甲烷二氧化碳重整分析解析共34页

合集下载

甲烷与二氧化碳催化重整制取合成气的研究进展

甲烷与二氧化碳催化重整制取合成气的研究进展

第34卷第12期2005年12月应 用 化 工App lied Che m ical I ndustryVol .34No .12Dec .2005专论与综述收稿日期:2005210211基金项目:国家自然科学基金和宝钢科学基金联合资助项目(50164002,50574046);云南省自然科学基金资助项目(2004E0012Q );教育部高校博士学科点专项科研基金资助项目(20040674005)作者简介:魏永刚(1977-),男,陕西咸阳人,云南理工大学在读博士研究生,师从王华教授,从事环境调和型能源新技术的研究。

电话:(0871)5153405,E 2mail:t orier@sina .com 甲烷与二氧化碳催化重整制取合成气的研究进展魏永刚,王 华,何 方,辛嘉余(昆明理工大学材料与冶金工程学院,云南昆明 650093)摘 要:综述了甲烷与二氧化碳催化重整制取合成气的最新研究进展,比较了不同类型的催化剂在重整反应过程中的性能差异,分析了催化剂的积炭过程和重整反应机理,对非常规供能方式进行了阐述,指出了甲烷与二氧化碳催化重整制取合成气的研究方向。

关键词:催化重整;合成气;积炭;反应机理中图分类号:T Q 51 文献标识码:A 文章编号:1671-3206(2005)012-0721-05Progress i n methane cat alyti c refor m i n g with carbon di oxi de to syngasW E I Yong 2gang,WAN G Hua,HE Fang,X I N J ia 2yu(Faculty ofM aterials and Metallurgy Engineering,Kun m ing University of Science and Technol ogy,Kun m ing 650093,China )Abstract:The latest p r ogress of methane catalytic ref or m ing with carbon di oxide t o syngas is revie wed .The perf or mance difference a mong catalysts in the ref or m ing reacti on p r ocess is compared .The p r ocess of carbon depositi on of catalysts and ref or m ing reacti on mechanis m are analyzed,and non 2conventi onal means of supp lying energy are described .Finally the devel opment trend of methane catalytic ref or m ing with carbon di oxide t o syngas is pointed out .Key words:catalytic refor m ing;syngas;carbon depositi on;reacti on mechanis m 甲烷是煤层气和天然气的主要成分,随着石油资源的日益枯竭,储量丰富的天然气资源将成为最具希望的替代能源之一。

甲烷与二氧化碳重整制合成气技术

甲烷与二氧化碳重整制合成气技术

潞安“二氧化碳和甲烷重整制合成气”技术情况合成气是以氢和一氧化碳为主要成分供化学合成用的一种原料气,制备合成气的原料有天然气、煤、石油、油田气、焦炉煤气、炼厂气、石脑油、重油等,合成气用于合成氨、甲醇及其他醇类化合物。

天然气可以通过经部分氧化或蒸汽转化可以获得合成气,煤用蒸汽、空气或者其他气化剂进行高温气化获得合成气,但无论煤或天然气制合成气能耗和运行费用均高,且目前天然气和煤的价格还在不断攀升。

干重整技术利用甲烷和二氧化碳制合成气是C1化学研究的重要组成部分,能解决对化石燃料的依赖,以及由此带来的种种问题,不仅可以大幅度降低能耗和生产成本,更能将二氧化碳这种温室气体加以利用,具有环境和经济的双重效益,已成为当前的研究热点之一,对于人类的可持续发展具有十分重要的意义。

