第一章 集合的概念及运算(集合论讲义)

合集下载

集合论中的基本概念和运算

集合论中的基本概念和运算

集合论是数学的一个分支,研究的是集合及其性质。

在集合论中,存在着一些基本的概念和运算,这些概念和运算是理解集合论的基石。

本文将介绍集合的基本概念、集合的运算以及运算的性质。

首先,我们来看一下集合的基本概念。

集合可以被理解为是由一些对象组成的整体。

这些对象可以是数字、字母、符号,甚至是其他集合。

比如,{1, 2, 3, 4}可以被看作是一个数字的集合,而{a, b, c}可以被看作是一个字母的集合。

在集合中,每个对象被称为元素。

一个元素可以属于一个集合,也可以不属于一个集合。

如果一个元素属于一个集合A,我们可以表示为a∈A,读作"a属于A"。

其次,我们介绍一下集合的运算。

集合论中存在着三种基本的集合运算:并、交和差。

集合的并运算将两个集合A和B中的所有元素合并成一个新的集合,表示为A∪B。

例如,如果A={1, 2, 3},B={3, 4, 5},那么A∪B={1, 2, 3, 4, 5}。

集合的交运算将两个集合A和B中共有的元素提取出来,表示为A∩B。

例如,如果A={1, 2, 3},B={3, 4, 5},那么A∩B={3}。

集合的差运算将属于集合A但不属于集合B的元素提取出来,表示为A-B。

例如,如果A={1, 2, 3},B={3, 4, 5},那么A-B={1, 2}。

集合的运算还具有一些重要的性质。

首先,集合的运算满足交换律和结合律。

即,对于任意的集合A和B,满足A∪B=B∪A和A∩B=B∩A,以及(A∪B)∪C=A∪(B∪C)和(A∩B)∩C=A∩(B∩C)。

其次,集合的运算满足分配律。

即,对于任意的集合A、B和C,满足A∪(B∩C)=(A∪B)∩(A∪C)和A∩(B∪C)=(A∩B)∪(A∩C)。

最后,我们来看一下集合的补运算。

集合的补运算将一个集合A中不属于另一个集合B的元素提取出来,表示为A-B。

与差运算类似,如果A和B是两个集合,那么A-B的结果是属于集合A但不属于集合B的元素构成的集合。

集合的概念与运算PPT课件

集合的概念与运算PPT课件

6.子集、真子集及其性质: 对任意的 x∈A,都有 x∈B,则 A⊆ B(或 B⊇ A); 若集合 A⊆ B,但存在元素 x∈B,且 x∉A,则 A⫋ B(或 B⫌ A);
⌀ ⊆ A;A⊆ A;A⊆ B,B⊆ C⇒ A⊆ C. 若集合 A 含有 n 个元素,则 A 的子集有 2n 个,A 的非空子集有 2n-1个,A
【例 2-2】已知集合 A={x|x2-2x+a≤0},B={x|x2-3x+2≤0},且 A⫋ B,求实 数 a 的取值范围.
解:由题意可得 B={x|1≤x≤2}. 对于 A:Δ=(-2)2-4a<0,即 a>1 时,A≠⌀ ,满足 A⫋ B;
Δ=(-2)2-4a=0,即 a=1 时,A={1},满足 A⫋ B;
A.(a*b)*a=a
B.[a*(b*a)]*(a*b)=a
C.b*(b*b)=b
D.(a*b)*[b*(a*b)]=b 解析:在 B 选项中,[a*(b*a)]*(a*b)=b*(a*b)=a,故 B 正确;在 C 选项中,易知 a*(b*a)=b*(b*b)=b 成立,故 C 正确;在 D 选项中,令 a*b=c,则 c*(b*c)=b 成立, 故 D 正确.只有 A 选项不能恒成立.
5.设集合 A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数 a 的值为 1
.
解析:∵A={-1,1,3},B={a+2,a2+4},A∩B={3},a2+4>3, ∴a+2=3,a=1.
一、集合的概念
【例 1-1】 若集合 A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合 B 的元 素个数为( B ).

