADC =S △EDB =4,∵D是BC中点,∴BD=CD,∴S△ABD=S△ACD=4,∴S△ABE=S△ABD+S△BED=8.19.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2,∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2,∴BC∥B′C′,BC=B′C′,∴四边形BCB′C′是平行四边形,∴S BCB′C′=2×6=12.20.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);(3)点P2的坐标是(-b,a).21.(12分)如图,四边形ABCD 是正方形,E ,F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE ,AF ,EF.(1)求证:△ADE ≌△ABF ;(2)填空:△ABF 可以由△ADE 绕旋转中心__A__点,按顺时针方向旋转__90__度得到; (3)若BC =8,DE =2,求△AEF 的面积.解:(1)∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°, 而F 是CB 的延长线上的点,∴∠ABF =∠D =90°. 又∵AB =AD ,DE =BF ,∴△ADE ≌△ABF(SAS); (3)∵BC =8,∴AD =8,在Rt △ADE 中,DE =2,AD =8, ∴AE =AD 2+DE 2=217,∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到, ∴AE =AF ,∠EAF =90°.∴△AEF 的面积=12AE 2=12×4×17=34.22.(12分)如图,在Rt △OAB 中,∠OAB =90°,OA =AB =6. (1)请你画出将△OAB 绕点O 沿逆时针方向旋转90°得到的△OA 1B 1; (2)线段OA 1的长度是________,∠AOB 1的度数是________; (3)连接AA 1,求证:四边形OAA 1B 1是平行四边形.(1)解:△OA 1B 1如图所示.(2)解:根据旋转的性质知,OA 1=OA =6.∵将△OAB 绕点O 沿逆时针方向旋转90°得到△OA 1B 1,∴∠BOB 1=90°.∵在Rt △OAB 中,∠OAB =90°,OA =AB =6,∴∠BOA =∠OBA =45°,∴∠AOB 1=∠BOB 1+∠BOA =90°+45°=135°,即∠AOB 1的度数是135°.(3)证明:根据旋转的性质知,△OA 1B 1≌△OAB ,则∠OA 1B 1=∠OAB =90°,A 1B 1=AB ,∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.23.(12分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)由旋转的性质可知,CA=CD.∵∠ACB=90°,∠B=30°,∴∠A=60°.∴△ACD为等边三角形.∴∠ACD=60°,即n=60;(2)四边形ACFD是菱形.理由:∵F是DE的中点,∴CF=12DE=DF.∵∠EDC=∠A=60°,∴△FCD为等边三角形,∴CF=DF=CD.∵△ACD为等边三角形,∴AC=AD=CD.∴AC=AD=DF=CF,∴四边形ACFD是菱形.24.(14分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD 的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.(1)解:四边形ABDF是菱形,理由如下:∵△ABD绕边AD的中点旋转180°得△DFA,∴△ABD≌△DFA,又∵AB=BD,∴AB=DF=BD=AF,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,AB=DF,∵△ABC绕边AC的中点旋转180°得△CEA,∴△ABC≌△CEA,∴AB=EC,AE=BC,∴四边形ABCE是平行四边形,∴AB=CE,AB∥CE,又∵AB∥DF,AB=DF,∴EC∥DF,EC=DF,∴四边形CDFE是平行四边形.。
第23章旋转测试题
第二十三章《旋转》单元检测题 一、选择题(3分×10=30分) 1.下列说法:(1)图形在平移过程中,图形上的每一点都移动了相同的距离;(2)•图形在旋转过程中,图形上的每一点都绕旋转中心转了相同的路程;(3)•中心对称图形的对称中心只有一个,而轴对称图形的对称轴可能不只一条;(4)•等边三角形既是对称图形,又是旋转对称图形,但它不是中心对称图形,其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个 2.五环旗中五环图案可以看作是( ) A.由一个圆经过平移得到的; B.由两个圆经过平移得到的 C.由两个圆经过旋转得到的; D.由两个圆经过对称得到的 3.下列现象属于旋转的是( ) A.摩托车在急刹车时向前滑动; B.拧开自来水水龙头 C.雪橇在雪地里滑动; D.空中下落的物体 4.如图是某房间木地板图案,该图案旋转后能与自身重合,那么至少旋转的角度是( ) A.45° B.30° C.60° D.90° 5.用一副扑克牌做实验,选其中的黑桃5和方块4,其中是中心对称图形的有( ) A.方块4 B.黑桃5 C.方块4或黑桃5 D.以上都不对 6.如图,△ABC与△A′B′C′是成中心对称的,下列说法不正确的是( ) A. S△ACB=S△A`B`C` B. AB=A′B,A′C′=AC,BC=B′C′ C. AB∥A′B′,A′C′∥AC,BC∥B′C′ D. S△A`B`O=S△A CO
7.将六个全等的正三角形密铺成一个六边形,下列说法正确的是( ) A.正六边形可看作是其中一个正三角形依形旋转60°, 120°,180•°,•240•°,300°得到的, B.正六边形可看作是三个相邻正三角形绕中心旋转60°得到的, C.正六边形可看作是其中一个正三角形经过平移得到的. D.以上说法都不正确 8.时钟钟面上的秒针绕中心旋转180°,则下列说法正确的是( ) A.时针不动,分针旋转了6° B.时针不动,分针旋转了3° C.时针和分针都没有旋转 D.分针旋转了3°,此时时针旋转角度很小 9.如图所示的四组图形中,左边图形与右边图形成中心对称的有( ) A.1组 B.2组 C.3组 D.4组 10.如图所示,其中是中心对称图形的是( )