干重整技术目前工业化的主要瓶颈是催化剂易积炭而失活性,因此,要实现工业化应用的关键是研制出高活性、高选择性、高稳定性的催化剂。

国内外众多研究者对干重整催化剂的活性成分、载体、助体、抗积炭性、制备方法、操作参数及反应机理等进行了大量的研究,取得了很多有意义的成果。

国内近年来正在积极开展这方面的研究工作,并取得了一些进展。

中国科学院山西煤炭化学研究所与壳牌全球解决方案国际有限公司2008至2011年进行联合研发,研究将合成气转化为高级醇。

研究人员发现,二氧化碳和甲烷的混合物是该转化过程的副产品。

联合研究团队利用纳米技术制备的新型干重整催化剂,回收了这些副产品用于循环生产合成气。

这种新型催化剂的活性非常稳定,可以提高该工艺过程中的碳效率,因而具有商业化应用前景。

中国科学院上海高等研究院、壳牌全球解决方案国际有限公司和山西潞安矿业集团有限责任公司在前期已开展一些干重整技术项目合作并取得了一定的进展的基础上,2011年6月24日,三方签署了联合研发协议,联合开发新型干重整技术,利用或循环利用甲烷和二氧化碳生产合成气,并在潞安低碳经济开发区进行该过程相关商业化装置的技术示范和中试验证。

二氧化碳重整甲烷制合成气研究进展及经济性探讨_李庆勋

二氧化碳重整甲烷制合成气研究进展及经济性探讨_李庆勋

第35卷第2期现代化工Feb.20152015年2月Modern Chemical Industry 二氧化碳重整甲烷制合成气研究进展及经济性探讨李庆勋,刘晓彤,刘克峰,肖海成,孔繁华(中国石油天然气股份有限公司石油化工研究院,北京100195)摘要:对于含CO 2的天然气、煤层气、焦炉气和沼气,通过蒸汽重整和CO 2重整结合,可消耗CO 2,降低生产成本和能耗,还能制备用于甲醇合成和费托合成的原料气(H 2/CO =2),具有较好的经济与环保效益。

本文对CO 2重整甲烷制合成气催化剂及工艺反应条件研究进行了综述,并对其工业应用的经济性进行了探讨。

关键词:二氧化碳;甲烷;合成气;重整;催化剂;反应条件;经济性中图分类号:TE646;TQ203.2;TQ9文献标志码:A 文章编号:0253-4320(2015)02-0005-04Progress and economic analysis of carbon dioxide reforming ofmethane to synthesis gasLI Qing-xun ,LIU Xiao-tong ,LIU Ke-feng ,XIAO Hai-cheng ,KONG Fan-hua(Petrochemical Research Institute ,PetroChina ,Beijing 100195,China )Abstract :Carbon dioxide reforming of methane to synthesis gas can be used for the preparation of syngas H 2/CO =1for carbonyl synthesis and adjusting H 2/CO ratio of syngas.For CO 2-containing natural gas ,coal bed methane ,coke oven gas and biogas ,the consumption of CO 2and reduction of production costs and energy can be achieved through acombination of steam reforming and CO 2reforming to H 2/CO =2syngas for methanol synthesis and Fischer-Tropsch synthesis ,which has good economic and environmental benefits.In this paper ,the catalysts and reaction conditions arereviewed.The economic analysis is discussed for the industry production.Key words :carbon dioxide ;methane ;syngas ;reforming ;catalyst ;reaction conditions ;economic analysis收稿日期:2014-06-23作者简介:李庆勋(1980-),男,博士,工程师,现任职中国石油天然气股份有限公司石油化工研究院,从事天然气制合成气研究工作,010-52777255-8901。

