天线原理课程知识点汇总及演示实验问题(2014春,II)

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

天线工作原理

天线工作原理

天线工作原理天线是无线通信系统中不可或缺的设备,它起到接收和发送无线信号的作用。

本文将详细介绍天线的工作原理及其相关知识。

一、天线的基本概念天线是将电信号转化为电磁波或将电磁波转化为电信号的设备。

它一般由导电材料制成,如金属,并根据特定的原理进行设计和调整。

天线可以分为接收天线和发射天线两种类型。

二、天线的工作原理天线的工作原理基于电磁波的发射和接收。

下面将分别介绍接收天线和发射天线的工作原理。

1. 接收天线的工作原理接收天线通过接收电磁波将其转化为电信号。

当电磁波经过天线时,它会激发天线中的电荷,产生电流。

这个电流会经过连接到天线的电路,从而实现信号的解调和放大。

最终,这个电信号可以被传递到无线接收器,用于进行进一步的处理和解码。

2. 发射天线的工作原理发射天线将电信号转化为电磁波,以便进行无线传输。

当电信号通过连接到天线的电路时,它会产生交变电流。

这个交变电流会导致天线上的电荷也发生交变,从而产生电磁波。

这些电磁波会在空间中传播,并被接收天线接收到。

同样地,接收天线会将电磁波转化为电信号,以进行进一步的处理和解码。

三、天线的优化设计为了提高天线的工作性能,可以进行一些优化设计。

下面列举一些常见的优化设计方法。

1. 天线长度调整:天线的长度对于接收和发射的频率有直接影响。

通过调整天线的长度,可以使其与所传输的频率匹配,从而提高效率。

2. 天线形状设计:天线的形状对于天线的辐射模式有重要影响。

通过设计合适的天线形状,可以实现不同方向的辐射或接收,以满足具体的通信需求。

3. 天线材料选择:天线的材料对于信号的传输和接收也有一定影响。

根据需要选择导电性能好、损耗小的材料,以提高天线的性能。

四、天线在无线通信中的应用天线广泛应用于各种无线通信系统中,包括移动通信、卫星通信、无线局域网等。

下面列举几个常见的应用场景。

1. 移动通信:天线用于手机、基站等设备中,将电信号转化为电磁波进行传输,以实现无线通信。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

天线知识讲座讲解

天线知识讲座讲解

天线部分一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:方位图是天线电气性能的最重要指标它直接全面的反映出天线的辐射特性。

定义:天线的辐射电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;H面方向图:通过最大辐射方向并与磁场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

后瓣:与主瓣相反方向上的副瓣。

前后比:等距线上,主瓣功率密度最大值和后瓣功率密度最大值之比(dB)在实际应用中由于天线的上副瓣信号不能起到覆盖的作用,且常常造成越区覆盖的问题,所以我们会想方设法抑制这个方向上信号的发射,而一般与主瓣方向夹角较小的第一上副瓣的功率密度最大,影响最坏,所以我们以对它的抑制为考察指标:第一上副瓣抑制(FirstUpper Side Lobe Suppression )。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线知识个人总结

天线知识个人总结

天线个人_总结
1.天线原理
2.极化方向
当电场强度方向垂直于地面时,此电波就称为垂直极化波;振动方向与地面垂直;
当电场强度方向平行于地面时,此电波就称为水平极化波;
一般通信当中使用的都是垂直极化;
水平极化收发天线摆放很难保证是平行的,而垂直极化只要垂直地面即可;
3.方向图(与极化方向不相关)
* H水平面方向图;水平切一刀;
* E为俯仰面方向图垂直切一刀;
可以理解在正中间位置垂直剖开,看到的方向图;
熊博说的天线是指中间那个凹陷会拉平一点,这样大飞机过顶时效果会好很多;
如果是过零点,尤其是收发天线两个角度都是过零点的;增益非常小;
是否可以将天线移动下角度,比如放置成水平位置;
2)零点填充
定向天线会将这个夹角弥补一下,来解决覆盖的盲区,向下的第一副瓣和主瓣之间的夹角填充后能够解决部分塔下黑的问题。