集合论初步知识和集合运算规律

集合论初步知识和集合运算规律

集合论初步知识和集合运算规律集合论是数学的一个基本分支,它研究了集合以及集合之间的关系和运算。

集合论的主要概念和运算规律如下:1.集合的基本概念:–集合:由明确的、相互区别的对象组成的整体,称为一个集合。

–元素:集合中的每一个对象称为该集合的元素。

–集合的表示方法:用大括号{}括起来,里面列出集合的所有元素,如{1, 2, 3}表示包含元素1、2、3的集合。

2.集合的类型:–普通集合:包含任意类型的元素的集合。

–子集:如果一个集合的所有元素都是另一个集合的元素,那么这个集合称为另一个集合的子集。

–真子集:如果一个集合是另一个集合的子集,并且这两个集合不相等,那么这个集合称为另一个集合的真子集。

–空集:不包含任何元素的集合,用符号∅表示。

–无穷集合:包含无限多个元素的集合。

3.集合运算规律:–并集(∪):两个集合的并集包含两个集合的所有元素,但不重复计算重复的元素。

–交集(∩):两个集合的交集包含两个集合共有的元素。

–补集:对于一个给定的集合S和 universal set(全体集合),S的补集是全体集合中不属于S的元素组成的集合。

–相对补集:对于两个不相交的集合S和T,S在T中的补集是T中不属于S的元素组成的集合。

–幂集:集合S的所有子集组成的集合称为S的幂集。

4.集合运算的性质和定律:–交换律:对于集合运算,交换集合的位置不改变运算结果。

–结合律:对于集合运算,多个集合进行同一运算时,运算顺序不影响结果。

–分配律:集合运算中,一个集合与多个集合的并集进行运算,等于与每个集合分别进行运算的结果。

–吸收律:集合运算中,一个集合与它自己的并集等于它自己。

–同一律:集合运算中,一个集合与它自己的交集等于它自己。

以上是集合论初步知识和集合运算规律的概述,希望对你有所帮助。

习题及方法:1.习题:判断下列哪些是集合,哪些不是集合?a){1, 2, 3}b)所有质数c)高三一班的学生d)全体自然数解答:a)、b)、c)、d)都是集合。

集合的概念与运算

集合的概念与运算
粒子分布等。
社会科学
在经济学、社会学、心理学等社会 科学中,经常使用集合的概念来表 示不同的群体或类别。
生物学
在生物学中,基因组、物种分类等 都涉及到集合的概念。
05
集合运算的注意事项
空集的特殊性
空集是任何集合的子集,包括空 集本身。
空集是唯一不含任何元素的集合。
任何集合与空集的交集等于该集 合本身,任何集合与空集的并集
描述法
通过描述集合中元素的共同特征 ,用大括号括起来。
集合的元素
元素是构成集合的基本单位,可以是 任何对象或实体。
元素可以是具体的,如苹果、汽车等 ;也可以是抽象的,如数字、图形等 。
并集
并集是将两个集合中的所有元素合并到一个新的集合中。 并集运算可以用符号“∪”表示。
交集
交集是两个集合中共有的元素组成的集合。
交集运算可以用符号“∩”表示。
差集
差集是一个集合中去除另一个集合中的元素后剩余的元素组成的集合。
差集运算可以用符号“−”表示。
02
集合的运算
并集
并集是指两个或多个集合中所 有元素的集合,即所有属于A 或属于B的元素组成的集合。
并集的表示方法为A∪B,其中 A和B为两个集合。
并集的性质包括交换律、结合 律和分配律。
也等于该集合本身。
子集与超集的关系
子集
一个集合的所有元素都属于另一个集 合,则称该集合为另一个集合的子集。
超集
一个集合包含另一个集合的所有元素, 则称该集合为另一个集合的超集。
集合运算的优先级
并运算优先于交运算
当进行多个集合的运算时,先进行并运算再进行交运算。
交运算优先于差运算
当进行多个集合的运算时,先进行交运算再进行差运算。

离散数学讲解第一章

离散数学讲解第一章
B7=B000111={a4,a5,a6} B12=B001100={a3,a4}
2018/12/20 21
集合族: 由集合构成的集合.
{{6}, {1,5} , {2,4}, {1,2,3}} 幂集都是集族.
2018/12/20
22
指标集(index set): 设A是集合族, 若 A = { Ai | iK }, 则K称为A的指标集.
全集是相对的, 视情况而定, 因此不唯一.
2018/12/20
24
1.4集合之间的运算
1. 并集: 设有集合A、B,属于A或属于B的所有元素 组成的集合,称为A与B的并集,记作AB AB = { u | uA 或 uB}
AB
2018/12/20
25
2. 交集:设有集合A、B,属于A同时又属于B的所有 元素组成的集合,称为A与B的交集,记作A B AB = { u | u A 且 u B }
2018/12/20 15
对任意集合A, A 证明: 反证法(设结论不成立,推出矛盾)
假设空集不是集合A的子集,即 A 根据定义1-2,存在x , x A, 这与空集的定义矛盾 假设不成立,应有A,原结论成立。
2018/12/20
16
定理: 空集是唯一的.
证明: 设1与2都是空集, 则 12 且 21 1=2 .
2018/12/20
5
2. 集合的表示
列举法:
列出集合中的全体元素,元素之间用逗号分 开,然后用花括号括起来,例如: A={a,b,c,d,…,x,y,z} B={0,1,2,3,4,5,6,7,8,9} C={2,4,6,…}
2018/12/20
6
描述法
给定一个条件P(x) ,当且仅当a使条件P(a)成立 时,a∈A。