甲烷二氧化碳重整分析解析

甲烷二氧化碳重整分析解析

Page 10
5.1 常用的载体
CH4-CO2重整反应需要高温吸热,所以适用于CH4-CO2重整反 应的催化剂载体必须具有良好的热稳定性及合适的比表面积。 目前,常用的载体有Al2O3、SiO2、TiO2、MgO、ZrO2[23,24], 稀土金属氧化物以及复合氧化物ZrO2- Al2O3、MgO- Al2O3、 ZrO2- SiO2、SiO2-TiO2等[25,26]。
Page 12
5.3 复合载体
除采用单组分为载体外,一些研究者还以多种组分制成复合载 体。刘水刚[28]采用溶胶-凝胶法制备出了Ni/CaO- ZrO2催化剂 ,在CH4-CO2重整反应中,Ni/CaO-ZrO2催化剂表现出较高的 活性,其稳定性也较好。在经连续反应2天后,其催化活性几 乎没有降低。这是由于在纳米催化剂中,Ni颗粒尺寸在反应过 程中没有明显变化,并且催化剂中的碱性组分CaO对CO2的吸 附和解离起到了很重要的作用。Ni/CaO- ZrO2催化剂中的Ni, ZrO2和CaO的颗粒尺寸均在10nm以下,通过透射电镜发现它 们堆积形成了海绵状的介孔结构。
甲烷二氧化碳重整
一、研究背景:
一方面,该过程产生的合成气中H2/CO比约为1 ,是羰基化反应及费托合成的理想原料。
另一方面甲烷重整反应能够同时将两种温室气 体(甲烷和二氧化碳)转化为合成气,减少了 CO2排放,具有环保意义。
而且该过程特别适用于富含CO2的天然气田, 减少了分离CO2带来的费用。
Page 2
Page 18
7.1 溶胶-凝胶法制备催化剂
溶胶-凝胶法是近年来发展起来的一种材料制备方法,该方法 通常在室温条件下进行,且反应过程温和。所以用此方法制备 的催化剂具有很多优点,例如反应温度低、粉体纯度高、均匀 度好、活性成分分散度高等。黎先财[35]以不同的方法制备了 BaTiO3 为载体,再浸渍活性金属镍制备成甲烷二氧化碳重整 反应催化剂,并对其催化活性进行比较。结果表明,相比于其 他制备方法,溶胶-凝胶法制备的催化剂催化活性最高,稳定 性最好。这是由于溶胶-凝胶法制备的NiO/BaTiO3比表面积更 大,且NiO与BaTiO3之间的相互作用力更大,NiO在BaTiO3上 分散度更高,在甲烷二氧化碳重整反应过程中不易造成NiO的 烧结,从而保持了较高的催化活性。

甲烷二氧化碳催化重整

甲烷二氧化碳催化重整
不同催化反应体系, 机理不尽相同。
2
Rh基催化剂基础上提出以下 重整机理
Ni基催化剂基础上提出以下重整机理
→ 2(CO2 +※→CO2 ※) → 2(CO2 +H※→CO ※+OH※ ※表示表面吸附位 → CH4+※→ CHx※+(4-x)/2H2 →
H2+2※→ 2H2※
含氧物种的参与途径?
CO2 →CO +O※ O※ + C※ →CO H※ + H※ →H2 → →
CH3 ※ +※→ CH2※+H※ CH2 ※ +※→ CH※+H※ CH ※ +※→ C※+H※ OH※+H※→H2O※+※ H2O※→H2O+※
CO2吸附分解反应式
CO2+2※→ CO※+O※
C※+O※→ CO※+※ CO※→ CO+※ H※+H※→H2※+※ H※+O※→OH※+※
5.催化剂失活与对策研究
一方面, 该过程产生的低H2 /CO (约 为1 )的合成气, 可直接作为进行深度 转化的羰基合成及费托合成的理想原 料, 弥补了甲烷水蒸气重整反应产生 较高H2 /CO 的不足。
另一方面,反应利用CO2 为原料, 减少了CO2 排放, 具有环保意义, 同 时该过程特别适用于富含CO2的天 然气田, 减少了分离CO2 带来的费 用。
2. CH4 - CO2催化重整反应热力学
甲烷二氧化碳重整反 逆水汽变换式
强吸热过程
640℃
CO2+H2=2CO+2H2O
CO2歧化反应式
820℃

基于太阳能蓄热过程的甲烷二氧化碳重整研究进展

基于太阳能蓄热过程的甲烷二氧化碳重整研究进展

2016年第35卷第6期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1723·化工进展基于太阳能蓄热过程的甲烷二氧化碳重整研究进展谢涛,杨伯伦(西安交通大学化学工程与技术学院,陕西西安 710049)摘要:热化学储能技术因为其储能密度高、热损小、能长距离运输等优点而成为保证太阳能长久稳定供应的关键技术。