全向天线会将这个夹角弥补一下,来解决覆盖的盲区,向下的第一副瓣和主瓣之间的夹角填充后能够解决部分塔下黑的问题。

天线射频知识点总结

天线射频知识点总结一、天线的基本原理天线是一种能够将电磁波能量从导体中传输到周围的空间中的装置。

在基本的原理上,天线是通过在导体上施加交变电压或电流来产生电磁波。

当电流或电压在导体上发生变化时,就会产生电磁波,这些电磁波就会通过天线辐射到空间中。

在发射电磁波的过程中,天线需要满足一定的谐振条件,谐振条件是指天线的长度需要满足一定的整数倍波长的条件,这样才能够有效地将能量转换成电磁波并辐射出去。

同时,天线的结构也会影响到辐射的电磁波的方向、极化以及辐射效率等性能参数。

在接收电磁波的过程中,天线也需要满足一定的条件才能够有效地将电磁波转换为电信号。

在接收电磁波的过程中,天线也需要满足一定的条件才能够有效地将电磁波转换为电信号。

天线的极化、增益和方向性等性能参数都会影响到天线的接收性能。

二、天线的工作原理天线的工作原理主要是通过在导体上施加交变电压或电流来产生电磁波,然后将这些电磁波辐射到周围的空间中,或者将接收到的电磁波转换成电信号。

天线的工作原理涉及到电磁场的传播、辐射以及电磁场与导体的相互作用等知识点。

当电流或电压在导体上发生变化时,就会产生电磁波。

天线的结构和长度会影响到天线谐振的条件,谐振条件是指天线的长度需要满足一定的波长条件,这样才能够有效地将能量转换成电磁波并辐射出去。

在接收电磁波的过程中,天线也需要满足一定的条件才能够有效地将电磁波转换为电信号。

天线的极化、增益和方向性等性能参数都会影响到天线的接收性能。

三、天线的性能参数天线的性能参数包括谐振频率、增益、方向性、极化、带宽以及驻波比等。

1. 谐振频率:天线的谐振频率是指天线有效工作的频率范围,谐振频率与天线的长度相关,通常情况下,天线谐振频率的计算公式为f= 1⁄λ ,其中 f 是天线的谐振频率,λ是电磁波的波长。