1.1集合的概念与运算.pptx

1.1集合的概念与运算.pptx

间 的
子 集
集合 A 中任意一个元素均为集合 B 中的元素

本 为集合 B 中的元素,且集合 B 中至少有一个元素不是集合 A 中的元素
示关系 文字语言
空集 空集是任何集合的子集,是任何非空集合的真子集
符号语 言 A=B A⊆ B
A⫋ B
第1讲 集合的概念与运算
A∪B=B∪A A∪A=A A∪⌀=⌀∪A=A 如果 A⊆ B,则 A∪B=B
A∪∁UA=U A∩∁UA=⌀ ∁U(∁UA)=A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
1.已知集合 A={x∈N|- 3≤x≤ 3},则必有( )
A.-1∈A
B.0∈A
第1讲 集合的概念与运算
考纲解读 主干梳理
考点层析
考向1
考向2
考向2
考向4 易错辨析点拨
考向 1 集合的基本概念
【例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数 是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为
B=( )
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
解析:由已知,可得 A={x|x≥3 或 x≤-1},则 A∩B={x|-2≤x≤-1}=[-2,-1].故选
A.
答案:A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
3.设集合 A={x|1≤x≤2},B={x|x≥a},若 A⊆ B,则 a 的取值范围是( )

集合论

集合论

第一篇集合论第一章集合及其运算1.1 集合的概念1.2 子集、集合的相等1.3 集合的基本运算1.4 余集、De Morgan公式1.5 笛卡尔乘积1.6 有穷集合的基数第二章映射2.1 函数的一般概念——映射定义::映射(法则),映射(笛卡尔乘积),限制和扩张,部分映射,映射相等,单射,满射,双射,恒等映射2.2 抽屉原理2.3 映射的一般性质定义::象f(A),原象f-1(A)[定理2.3.1](1)f-1(C∪D)=f-1(C)∪f-1(D);(2)f-1(C∩D)=f-1(C)∪f-1(D);(3)f-1(CΔD)=f-1(C)Δf-1(D);(4)f-1(C C)=(f-1(C))C⊆⊇⊇[定理2.3.2]∪∪(5)f(A B)=f(A)f(B);(6)f(A∩B)f(A)∩f(B);(7) f(AΔB)f(A)Δf(B);(8) f(A\B)f(A)\f(B)2.4 映射的合成定义::映射的合成[定理2.4.1]合成符合结合律,但不符合交换律[定理2.4.2]设f:X→Y,则f∘I X=I Y∘f =f[定理2.4.3]设f:X→Y,g:Y→Z, 则(1)若f与g都是单射,则g∘f也是单射:f是单射,∀x1x2且x1≠x2 y1=f(x1),y2=f(x2)且y1≠y2有g(f(x1))≠g(f(x2))(2)若f与g都是满射,则g∘f也是满射:f满射,∀y必有x∈X使f(x)=y.∀z∈Z必有y∈Y使g(y)=z.则∀z∈Z必有x∈X使g(f(x))=z.(3)若f与g都是双射,则g∘f也是双射[定理2.4.4]设f:X→Y,g:Y→Z, 则(1)若g∘f是单射,则f是单射;∀x1,x2∈X且x1≠x2有g(f(x1)) ≠g(f(x2))(2)若g∘f是满射,则g是满射;反证:∃z∈Z使∀y∈Y,g(y)≠z则有∀x∈X有g(f(x)) ≠z推出矛盾(3)若g∘f是双射,则f是单射且g是满射[定理2.4.5]设f与g都是X到X的映射,则I m (f)⊆I m(g)的充分必要条件是存在一个映射h:X→X使得f=g∘h2.5 逆映射定义::逆映射,左逆映射,右逆映射[定理2.5.1]逆映射存在的充要条件是f是双射::⇒ Ix,Iy+定理2.4.4⇐构造g(y)=x当且仅当f(x)=y[定理2.5.2]逆映射唯一::假设不唯一,推出g=I x°g=(h°f)°g=h°(f°g)=h°I x=h[定理2.5.3] (gf)-1=f-1g-1,(f-1)-1=f:(gf)(f-1g-1)=g(ff-1) g-1= gg-1=I z, (f-1g-1) (gf)=f(gg-1)f-1= ff-1=I x[定理2.5.4](1)f是左可逆的充分必要条件是f为单射:⇒定义+定理⇐f:X→I m(f)的双射,建立g:I m(f)→X双射,在扩充到Y上,y∉I m(x)随便映射一个(2)f是右可逆的充分必要条件是f为满射:⇒定义+定理⇐构造2.6 置换定义::n次置换,k-循环置换,对换,奇置换,偶置换[定理2.6.1][定理2.6.2][定理2.6.3]置换α,β没有共同数字时可以交换[定理2.6.4]置换可进行唯一循环分解[定理2.6.5]置换分解成若干对换的乘积,分解个数的奇偶性不变[定理2.6.6]奇偶置换个数相等,都等于n!