本文对基于甲烷二氧化碳重整反应的太阳能热化学储热系统研究现状进行了回顾,重点讨论了甲烷重整催化剂、重整反应器以及储能系统整体的传热特性等3个方向的研究进展。

指出新型高效催化剂以及反应器开发和性能测试是目前该领域的主要研究方向。

发现辐射热损失、非均匀温度分布特性、辐射热流的时变波动特性,以及由此造成的能量与化学反应的不匹配限制了热化学系统能量储存效率的进一步提高,并提出催化剂的催化特性与物性/结构参数依变关系,反应器辐射吸收特性、传热传质特性和反应特性之间的相互作用机制,以及系统时变动态特性与反应物流/辐射能流的匹配关系是建立甲烷重整热化学储能系统优化设计理论亟待解决的关键问题。

关键词:太阳能;热化学储能;甲烷重整反应;催化剂;反应器;传热特性中图分类号:TK519 文献标志码:A 文章编号:1000–6613(2016)06–1723–010DOI:10.16085/j.issn.1000-6613.2016.06.012Advances of CO2 reforming of methane based on the solar energy storageXIE Tao,YANG Bolun(School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China)Abstract:Thermochemical energy storage is the key technique to guarantee long term and steady supply of solar energy due to its advantages of high energy density,low heat loss as well as transportability over long distance. In this work,the development of CO2 reforming of methane that has been applied in the solar thermochemical energy storage system was summarized. Particular emphasis was put on the studies of methane reforming catalyst,methane reforming reactor,and thermal analysis of thermochemical energy storage system. New high-efficiency catalysts and reforming reactors were the main interests of the current researches. Radiation heat loss,non-uniform temperature distribution,time-varying radiation heat flux,as well as the mismatching between energy and chemical reaction restricted the improvement of thermochemical energy storage efficiency. In order to further improve the performance of thermochemical energy storage system and establish its optimization design theory,some key questions were proposed to be answered,including the relationship between the catalytic performance and properties/structure parameters of the catalyst,the interaction mechanism of thermal radiation absorption,heat/mass transfer and thermochemical reaction characteristics of the chemical reactor,as well as the time-varying dynamic features and matching relationship with radiation heat flux of the thermochemical system.Key words:solar energy;thermochemical energy storage;reforming of methane;catalyst;reforming reactor;heat transfer characteristics收稿日期:2016-01-25;修改稿日期:2016-02-01。

甲烷二氧化碳重整转化率

甲烷二氧化碳重整转化率是指通过催化反应将甲烷和二氧化碳转化为合成气的过程中,所转化的甲烷和二氧化碳的比例。

重整转化率是衡量该反应效率的重要指标之一,对于评估催化剂性能和反应条件的优化具有重要意义。

下面将从定义、影响因素和提高方法等方面进行详细介绍。

一、定义甲烷二氧化碳重整转化率(Methane Carbon Dioxide Reforming Conversion)是指在催化剂的作用下,甲烷与二氧化碳发生重整反应生成一氧化碳和氢气的过程中,所转化的甲烷和二氧化碳的比例。

通常用百分比表示,计算公式如下:转化率(%) = (转化物摩尔数/进料物摩尔数) × 100%二、影响因素1. 催化剂选择:催化剂是甲烷二氧化碳重整反应的关键因素之一。