2. 增益:天线的增益是指天线在某一特定方向上与标准参考天线相比的辐射功率的比值,常常用分贝(dB)来表示。

通常情况下,天线的增益与天线的尺寸、构造、方向性以及工作频率有关。

天线基础知识与原理

天线基础知识与原理天线是将电磁波能量从传输线(如电缆)转移到自由空间(如空气)中的器件。

它是无线通信系统中至关重要的组成部分,用于发送和接收无线信号。

天线的设计和原理对通信系统的性能具有重要影响。

天线的基本原理是通过电流激励器件使其发射或接收电磁波。

当电流通过天线时,会在天线上产生电磁场。

根据电磁场分布的不同,天线可以被分为不同的类型。

例如,一根直立的导体(如铜线)可以作为零度天线或全向天线使用,这意味着它能够在水平方向上发射或接收相同的信号强度。

另一个例子是定向天线,它可以集中发射或接收能量到特定方向。

天线的性能由几个关键参数决定。

其中一个是频率响应,也称为带宽。

天线应该在指定的频率范围内能够有效地工作。

另一个参数是增益,表示天线相对于理想的点源天线的增加或减少的能量。

增益可以用于改善信号传输和接收的效果。

其他重要的参数包括波束宽度、极化方式、输入阻抗等。

天线设计的关键是通过调整天线的几何形状和尺寸来满足特定的需求。

一种常见的天线类型是偶极子天线。

它由两根平行的导体构成,通常以半波长的长度排列。

偶极子天线适用于宽带应用,可以在几个频段上工作。

另一种常见的天线类型是微带天线,它采用薄片状的天线元件,并用绝缘基板支持。

微带天线适用于小型设备和集成电路上的应用,可以在不同的频率范围内工作。

天线的工作原理与物理学中的电磁波理论相关。

根据麦克斯韦方程组,电磁波由电场和磁场组成,并以光速传播。

当电流通过天线时,会产生电场和磁场的变化,并以电磁波的形式辐射出去。

电场和磁场的分布取决于天线的几何形状和电流分布。

天线的电磁辐射主要通过两种机制实现:辐射和导波。

辐射是指电磁波以空间波的形式传播,可以远离天线和传输线。

导波是指电磁波沿着天线和传输线传播,类似于输送能量的导线。

在不同的频率范围内,两种机制的相对重要性会有所不同。

要理解天线的基础知识,还需要了解一些天线的相关概念。

例如,VSWR(电压驻波比)是用于衡量天线和传输线之间匹配的参数,主要影响信号的传输效率。

天线原理基础知识大全

16
HUAWEI TECH.
天线的分类
•基站天线的结构或类型取决于业务区域的大小和形状以及蜂窝区 和信道数量
•从功能和天线特性的角度
17
HUAWEI TECH.
赋形波束设计
•赋形波束技术意义 ——提高空间频率复用度
•赋形波束类型 扇形波束 余割波束
18
HUAWEI TECH.
天线基础知识
一、GSM天线发展趋向 二、天线设计的概念 三、基站天线的基本技术
研制和加工成本 可靠性----所需要的技术维护、安装连接及其费用 易损坏性----室外架设、锈蚀、腐烂 用户意见
7
HUAWEI TECH.
天线基础知识
一、GSM天线发展趋向 二、天线设计的概念 三、基站天线的基本技术
§3.1 基站天线 §3.2 系统要求及对应的技术 §3.3 天线分类 §3.4 赋形波束设计 §3.5 天线分集 §3.6 无源交调 四、天线主要指标设计规范
系统要求及对应的技术
•旁瓣压缩
主波束附近的旁瓣压缩,可有效地缩小频率复用的距离
15
HUAWEI TECH.
天线基础知识
一、GSM天线发展趋向 二、天线设计的概念 三、基站天线的基本技术
§3.1 基站天线 §3.2 系统要求及对应的技术 §3.3 天线分类 §3.4 赋形波束设计 §3.5 天线分集 §3.6 无源交调 四、天线主要指标设计规范
12
HUAWEI TECH.
系统要求及对应的技术
3、频率复用技术 ——主波束倾斜,波束赋形技术
4、电磁波的衰落特性 ——分集技术:空间分集、计划分集
13
系统要求及对应的技术
HUAWEI TECH.
•主波束倾斜

天线基础知识与原理ppt课件


振子结构相对复杂,加工 难度较大;特别是合金压铸 方式的半波振子。 成本较高。
微带贴片
振子形式简单,易于冷冲压 成型; 易于与微带功率分配网络一 体化设计; 成本相对较低。
交叉极化指标较差; 双极化贴片天线的极化隔 离度较差; 装配精度要求较高
8
2、天线类型及各部件材质介绍---天线振子