/22.7 二元和n元运算定义::有限序列,无限序列,子序列,二元运算,一元运算,n元运算,交换律,结合律,代数系的同构2.8 集合的特征函数定义::集合的特征函数第三章关系3.1 关系的概念定义::关系(映射),关系(笛卡尔乘积),定义域,值域,多部映射,关系(多部映射),多值二元关系3.2 关系的性质定义::自反,反自反,对称(R对称⟺R=R-1),反对称,传递,相容,逆3.3 关系的合成运算定义::关系的合成,[定理3.3.1]关系的合成不符合交换律,但符合结合律[定理3.3.2](1)R1°(R2∪ R3 )=(R1°R2)∪(R1°R3);(2)R1° (R2∩ R3 )⊆(R1°R2)∩(R1°R3);(3)(R2∪R3 )°R4 = (R2°R4) ∪(R3°R4);(4)(R2∩R3 ) °R4⊆(R2°R4) ∩(R3°R4) [定理3.3.3](1)(R∘S)-1 = S-1∘R-1:(2)R∘R-1 是对称的[定理3.3.4]R是传递关系⟺R°R⊆R[定理3.3.5]R0=I x;R1=R;R n+1=R n°R;R m°R n=R m+n;(R m)n=R mn[定理3.3.6]设X是一个有限集合且|X|=n,R为X上的任一二元关系,则存在非负整数s,t,使得0≤s<t≤2n^2且R s= R t[定理3.3.7]设R是X上的二元关系,若存在非负整数s,t,s<t,使得且R s= R t ,则(1)R s+k= R t+k ,k为非负整数(2)R s+kp+i= R s+i ,其中p=t-s,而k,i为非负整数(3)令S={R0,R,R2 ,…,R t-1},则对任意的非负的整数q,有R q ∈S[定理3.3.8]R对称且传递⟺R=R°R-13.4 关系的闭包定义::传递闭包(所有包含R的传递关系的交,可以类似定义自反传递闭包等),自反传递闭包,自反闭包,对称闭包[定理3.4.1]关系R的传递闭包是传递关系(如果R是传递关系,R+=R):[定理3.4.2]R+=∪R i=R∪R2∪R3∪…:: R+⊆∪R i只要证明∪R i是包含R的传递关系, ∪R⊆R+只要证明(a,b)∈R m,(b,c)∈R n.(a,c)∈R m+n,(a,c) ∈R+[定理3.4.3]R+=∪R n=R∪R2∪R3∪…R n::证明R k⊆∪R i,如果k>n,x仅有n个元素,由抽屉原理得存在b i=b j重复以上过程证明.[定理3.4.5]R*=R0∪R+3.5 关系矩阵和关系图定义:: (1)R是自反的,当且仅当B的对角线上的全部元素都为1;(2) R是反自反的当且仅当B的对角线上的全部元素都为0;(3) R是对称的当且仅当B是对称矩阵;(4) R是反对称的当且仅当b i j与b j i不同时为1,i≠j;(5) R是传递的当且仅当若b i j=1且b j k=1,则b i k=1; (6) R-1的矩阵是B T3.6 等价关系和集合划分定义::等价关系(1.自反2.对称3.传递),等价类,商集[定理3.6.3]3.7 映射按等价关系划分3.8 偏序关系和偏序集定义::偏序关系(自反,反对称,传递),偏序集,全序集,Hasse图,上下界,最大最小元素,链与反链第四章无穷集合及其基数4.1可数集定义::可数集(从自然数集N到集合A有一一映射),无限集(能与自身的真子集对等的集合),代数数,超越数[定理4.1.1]集合A为可数集⟺A的全部元素可以排成无重复项的序列[定理4.1.2]无限集中包含可数子集[定理4.1.3]两个可数集的并是可数集[定理4.1.4]有限个可数集的并是可数集[定理4.1.7]可数个可数集的并是可数集:写成无穷阶方阵,按对角线游历[定理4.1.8]有理数集Q是可数集[定理4.1.10]一列有限个集合的笛卡尔乘积为可数集4.2连续统集定义::连续统(与[0,1]实