第23章 旋转综合习题精选(含答案)
第23章旋转习题精选(含答案)一.解答题(共16小题)1.(2014•龙东地区)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.2.(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.3.(2014•眉山)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.4.(2014•新泰市模拟)把边长为1的正方形纸片沿对角线剪开,得△ABC和△DEF.然后,将△DEF的顶点D置于△ABC 斜边中点处,使△DEF绕点D沿顺时针旋转.(1)当△DEF旋转到DF过直角顶点C时(如图1)此时DF与AC的交点H与点C重合,试判断∠DGB与∠DGH 的关系,并给以证明;(2)当△DEF继续旋转的角度为α(0<α<45°)(如图2)时,(1)中的结论是否成立?若成立,请给以证明;若不成立,请说明理由.5.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.6.(2014•营口模拟)已知,Rt△ABC和Rt△BDE,AC=BC,BD=DE,F是AE的中点,连结CF、DF.(1)当点E在AB上时,如图①,线段CF和DF有怎样的关系?并证明你的结论.(2)将图①中△BDE绕点B逆时针旋转90°,如图②,那么(1)中的结论是否成立?如果成立,请写出证明;如果不成立,请说明理由.(3)将图①中△BDE绕点B逆时针旋转180°,如图③,那么线段CF和DF又有怎样的关系?请直接写出你的猜想.7.(2014•葫芦岛一模)如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′)(1)画出△A′B′C′.(2)求点B在旋转过程中所经过的路线的长(结果保留π).8.(2014•石家庄一模)如图,在平面直角坐标系中,△AOB的顶点坐标分别为O(0,0),A(4,2),B(3,0).将△AOB绕点O逆时针旋转90°,得到△A1O1B1.(1)在平面直角坐标系中,画出△A1B1O1,并填写A1的坐标为(_________,_________),B1的坐标为(_________,_________);(2)将△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,O′B′交OA于D,.O′A′交x轴于E,此时A′(1,3),O′(3,﹣1),B′(3,2),且O′B′经过B点,在刚才的旋转过程中,我们发现旋转中的三角形与△AOB 重叠部分面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,则四边形CEBD的面积是_________.9.(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.10.(2012•铁岭)已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?_________(填“是”或“否”),∠BOE=_________度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A 逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.11.(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.12.(2012•绍兴模拟)阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D 逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.13.(2012•包河区二模)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?14.(2012•高淳县一模)如图,将边长为a的正方形OABC绕顶点O按顺时针方向旋转角α(0°<α<45°),得到正方形OA1B1C1.设边B1C1与OC的延长线交于点M,边B1A1与OB交于点N,边B1A1与OA的延长线交于点E,连接MN.(1)求证:△OC1M≌△OA1E;(2)试说明:△OMN的边MN上的高为定值;(3)△MNB1的周长p是否发生变化?若发生变化,试说明理由;若不发生变化,请给予证明,并求出p的值.15.(2012•崇安区二模)已知:点P是三角形ABC内任意一点,连接PA、PB、PC.(1)如图1,当△ABC是等边三角形时,将△PBC绕点B顺时针旋转60°到△P′BC′的位置.若AB的长为a,BP的长为b(b<a),求△PBC旋转到△P′BC′的过程中边PC所扫过区域(图1中阴影部分)的面积.(用a、b表示)(2)如图2,若△ABC为任意锐角三角形,问:当∠APC、∠APB和∠BPC满足什么大小关系时,AP+BP+CP的和最小,并说明理由.16.(2012•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.下面的证法供你参考:把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD实践探索:(1)请你仿照上面的思路,探索解决下面的问题:如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>AD.(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.创新应用:(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.第23章旋转习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.(2014•龙东地区)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.2.(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.3.(2014•眉山)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.4.(2014•新泰市模拟)把边长为1的正方形纸片沿对角线剪开,得△ABC和△DEF.