常用的催化剂包括镍、钯、铂等金属催化剂及其复合催化剂。

催化剂的活性、稳定性和选择性会直接影响转化率的高低。

2. 反应温度:反应温度是甲烷二氧化碳重整反应中另一个重要的影响因素。

适当的反应温度可以提高反应速率,但过高的温度可能导致催化剂失活或副反应的发生。

因此,选择合适的反应温度对于提高转化率非常关键。

3. 反应压力:反应压力对甲烷二氧化碳重整反应的平衡态有一定的影响。

较高的压力可以促进产物生成,但过高的压力会增加系统能耗和设备成本。

因此,需要在经济性和转化率之间进行平衡考虑。

4. 气体比例:甲烷和二氧化碳的进料比例也是影响重整转化率的重要因素之一。

适当的甲烷和二氧化碳比例可以提高转化率,但过高或过低的比例都会导致反应效果下降。

三、提高方法1. 催化剂设计:通过催化剂的合理设计和改性,可以提高催化剂的活性和稳定性,从而提高重整转化率。

例如,采用贵金属与载体的复合结构,可以增加催化剂的活性位点和抗积碳能力。

2. 反应条件优化:通过调节反应温度和压力,优化甲烷二氧化碳重整反应的条件,可以提高转化率。

适当的反应温度和压力可以促进反应的进行,并在转化率和能耗之间取得平衡。

甲烷二氧化碳自热重整工艺分析

甲烷二氧化碳自热重整工艺分析刘俊义;祝贺;张军【摘要】基于吉布斯自由能最小法,分析甲烷二氧化碳自热重整(CO2/CH4/O2重整)工艺过程,可知:温度增加,合成气中甲烷含量减少、二氧化碳转化率增加;压力增加,合成气中甲烷含量增加、二氧化碳转化率降低;碳碳比n(CO2)/n(CH4)增加,合成气中甲烷含量减少、二氧化碳转化率降低;温度、压力对氢碳比n(H2)/n(CO)有影响,但n(CO2)/n(CH4)对n(H2)/n(CO)影响更为显著;少量或适量水蒸气可以保护甲烷二氧化碳自热重整转化炉内关键设备、调节产物n(H2)/n(CO)等.根据工业生产要求和特点,定义出口合成气中甲烷的物质的量分数1%为临界条件,获得临界条件时n(CO2)/n(CH4)、重整平衡温度与压力、二氧化碳转化率以及n(H2)/n(CO)等特性参数的关系图,指导工业生产的工艺过程和催化剂研究.【期刊名称】《天然气化工》【年(卷),期】2019(044)003【总页数】5页(P56-60)【关键词】二氧化碳;甲烷含量;自热重整;干重整;合成气;临界条件【作者】刘俊义;祝贺;张军【作者单位】山西潞安矿业(集团)有限责任公司,山西长治 046204;中国科学院上海高等研究院低碳转化科学与工程重点实验室,上海 201203;中国科学院上海高等研究院低碳转化科学与工程重点实验室,上海 201203【正文语种】中文【中图分类】TE64;TQ01合成气是一种重要的碳一化工原料气,可以合成甲醇、甲酸甲酯、二甲醚、合成油等化工产品。

以天然气为原料重整制备合成气,按照O 原子供应原料不同可分为:(1)水蒸气为氧原料的湿重整SMR;(2)O2为氧原料的甲烷部分氧化POM;(3)CO2为氧原料的干重整;(4)上述两种或三种物质为氧原料的耦合重整。

其中水蒸气重整SMR,最早于1926 年成功工业化,但所得合成气的n(H2)/n(CO)高(约为3),该工艺过程能耗高、投资大、设备庞大、生产成本高、活性组分为Ni 的催化剂面临严重的积炭问题[1,2]。