数集对等)[定理4.2.1]区间[0,1]内的全体实数构成不可数无穷集::康托对角线第二篇图论第六章图的基本概念6.1图论的产生与发展概述6.2基本定义定义::无向图,G(p,q),平凡图,零图,有向图,定向图,子图,生成子图,导出子图,图的同构,度(degv),δ(G),Δ(G),正则图(推论三次图的顶点个数为偶数)[定理6.2.1]欧拉定理:Σ(degv)=2q推论度为奇数的点的个数必为偶数6.3路、圈、连通图定义::通道,闭通道,迹,闭迹,路,圈(回路),连通图,支[定理6.3.1]uv有路⟺u≅v[定理6.3.2]degu+degv≥p–1⟹G连通::拆成两个支用结论反证,degu≤n1-1,degv≤p-n1-1推出与结论的矛盾[定理6.3.3]∀v∈V,degv为偶数⟹G中有圈::设最长路证明[定理6.3.4]∃u,v中有两条不同路⟹G有圈::6.4补图、偶图定义::补图,自补图,三角形,偶图,完全偶图(Km,n), 图上两点间的距离d(u,v)[定理6.4.1]R(3,3)≤6::抽屉原理+[定理6.4.2]偶图判断的充要条件:图上所有的圈的长度都为偶::⇒将圈上的奇偶序的点放入两个顶点划分中⇐取定一点按距离奇偶构造[定理6.4.3](Turan定理)p个顶点没有三角形的图至多有[p^2/4]::6.5欧拉图定义::欧拉闭迹,欧拉图,欧拉迹[定理6.5.1]欧拉图存在定理:G的每个顶点的度都为偶::⇒显然⇐结合定理6.3.3造N个圈Zi然后数归证明这些圈相接.推论::欧拉图的等价命题: 1)G是欧拉图2)∀v∈V,degv为偶数3)G的边能划分成若干不相交的圈.[定理6.5.2]欧拉迹存在定理:: ⇒从定理6.5.1获得⇐uv奇数度,加edge(u,v)得欧拉迹C,在C上去掉edge(u,v).6.6哈密顿图定义::哈密顿圈、哈密顿图[定理6.6.1]G是Hamilton⟹∀S∈V有ω(G-S)<|S|[定理6.6.2](Dirac定理)p个顶点的图G,δ(p)≥p/2,⟹G是一个哈密顿图.[定理6.6.3](Ore定理)p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p⟹G是哈密顿图.[定理6.6.4]p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p-1⟹G是哈密顿图.6.7图的邻接矩阵[定理6.7.1]图同构的邻接矩阵判定[定理6.7.2]ij顶点间长l的通道条数=A l(i,j)::数归l,[定理6.7.3]G(p,q),连通⟺(A+I)^(p-1)>0::⇒定理6.7.2⇐定理6.7.2第七章树和割集7.1树及其性质定义::树,极小连通图(推论树是极小连通图), 偏心率,树的半径,树的中心[定理7.1.1]树的六个等价命题:1)树;2)G中任两点有且只有一条路;3)G连通且p=q+1; 4)G无圈且p=q+1;5)G无圈且其中任意不相邻两点加边得唯一的圈;6)连通(p≥3且G非Kp)且其中任意不相邻两点加边得唯一的圈.推论非平凡树至少有两个度为1的顶点且非平凡树是偶图::偶图判断的构造证明法[定理7.1.2]树的中心的位置7.2生成树定义::生成树, 生成森林, 生成树的距离,生成树的基本变换[定理7.2.1]生成树存在⟺G连通::⟹显然⟸破圈法.推论G连通⟹q≥p-1[定理7.2.2](Cayley定理)Kp的生成树的个数=p(p-2)[定理7.2.3]生成树中去掉边集E1后必能找到另一不在原生成树中的边集E2使T-E1+E2为生成树[定理7.2.4]距离为k的两个生成树可以经过k次基本变换互相得到::数归,由定理7.2.3知,d(T0,T)=k去掉e1后必然有e2∉T0使(T0-e1)+e2=T1,而d(T1,T)=k-1得到归纳.7.3割点、桥和割集定义::割点,桥,割集(有极小性)[定理7.3.1]割点的等价命题:1)v是割点;2)∃u,w≠v使uw间所有路经过v;3)∃划分{U,W} UW间所有路经过v;[定理7.3.2]桥的等价命题:1)x是桥;2)x不在G的任何圈上3)∃u,v使x在连接uw所有路上;4)∃划分{U,W},使x在连接UW所有路上; [定理7.3.4]割集将图分成两个支(推论有k个支的图G去掉割集后有k+1个支)[定理7.3.5]割集必然包含生成树的某条边::反证[定理7.3.6]割集与G中的圈必有偶数条公共边::G1G2取定一点周游,e(u,v)(u∈G1,v∈G2)是圈与割集相交的边第八章连通度和匹配8.1顶点连通度和边连通度定义::κ(G), λ(G), n-连通,n-边连通[定理8.1.1]κ(G)≤λ(G)≤δ(G)[定理8.1.2]κ(G)=a,λ(G)=b,δ(G)=c的构造方法:构造两个Kc+1,用b条边连接这两个支[定理8.1.3]G(V,E)有p个顶点且δ(G)≥ [p/2]⟹λ(G)=δ(G)::[定理8.1.4][定理8.1.5]∀u,v∈V且u,v∈C⟺G是2-连通[定理8.1.6]8.2门格尔定理8.3匹配、霍尔定理定义::匹配,最大匹配,偶图G的完备匹配,相异代表系, 完美匹配[定理8.3.1](Hall定理)::[推论8.3.1]第九章平面图和图的着色9.1平面图及其欧拉公式定义::平面图,面,内部面,外部面[定理9.1.1]欧拉定理:平面图有p-q+f=2::通过f数归[推论9.1.1]每个面都由长为n的圈围成⟹q=n(p-2)/(n-2)::每条边都与两个面邻接⟹2q=nf拓展最大可平面图[推论9.1.2]G(p,q)的最大可平面图每个面都是三角形且q=3p-6[推论9.1.3]每个面都由长为4的圈围成⟹q=2p-4::拓展没有三角形的边极大图[推论9.1.4]G(p,q),q≤3p-6,G没有三角形q≤2p-4[推论9.1.5]K5和K3,3都是不可平面图::K5,f=7,由于每个面至少三条边, K3,3中每个圈至少为4[推论9.1.6]G可平面⟹ (G)≤5::反证+推论9.1.49.2非哈密顿平面图[定理9.2.1]Grinberg定理:G(V,E)是(p,q)平面哈密顿图,C是哈密顿圈.令fi为C的内部由i条边围成的面的个数,gi为C的外部由i条边围成的面的个数则(1)Σ(i-2)fi=p-2;(2) Σ(i-2)gi=p-2;(3) Σ(i-2)(fi-gi)=0;9.3库拉托斯基定理、对偶图定义::细分,同胚,初等收缩,对偶图[定理9.3.1](Kuratowski定理)G可平面⟺G没有同胚于K5或K3,3的子图[定理9.3.2](Wagner定理) G可平面⟺G没有收缩到K5或K3,3的子图9.4顶点的着色定义::n-可着色,色数(有极小性),χ(G)[定理9.4.2]Δ=Δ(G),G是(Δ+1)- 可着色的.[定理9.4.3-定理9.4.5]平面图可以4着色9.5边的着色定义::n-边着色,边色数(有极小性), χ’(G)第十章有向图10.1有向图的概念定义::有向图,弧,对称弧,定向图,带环图,多重有向图,有向图的反图,入度(id(v)),出度(od(v)),完全有向图,有向图的补图,有向图的同构[定理10.1.1]Σid(v)= Σod(v)=q且Σ(id(v)+od(v))=2q10.2有向路和有向圈定义::有向通道,有向闭通道,生成通道,有向迹,有向闭迹,生成(闭)轨迹,有向路,有向圈,有向回路,可达,半(弱)通道,强连通,强支,单连通,弱连通,有向图的连通[定理10.2.1]有向图D是强连通的⟺D有一条闭生成通道[定理10.2.2]uRv当且仅当uv可互达⟹R是V上的等价关系[定理10.2.3]有向图D的每个顶点都在D的一个强支中[定理10.2.4]一个没有有向圈的有向图至少有一个出度为0的顶点[定理10.2.5]有向图D没有圈⟺D中每条有向通道都是有向路[定理10.2.6]有向图D有有向圈⟺D的子图D1(V1,E1),∀v∈V1,id(v)>0,od(v)>0[定理10.2.7]连通有向图D,∀v∈V,od(v)=1,D中恰有一个有向圈10.3强连通图的应用10.4有向图的邻接矩阵定义::有向图的邻接矩阵,可达矩阵,关联矩阵10.5有向树与有序树定义::有向树,有根树,入树,父,子,祖先,真祖先,深度,高度,子树,有序树,m元有序树,正则m元有序树,正则二元树,二元树,满二元树,完全二元树(高为h的二元树,去掉深度为h一层,得到满树,而且h层从左向右排布)[定理10.5.1]有向图D是有根树⟺D没有弱圈且D中存在一个可以到达其他顶点的顶点(root)::⇒化为无向图证明没有弱圈,用除根以外的点入度为1证可达.⇐[定理10.5.3]高为h的二元树至多有2 (h+1)-1个顶点[定理10.5.4]高为h的完全二元树的顶点数满足2h≤p≤2(h+1)-110.6判定树10.7比赛图定义::比赛图[定理10.7.1]每个比赛图必有生成有向路(有哈密顿路)::。