然后,将△DEF的顶点D置于△ABC 斜边中点处,使△DEF绕点D沿顺时针旋转.(1)当△DEF旋转到DF过直角顶点C时(如图1)此时DF与AC的交点H与点C重合,试判断∠DGB与∠DGH 的关系,并给以证明;(2)当△DEF继续旋转的角度为α(0<α<45°)(如图2)时,(1)中的结论是否成立?若成立,请给以证明;若不成立,请说明理由.DH=AB=DB5.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.6.(2014•营口模拟)已知,Rt△ABC和Rt△BDE,AC=BC,BD=DE,F是AE的中点,连结CF、DF.(1)当点E在AB上时,如图①,线段CF和DF有怎样的关系?并证明你的结论.(2)将图①中△BDE绕点B逆时针旋转90°,如图②,那么(1)中的结论是否成立?如果成立,请写出证明;如果不成立,请说明理由.(3)将图①中△BDE绕点B逆时针旋转180°,如图③,那么线段CF和DF又有怎样的关系?请直接写出你的猜想.FG=7.(2014•葫芦岛一模)如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′)(1)画出△A′B′C′.(2)求点B在旋转过程中所经过的路线的长(结果保留π).=8.(2014•石家庄一模)如图,在平面直角坐标系中,△AOB的顶点坐标分别为O(0,0),A(4,2),B(3,0).将△AOB绕点O逆时针旋转90°,得到△A1O1B1.(1)在平面直角坐标系中,画出△A1B1O1,并填写A1的坐标为(﹣2,4),B1的坐标为(0,3);(2)将△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,O′B′交OA于D,.O′A′交x轴于E,此时A′(1,3),O′(3,﹣1),B′(3,2),且O′B′经过B点,在刚才的旋转过程中,我们发现旋转中的三角形与△AOB 重叠部分面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,则四边形CEBD的面积是1.× 1.5=×1=﹣=19.(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN (1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.MBN=∠MBN=∵中,MBN=∠∠∵10.(2012•铁岭)已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?是(填“是”或“否”),∠BOE=120度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A 逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.中,(AB AC ∴=,中,11.(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE <∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.DBE=DBE=DBE=DBE=∵12.(2012•绍兴模拟)阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D 逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.13.(2012•包河区二模)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?AOD=﹣,14.(2012•高淳县一模)如图,将边长为a的正方形OABC绕顶点O按顺时针方向旋转角α(0°<α<45°),得到正方形OA1B1C1.设边B1C1与OC的延长线交于点M,边B1A1与OB交于点N,边B1A1与OA的延长线交于点E,连接MN.(1)求证:△OC1M≌△OA1E;(2)试说明:△OMN的边MN上的高为定值;(3)△MNB1的周长p是否发生变化?若发生变化,试说明理由;若不发生变化,请给予证明,并求出p的值.中,中,15.(2012•崇安区二模)已知:点P是三角形ABC内任意一点,连接PA、PB、PC.(1)如图1,当△ABC是等边三角形时,将△PBC绕点B顺时针旋转60°到△P′BC′的位置.若AB的长为a,BP的长为b(b<a),求△PBC旋转到△P′BC′的过程中边PC所扫过区域(图1中阴影部分)的面积.(用a、b表示)(2)如图2,若△ABC为任意锐角三角形,问:当∠APC、∠APB和∠BPC满足什么大小关系时,AP+BP+CP的和最小,并说明理由.﹣π16.(2012•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.下面的证法供你参考:把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD实践探索:(1)请你仿照上面的思路,探索解决下面的问题:如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>AD.(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.创新应用:(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.ADDE=>=BC=AD。
2019年人教版九年级数学上《第23章旋转》单元测试含答案解析