二氧化碳和甲烷干重整转化制合成气热力学发现

二氧化碳和甲烷干重整转化制合成气热力学发现近年来,随着全球气候变化的加剧,二氧化碳和甲烷等温室气体的排放问题引起了国际社会的关注。

然而,由于当前绿色环保技术的不发达,这些温室气体仍然大量排放到大气中,并造成严重的气候变化问题。

因此,研发出高效、低成本、可持续发展的技术来控制和削减温室气体排放,对于解决全球气候问题至关重要。

二氧化碳和甲烷属于气体,因此可以通过利用其他化学物质将其转化为固体或液体物质,以有效降低其排放量。

此外,由于二氧化碳和甲烷在自然界中广泛存在,因此它们可以通过合成气的形式进行再利用,从而极大地提高其利用率。

目前,研究人员正在寻求通过利用现有的技术,以及利用气相反应以及分离技术,来实现以二氧化碳和甲烷为原料,进行再利用,实现合成气转化。

在本研究中,我们采用干重整转化(WDT)制备合成气的方法,并对其进行热力学和动力学的研究。

该方法使用活性炭作为转化催化剂,利用二氧化碳和甲烷在高温下的反应性,通过合成气的形式实现其利用。

结果表明,当操作条件达到一定程度时,可以有效地将二氧化碳和甲烷转化为合成气,其转化率可以达到90%以上。

此外,为了更准确地掌握转化过程,本实验还对反应温度、压力、催化剂用量等参数进行了优化,并采用不同配比搭配合成气。

结果表明,通过改变参数,可以有效地改变转化率,并且当转化率达到一定程度时,转化反应时间也会减少,从而进一步提高了利用率。

本实验的研究结果表明,干重整转化(WDT)技术在利用二氧化碳和甲烷制备合成气方面具有较高的效率和利用率,具有重要的应用价值。

因此,将这种技术应用到现有的废气处理技术中,可以有效地控制和减少温室气体的排放,进而帮助解决全球气候变化问题。

总之,本研究通过分析并研究利用二氧化碳和甲烷通过干重整转化(WDT)技术制备合成气的热力学和动力学特性,研究结果表明,WDT技术的应用具有重要的实践价值,可以有效地降低温室气体的排放,有助于解决全球气候变化问题。

甲烷二氧化碳干重整政策

甲烷二氧化碳干重整政策1. 引言1.1 背景介绍甲烷二氧化碳干重整政策是近年来我国环境保护工作的重要举措之一。

在全球温室气体排放增加、气候变暖对人类健康和生态环境造成威胁的情况下,甲烷和二氧化碳排放成为环境污染的主要来源之一。

为了更好地控制和减少这些排放物,我国逐步出台了一系列政策措施,其中甲烷二氧化碳干重整政策就是其中之一。

甲烷是一种主要的温室气体,其对大气温室效应比二氧化碳高出约25倍,是导致气候变暖的重要因素之一。

而二氧化碳则是主要的温室气体之一,大量排放会导致地球温度上升,引发极端天气变化,对人类社会和自然环境造成巨大影响。

控制甲烷和二氧化碳的排放成为全球环保的重要任务。

政策制定目的甲烷二氧化碳干重整政策的制定旨在通过规范排放标准、加强监管控制、推动技术创新等措施,减少甲烷和二氧化碳排放,保护生态环境,减缓气候变暖的速度,提高我国环保治理水平。

通过这一政策的实施,可以有效降低温室气体排放量,促进可持续发展,保护人民群众的生命安全和身体健康。

1.2 政策制定目的政策制定目的是为了应对全球气候变化带来的挑战,降低甲烷和二氧化碳排放量,减少温室气体对地球气候系统的影响。

制定该政策还旨在促进清洁能源产业的发展,提升能源利用效率,减少对传统煤炭等高碳能源的依赖,推动经济结构转型升级。

通过限制甲烷和二氧化碳排放,促进可再生能源的利用,我国将实现能源资源的可持续利用,保护生态环境,提高社会生态效益。

甲烷二氧化碳干重整政策的制定旨在推动我国经济的绿色发展,为全球环境保护贡献我国的力量。

2. 正文2.1 政策内容甲烷二氧化碳干重整政策的核心内容包括对甲烷和二氧化碳排放进行限制和监管,通过实施减排措施和促进清洁能源的发展来降低二氧化碳和甲烷的排放量。

政策内容主要包括以下几个方面:1. 设定排放限额和排放标准:政府将根据国家的减排目标和环境承受能力,制定甲烷和二氧化碳排放的限额和标准,各行业和企业需按照要求进行排放调整和控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档