1集合的概念与运算【讲义】

1集合的概念与运算【讲义】

第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.§1.1 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a 的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22y x y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a 当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间. 即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 M N ≠∅ , 则 a 的取值范围是.【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅ . ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅ . ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅ .故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍) 此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1; {1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ= ,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立.【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅ ,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证2 P个.该校的班级数不多于1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 分配律 A ∪ (B ∩ C) = ( A ∪ B) ∩ ( A ∪ C) , A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∩ C)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35

|
A1

A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1

A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为
∪ A = {x : 存在A∈ A, 使得x ∈ A} 。 ∪ 例 2.1 设 A = {{a,b},{c, d},{d , e, f }} ,则 A = {a,b, c, d , e, f }。
A = {电机工程师,机械工程师,数学家,制图员,程序员} 表示,但从集合 A 中看不出所需要人员的数量。再如方程
x(x −1)3 = 0 的解集应以 {0,1,1,1} 表示。于是引出多重集合的概念。
定义 1.8 设全集为 E , E 中元素可以不止一次在其中出现的集合 A ,称为多重集合。若 E 中 元素 e 在 A 中出现 k ( k ≥ 0 )次,则称 e 在 A 中的重复度为 k 。
= 193
§1.3 基本的集合恒等式
交,并,补的综合运算规律。
设 E 为全集, A , B , C 为 E 的子集,则下面列出的运算规律成立。 (1) 等幂律 A ∪ A = A , A ∩ A = A (2) 交换律 A ∪ B = B ∪ A , A ∩ B = B ∩ A (3) 结合律 ( A ∪ B) ∪ C = A ∪ (B ∪ C) , ( A ∩ B) ∩ C = A ∩ (B ∩ C)
∩ 例 2.2 设 A = {{1, 2,3},{1, a,b},{1, 6, 7}},则 A = {1} 。
∩ ∩ ∩ 当 A 是以 S 为指标集的集族时, A = {Aα :α ∈ S} = Aα 。 α∈S
有限集元素的计数:
(1)| A ∪ B |=| A | + | B | − | A ∩ B | ;(2)| A ⊕ B |=| A | + | B | −2 | A ∩ B |
不是 A 的元素,读作 a 不属于 A 。
可以用两种方法来表示集合。
a. 列举法:列出集合中的全体元素,元素之间用逗号分开,然后用花括号括起来。设 A 是以 a , b , c , d 为元素的集合。则 A = {a, b, c, d}。
b. 描述法:即集合的成员可以用其具备的独特性质来描述。例如,
定理 2.1 设 A1 , A2 , , An 为 n 个有限集合,则
∪ ∑ ∑ ∑ n
n
| Ai |= | Ai | − | Ai1 ∩ Ai2 | +
| Ai1 ∩ Ai2 ∩ Ai3 | +
i =1
i =1
i1 <i2
i1 <i2 <i3
∑ +(−1)k −1
| Ai1 ∩ Ai2 ∩ ∩ Aik | +
第一章 集合的概念及运算
§1.1 集合的概念
自从 19 世纪末德国数学家康托为集合论做奠基工作以来,集合论在一百年的时间里,已 经称为数学中不可缺少的基本的描述工具。
集合作为数学中最基本的概念,是不能被严格定义的,只能加以描述。简单说来,一个 集合就是一些不同对象构成的整体。
一般地,人们用大写英文字母 A , B , C , 表示集合,用小写英文字母 a , b , c , 表示集合中的元素。用 a ∈ A 表示 a 为 A 的元素,读作 a 属于 A ;用 a ∉ A 表示 a
|
A1 ∩ A2 ∩
A4
|=
⎢ ⎢⎣
2
250 ×3×
7
⎥ ⎥⎦
=5,
|
A1