《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A.B. C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图B.B图C.C图D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60° D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P在第象限.116.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.= .18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?20.如图,请画出△ABC关于点O点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.《第23章旋转》参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图B.B图C.C图D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60° D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P在第三象限.1【考点】关于原点对称的点的坐标.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P所在象限.1【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P在第三象限.1故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= 25 .【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE =S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE ⊥BC ,AF ⊥CF , ∴∠AEC=∠CFA=90°, 而∠C=90°,∴四边形AECF 为矩形, ∴∠2+∠3=90°, 又∵∠B AD=90°, ∴∠1=∠2, 在△ABE 和△ADF 中∴△ABE ≌△ADF , ∴AE=AF=5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形, ∴S 四边形ABCD =S 正方形AECF =52=25. 故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD 的∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合. (1)旋转中心是哪一点? (2)旋转了多少度?(3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD≌△AEB,所以可知点B旋转到什么位置是点D.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≌△DFA,∴可知点B旋转到什么位置是点D.【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC关于点O点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O 依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O 依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O 旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt △OAB 中,∠OAB=90°,OA=AB=6,将△OAB 绕点O 沿逆时针方向旋转90°得到△OA 1B 1.(1)线段OA 1的长是 6 ,∠AOB 1的度数是 135° ;(2)连接AA 1,求证:四边形OAA 1B 1是平行四边形;(3)求四边形OAA 1B 1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA ∥A 1B 1且相等,即可证明四边形OAA 1B 1是平行四边形;(3)平行四边形的面积=底×高=OA ×OA 1.【解答】(1)解:因为,∠OAB=90°,OA=AB ,所以,△OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA 1=OA=6,对应角∠A 1OB 1=∠AOB=45°,旋转角∠AOA 1=90°,所以,∠AOB 1的度数是90°+45°=135°.(2)证明:∵∠AOA 1=∠OA 1B 1=90°,∴OA ∥A 1B 1,又∵OA=AB=A 1B 1,∴四边形OAA 1B 1是平行四边形.(3)解:▱OAA 1B 1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上.(1)连接DF 、BF ,若将正方形AEFG 绕点A 按顺时针方向旋转,判断命题“在旋转的过程中,线段DF 与BF 的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG 绕点A 按顺时针方向旋转,连接DG ,在旋转过程中,你能否找到一条线段的长与线段DG 的长始终相等?并以图为例说明理由.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A ,F ,B 在同一直线上时,DF ≠BF .(2)注意使用两个正方形的边和90°的角,可判断出△DAG ≌△BAE ,那么DG=BE .【解答】解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则DF=>a ,BF=|AB ﹣AF|=|a ﹣b|<a , ∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,可得△ADG ≌△ABE ,则DG=BE .如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,∴∠OAD=∠ODA,∴OA=OD,点O在AD的垂直平分线上,∴直线BO是AD的垂直平分线,即BO⊥AD;方法二:延长BO交AD于点G,同方法一,OA=OD,在△ABO和△DBO中,,∴△ABO≌△DBO,∴∠ABO=∠DBO,在△ABG和△DBG中,,∴△ABG≌△DBG,∴∠AGB=∠DGB=90°,∴BO⊥AD.【点评】本题综合考查全等三角形、等腰三角形和旋转的有关知识.注意对三角形全等知识的综合应用.。
人教版 九年级数学 第23章 旋转 复习题(含答案)