筒 振




线

缩 短 套



振 子

线






振 子

线




高性能 一般型 高性能 一般型
7
2、天线类型及各部件材质介绍---天线振子
半波振子VS微带贴片
振子形式
半波振子
优点
缺点
辐射效率高、交叉极化指标 较好; 单元辐射阻抗较易优化; 实现形式多样化,可采用印 制板、金属板冷冲压、锌合金 压铸等多种实现方式。
垂直面 E面
水平面波束宽度 = 360º 垂直面波束宽度= 78º
立体图
15
3、天线原理及指标介绍---方向图
将“轮胎”压扁,信号就越集中,实际使用的天线就是采用一个或者多 个辐射单元来实现的。
16
3、天线原理及指标介绍---辐射参数
辐射参数:
辐射参数评估:
--- 按重要性顺序排列
水平面波束宽度 电下倾角度 垂直面波束宽度 前后比 增益
较好
玻璃钢
2.3 1.2 差 -70℃~+150℃ 240 219 10110 UL94V-0 好 较好 好
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线原理课程知识点汇总【A——了解,B——理解,C——掌握(深刻理解,熟练应用)】
附表1常见天线的方向性系数
附表2三种常见的均匀直线阵波瓣特性及方向性系数D(Nd>>λ)
附表3 口径场分布及其辐射特性
附表4口径场相差对辐射的影响
【例题1】 在给定了增益和工作波长的情况下,设计由理想导体制作的最佳喇叭天线的口径尺寸的求解过程如下:
(1)首先确定喇叭波导的尺寸a 和b ,请写出单模传输时a 和b 与波长λ满足的关系: a<λ<2a λ>2b
(2)确定了a 和b 以后,依次列写最佳喇叭所满足的两个关系式(不要求):
x x R D λ3=①
y y R D λ2=②
(3)根据给定的增益G 和工作波长λ,结合最佳喇叭的口面利用系数ν就可以确定D x 和D y 的关系式,请写出这个关系式:
πν
λ42G
D D y x =
(4)请写出ν的值:
ν=0.51
【例题2】 某圆锥喇叭天线A 口面直径为20cm ,工作波长为3.0cm ,H 面主瓣内的方向性函数可以用公式3||100
()10
F ϕϕ-=表示,φ以度为单位,取值范围|φ|≤5º。

若采用该喇叭A 作
为发射天线,测试另一个口面直径为10cm 的相同波段的圆锥喇叭B 的方向图,请计算: [1]仅满足相位条件(接收天线中心和边缘处的最大相差不超过π/8)的最小测试距离; [2]仅满足幅度条件(接收天线中心和边缘处的最大幅度比不超过0.25dB )的最小测试距离; [3]设发射天线A 的发射功率为10mW ,增益为23dB ,不计线缆损耗,若接收天线B 的口面利用系数为0.56,则B 天线按照[1]、[2]确定的最小测试距离摆放所能获得的最大接收功率是多少? 【解】 [1] ()cm 6002
2
21min =+=λ
D D r
[2] 3||100
()10
F ϕϕ-=,|φ|≤5º,
20lg ()0.6||0.25dB F ϕϕ=-≥- 4167.0||≤ϕ
实际上要求
)4167.0tan(2
/min
2 ≤r D ,得cm 5.687min ≥r [3]取r min =687.5cm ,
t r t r G G r P P 2
min 4⎪⎪⎭⎫ ⎝
⎛=πλ
P t =10mW=10×10-3W ,
G t =23dB=200, ν=0.56
νλ
ππ2
2244⎪
⎭⎫ ⎝⎛=D G r
∴P r =14.8 μW
附图1 利用矢量网络分析仪、自动测试转台、辅助天线和计算机测试天线方向图和增益的基本原理框图
演示实验问题汇总
1、微波暗室包括吸收层和屏蔽层两部分组成,请回答这两部分是用什么材料实现的?
2、请分析一下微波暗室的吸收层的工作原理。

3、请简述微波暗室屏蔽层所使用的关键技术。

4、简述标准喇叭天线的结构,并说明它的增益与哪些因素有关。

5、我们所使用的微波暗室,收发天线之间的距离为5.4m ,发射天线口径为25cm×20cm ,工作频率为1-18GHz ,接收天线口径为30cm×25cm ,工作频率为0.5-5GHz ,请问能否测试出接收天线上限工作频率的方向图,并说明理由。

6、采用矢量网络分析仪测试接收天线所收到的信号幅度,在不考虑馈线损耗的情况下,试推导收发天线的信号幅度比值。

(已知条件为,信号频率f 、收发天线距离r 、各自增益G t 、G r 以及测试得到的S 21幅度值|S 21|。


7、矢量网络分析仪测试所得到的天线的S 11参数和电压驻波比(VSWR )的关系。

8、矢量网络分析仪测试所得到的天线的S 11参数和天线输入阻抗Z in 的关系。

9、(电磁场与无线技术专业学生答)某天线的辐射电场为()jkz y x e E a j E a E -+=21
,请说明
该电场的极化形式,并推导出它的平均玻印廷矢量。

10、(电磁场与无线技术专业学生答)根据第9题,请回答出如何测试圆极化天线的增益。

相关文档
最新文档