A3

A4
|=
⎢ ⎢⎣
250 2×5×
7
⎥ ⎥⎦
=
3
,|
A2

A3

A4
|=
⎢ 250 ⎢⎣3× 5×
7
⎥ ⎥⎦
=
2

|
A1

A2

A3

A4
|=
⎢ ⎢⎣

250 3×5×
7
⎥ ⎥⎦
=
1

所以,我们有
| A1 ∪ A2 ∪ A3 ∪ A4 |= (125 + 83 + 50 + 35) − (41+ 25 +17 +16 +11+ 7) + (8 + 5 + 3 + 2) −1
注 1:空集是任何集合的子集;空集是唯一的。
定义 1.5 如果限定所讨论的集合都是某一集合的子集,则称该集合为全集,常记为 E 。
定义 1.6 设 A 为一个集合,称由 A 的所有子集组成的集合为 A 的幂集,记作 ρ ( A) 。
注 1:以 | A | 表示 A 中的元素个数,当 | A | 为有限数时,称 A 为有限集。元素个数为 n ( n 为自然数)的集合称为 n 元集。
例 1.1 设全集 E = {a, b, c, d , e}, A = {a, a, b, b, c}为多重集合,其中 a , b 的重复度为 2 ,
2
c 的重复度为1,而 d , e 的重复度为 0 。
其实,集合可看成是各元素重复度均小于等于 1 的多重集合。在图论部分,我们将会用到多重 集合的概念。
A = {x ∈ R : x ≥ 2} 。
注 1:对于集合的表示法应该注意以下几点: (1) 集合中的元素是各不相同的; (2) 集合中的元素不规定顺序; (3) 集合的两种表示法有时是可以互相转化的。
注 2:随意地用描述法来确定(定义)集合,可能导出不可预料的困难。设 B 是含10 个 以上元素的集合构成的集合,则有 B ∈ B 。设 C 是由集合构成的集合,使得
除了 ρ ( A) 这样由集合构成的集合外,我们还会遇到许多形式的由集合构成的集合,统称这样
的集合为集族。幂集是特殊的集族。
定义 1.7 设 A 为一集族, S 为一个集合,若 S 中的元素α 可一一对应到 A 中的元素 Aα , 则称 A 是以 S 为指标的集族,记为 A = {Aα :α ∈ S}或 A = {Aα }α∈S 。
注:设 E 为全集, A ⊆ E ,称 E − A 为 A 的补集,记作 A 。
定义 2.2 设 A , B 为两个集合,由属于 A 而不属于 B 或属于 A 而不属于 B 的元素组成的集 合称为 A 与 B 的对称差,记作 A ⊕ B ,称“ ⊕ ”为对称差运算符, A ⊕ B 可描述为
A ⊕ B = {x : x ∈ A但x ∉ B,或x ∈ B但x ∉ A}
∪ ∪ ∪ 当 A 是以 S 为指标集的集族时, A = {Aα :α ∈ S} = Aα 。 α∈S
定义 2.4 设 A 为非空集族,称由 A 中全体集合的公共元素组成的集合为 A 的广义交集,记作
∩ ∩ A ,称 ∩ 为广义交运算符。 A 可描述为 ∩ A = {x : 对任意A∈ A, 都有x ∈ A} 。
i1 <i2 < <ik
此定理称为包含排斥原理,简称容斥原理。
+ (−1)n | A1 ∩ A2 ∩
∩ An | 。
证明:采用数学归纳法易证。
例 2.3 求出在1和 250 之间,能被 2, 3, 5, 7 中任意一个数整除的整数的个数。
解:设 A1 , A2 , A3 , A4 分别是1和 250 之间能被 2, 3, 5, 7 整除的整数集合。因为
C = {x : x是集合且x ∉ x} 那么 C ∈ C 还是 C ∉ C 呢,无论哪一个情况都会导出矛盾?这是一个悖论。是英国数理学
家罗素(Russell)提出的,称为罗素悖论。
除罗素悖论外,还有一些其他的悖论,说明不加限制地使用集合一词会出毛病。对集合概 念的运用必须制定一些规则,这就导致了公里化集合论。而把由康托开始建立的未进行公 理化的集合论称为朴素集合论。
特别要指出的是,有些运算规律,如结合律,分配律,德·摩根律,吸收律等可以推广到集族
的情况,设{Aα }α∈S 为集族, B 为一集合,则分配律的形式为
B ∪ (∩ Aα ) = ∩ (B ∪ Aα ) , B ∩ (∪ Aα ) = ∪ (B ∩ Aα ) 。
相关文档
最新文档