人教版九年级数学第23章旋转复习题一、选择题(本大题共10道小题)1. 在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()2. 若点A(-3,2)关于原点的对称点是点B,点B关于x轴的对称点是点C,则点C的坐标是()A.(3,2) B.(-3,2)C.(3,-2) D.(-2,3)3. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O44. 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为()A.10 B.2 2C.3 D.2 55. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点6. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)7. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H8. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n-1,3) B.(2n-1,3)C.(4n+1,3) D.(2n+1,3)9. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α10. 2018·桂林如图,在正方形ABCD中,AB=3,点M在边CD上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM绕点A按顺时针方向旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.2 3 C.13 D.15二、填空题(本大题共8道小题)11. 若将等腰直角三角形AOB按图所示的方式放置,OB=2,则点A关于原点对称的点的坐标为________.12. 如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=________°.13. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.14. 已知▱ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB 与x轴平行且AB=2.若点A的坐标为(a,b),则点D的坐标为________________.15. 把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为_______.16. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.17. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,B P=8,CP=10,则S△ABP+S△BPC=________.18. 如图,在平面直角坐标系中,对点P(1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P1,作点P1关于原点的对称点P2,向上平移2个单位长度得到点P3,作点P3关于原点的对称点P4……那么点P2020的坐标为____________.三、解答题(本大题共4道小题)19. 如图,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D 分别在OE和OF上,现将△OEF绕点O逆时针旋转角α(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=________;(用含α的式子表示)(2)猜想图②中AF与DE的数量关系,并证明你的结论.20. 如图①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC 的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD =30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外部的点D1处转到其内部的点D2处,连接D1D2,如图②,此时∠AD2C=135°,CD2=60,求BD2的长.21. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD. 求证:BD2=AB2+BC2.22. 2019·福建如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是D,E.(1)当点E恰好在AC上时,如图①,求∠ADE的度数;(2)若α=60°,F是边AC的中点,如图②,求证:四边形BEDF是平行四边形.人教版九年级数学第23章旋转复习题-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】A3. 【答案】A[解析] 如图,连接HC和DE交于点O1.4. 【答案】A[解析] ∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5. ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1.在Rt△BED中,BD=BE2+DE2=10.故选A.5. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.6. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO =∠A′FO =90°.∵点A 的坐标为(1,3),∴AE =1,OE =3,∴OA =2,∠AOE =30°,由旋转可知∠AOA′=30°,OA′=OA =2,∴∠A′OF =90°-30°-30°=30°,∴A′F =12OA′=1,OF =3,∴A′(3,1). 故选A.7. 【答案】D[解析] 由于点B ,D ,F ,H 在同一条直线上,根据中心对称的定义可知,只能是点B 和点H 是对称点,点F 和点D 是对称点.故选D.8. 【答案】C[解析] A 1(1,3),A 2(3,-3),A 3(5,3),A 4(7,-3),…,∴点A n 的坐标为⎩⎨⎧(2n -1,3)(n 为奇数),(2n -1,-3)(n 为偶数).∵2n +1是奇数,∴点A 2n +1的坐标是(4n +1,3).故选C.9. 【答案】C[解析] 由题意可得∠CBD =α,∠C =∠EDB.∵∠EDB +∠ADB =180°, ∴∠C +∠ADB =180°.由四边形的内角和定理,得∠CAD +∠CBD =180°. ∴∠CAD =180°-∠CBD =180°-α.故选C.10. 【答案】C[解析] 如图,连接BM .∵△AEM 与△ADM 关于AM 所在的直线对称, ∴AE =AD ,∠MAD =∠MAE .∵△ADM绕点A按顺时针方向旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD,∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE,即∠F AE=∠MAB,∴△F AE≌△MAB(SAS),∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∵在Rt△BCM中,BM=22+32=13,∴EF=13.二、填空题(本大题共8道小题)11. 【答案】(-1,-1)[解析] 如图,过点A作AD⊥OB于点D.∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(-1,-1).12. 【答案】90[解析] 连接AA1,CC1,分别作AA1和CC1的垂直平分线,两直线相交于点D,则点D即为旋转中心,连接AD,A1D,则∠ADA1=α=90°.13. 【答案】(0,1)14. 【答案】(-2-a,-b)或(2-a,-b)[解析] 如图①,∵点A的坐标为(a,b),AB与x轴平行,∴B(2+a,b).∵点D与点B关于原点对称,∴D(-2-a,-b).如图②,∵B(a-2,b),且点D与点B关于原点对称,∴D(2-a,-b).15. 【答案】y =-x 2-2x -3[解析] 旋转前二次项的系数a =1,抛物线的顶点坐标是(1,2),旋转后二次项的系数a =-1,抛物线的顶点坐标是(-1,-2),∴新抛物线的解析式为y =-(x +1)2-2,即y =-x 2-2x -3.16. 【答案】18[解析] 如图.∵∠BAD =∠BCD =90°,∴∠B +∠ADC =180°.又∵AB =AD ,∴将△ABC 绕点A 逆时针旋转90°后点B 与点D 重合,点C 的对应点E 落在CD 的延长线上,∴AE =AC =6,∠CAE =90°,∴S 四边形ABCD =S △ACE =12AC·AE =12×6×6=18.17. 【答案】24+163 [解析] 如图,将△BPC 绕点B 逆时针旋转60°后得到△BP ′A ,连接PP ′.根据旋转的性质可知,旋转角∠PBP ′=∠CBA =60°,BP =BP ′, ∴△BPP ′为等边三角形, ∴BP ′=BP =8=PP ′.由旋转的性质可知,AP ′=PC =10, 在△APP ′中,PP ′=8,AP =6,AP ′=10, 由勾股定理的逆定理,得△APP ′是直角三角形,∴S△ABP+S△BPC=S四边形AP′BP=S△BPP′+S△AP′P=34BP2+12PP′·AP=24+16 3.故答案为24+16 3.18. 【答案】(1,-505)[解析] 根据题意可列出下面的表格:观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;序号除以4余2的点是序号除以4余1的点关于原点的对称点;序号能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;序号除以4余3的点在第二象限,是序号能被4整除的点关于原点的对称点.因为2020÷4=505,所以点P2020在第四象限,坐标为(1,-505).三、解答题(本大题共4道小题)19. 【答案】解:(1)∵△OEF绕点O逆时针旋转角α,∴∠DOF=∠COE=α.∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°-α.故答案为90°-α.(2)猜想:AF=DE.证明:∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD.∵∠DOF=∠COE=α,∴∠AOF=∠DOE.∵△OEF 为等腰直角三角形,∴OF =OE.在△AOF 和△DOE 中,⎩⎨⎧OA =OD ,∠AOF =∠DOE ,OF =OE ,∴△AOF ≌△DOE(SAS),∴AF =DE.20. 【答案】解:(1)①当A ,D ,M 三点在同一直线上时,AM =AD +DM =40或AM =AD -DM =20.②当A ,D ,M 三点为同一直角三角形的顶点时,显然∠MAD 不能为直角. 当∠AMD 为直角时,AM 2=AD 2-DM 2=302-102=800,∵AM>0, ∴AM =20 2.当∠ADM =90°时,AM 2=AD 2+DM 2=302+102=1000,∵AM>0, ∴AM =10 10.综上所述,满足条件的AM 的长为20 2或10 10.(2)如图,连接CD 1,由题意得,∠D 1AD 2=90°,AD 1=AD 2=30,∴∠AD 2D 1=45°,D 1D 2=30 2.∵∠AD 2C =135°,∴∠CD 2D 1=∠AD 2C -∠AD 2D 1=90°,∴CD 1=(30 2)2+602=30 6.∵∠BAC =∠D 1AD 2=90°,∴∠BAC -∠CAD 2=∠D 1AD 2-∠CAD 2,∴∠BAD 2=∠CAD 1.又∵AB =AC ,AD 2=AD 1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30 6.21. 【答案】证明:如图,将△ADB绕点D顺时针旋转60°,得到△CDE,连接BE,则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.又∵∠ADC=60°,∴∠BDE=60°,∴△DBE是等边三角形,∴BD=BE.又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.22. 【答案】解:(1)∵△ABC绕点C顺时针旋转角α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.∵CA=CD,∴∠CAD=∠CDA=12(180°-30°)=75°,∴∠ADE=90°-75°=15°.(2)证明:连接AD.∵F是边AC的中点,∠ABC=90°,∴BF=12AC.∵∠ACB=30°,∴AB=12AC,∴BF=AB.∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,BC=CE,CD=CA,DE=AB,∴DE=BF,△ACD和△BCE均为等边三角形,∴BE=CB.∵F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE.又∵BF=DE,∴四边形BEDF是平行四边形.。