大跨度连续刚构桥线型控制qc

合集下载

大跨度曲线连续梁转体桥线形控制施工技术

大跨度曲线连续梁转体桥线形控制施工技术

大跨度曲线连续梁转体桥线形控制施工技术摘要:国民经济日益发展,科技也随之不断的进步促使了我国交通能力不断地完善与健全,桥梁是交通网中不可或缺的重要部分,在今后也必定将会成为交通发展中的重中之重。

为了满足人们日益增长的需求,高铁得到了飞速的发展,随之而来的便是很多棘手的问题。

比如:如何跨越峡谷,大的河流以及如何跨越且不影响运输任务繁忙的既有线路。

这些棘手问题在常规的桥梁施工法中无法完成的情况下,转体施工技术诞生了。

由于施工中面对的环境地貌越来越严峻,随之技术也需要与时共进。

基于此,本文主要对大跨度曲线连续梁转体桥线形控制施工技术进行分析探讨。

关键词:大跨度曲线;连续梁;转体桥;线形控制;施工技术1、工程概况汉西联络线铁路项目汉西特大桥29#~32#墩设计为一联(36.4+64+36.4)m预应力混凝土连续槽形刚构,位于R=580m的曲线上,纵向坡度-4.0‰,该连续梁依次跨越武康铁路上下行、京广上行线以及京广货车下行线4条铁路线,该连续梁与既有武康铁路线路夹角为81°,与既有京广铁路线路夹角为71°。

该预应力混凝土连续槽型刚构梁位于小半径曲线上,主跨为64m的大跨度,并采用转体法施工,转体总重量W=45000kN,转体段长度62m,30#墩转角81°,31#墩转角71°。

梁体采用C55混凝土,三向预应力体系。

梁部采用先支架现浇,后转体施工,中跨合龙段采用吊架法现浇施工。

2、线形控制分析计算由于受多种因素的影响,桥梁在施工过程中易产生一定的形变,易导致梁体实际位置(立面标高、平面位置)与预期状态有偏差,危及桥梁合拢,或者使梁体线型不符合正常使用要求。

因此,为了使偏差在允许范围之内,必须严格控制线形,保证成桥线形满足设计标准。

对于曲线桥而言,受曲率的影响,桥身易产生弯曲扭转耦合效应,应该对挠度和扭转角同时加以控制,由于施工各阶段的变形和内力十分复杂,必须在施工过程中有效控制,才能避免偏差的累积而确保完工之后结构的受力状态及梁的线形严格满足设计目标而不影响结构的可靠性。

QC成果-大桥钢箱梁安装质量控制

QC成果-大桥钢箱梁安装质量控制

银河市东方至河口公路工程路基桥涵施工【名兰大桥斜拉桥】42.5m超宽钢箱梁安装质量控制银河市东方至河口公路工程路基桥涵施工项目经理部名兰大桥钢箱梁安装QC小组目录一、工程概况 (2)二、小组简介 (2)三、选题理由 (3)四、现状调查 (3)五、目标设定 (5)六、原因分析 (6)七、要因确认 (6)八、制定对策 (8)九、实施对策 (9)十、效果检查 (18)十一、巩固措施 (19)十二、总结及下一步打算 (19)一、工程概况银河市东方至河口公路工程位于银河市名兰区,其中名兰大桥连接东方和山根公路,跨越顺德水道,是整个工程的控制节点,斜拉桥跨径组合为120+125=245m。

本桥主梁采用整体式流线型扁平钢箱梁,钢箱梁不含风嘴全宽42.5m,中央分隔带宽1.5m,道路中心线处高3m,顶板设2%横坡,底板水平。

单幅桥钢箱梁内设5道纵腹板,形成单箱六室断面,标准节段长度9m,梁上索距取9m,吊装重量约200t。

钢箱梁为全焊钢结构,梁段工地连接均采用焊接方式;钢箱梁主体结构采用Q345qC钢材。

钢箱梁非标准梁段现场采用浮吊进行安装,钢箱梁标准梁段采用单侧双台120吨桥面吊机同步进行安装。

图1 名兰大桥桥型布置图二、小组简介QC小组活动具体情况见下表:表1 钢箱梁安装QC小组情况表制表人:A 日期:2020.12.15三、选题理由1、名兰大桥作为银河市重点工程,受到各级部门的重点关注,以打造“示范性工程”为目标。

2、钢箱梁安装质量决定桥梁寿命、行车安全及桥梁美观。

同时,当地质监站、设计院对钢箱梁安装质量也是高标准高要求。

3、作为分公司参建的第一座超宽钢箱梁,要求在普通钢箱梁施工基础上,加强技术攻关,优化安装方案,提高安装质量,为分公司该类桥梁施工积累经验。

综上所述,为保证钢箱梁安装质量,项目部成立钢箱梁安装QC 小组,课题为:42.5m超宽钢箱梁安装质量控制。

四、现状调查名兰大桥钢箱梁安装QC小组成立后,小组全体成员于2020年12月-2013年2月多次进行钢箱梁标准段安装质量控制讨论会,并将名兰大桥首件标准段钢箱梁安装作为试验段,并对首件钢箱梁安装质量进行了检测,统计正在安装的钢箱梁60处部位,其中有14处存在问题,首件钢箱梁安装测点质量合格率为76.67%,其中存在主要问题详见下表:序号存在问题频数(个) 频率(%) 累计频率(%)A 梁段定位误差9 64.29 64.29B 梁段焊接质量问题 2 14.29 78.58C 梁段厂内匹配尺寸误差 1 7.14 85.72D 梁段装配不到位 1 7.14 92.86E 梁段端口不顺直 1 7.14 100合计14 100图2 钢箱梁安装测点存在问题排列图制图人:A 日期:2020年12月31日结论:从上图可看出,影响钢箱梁安装质量的主要问题是梁段定位误差。

大跨度连续梁线型监控pptx

大跨度连续梁线型监控pptx

传感器布置
布置原则
根据施工方案和结构特点,选 择关键部位进行传感器布置。
常用传感器类型
包括位移计、应变计、陀螺仪 等。
布置要求
确保传感器安装牢固、不妨碍 施工和测量精度。
数据采集与处理
01
02
03
数据采集系统
采用自动化数据采集系统 ,减少人为误差。
数据处理
对采集的数据进行滤波、 修正、计算等处理,得到 准确的监测结果。
安全预警
根据监测结果,对可能出 现的施工风险进行预警, 及时采取措施保障施工安 全。
03
实施过程
施工准备
监控方案设计
根据桥梁的设计要求,制定详细的监控方案,包括监控点位布置 、传感器选择、数据采集频率等。
监测设备采购
按照监控方案,采购相应的监测设备,包括传感器、数据采集仪 、传输设备等。
监测人员培训
技术现状
01
目前,大跨度连续梁的线型监控技术已经取得了一定的成果。
02
各种先进的测量技术和数据分析方法被应用于连续梁的施工监
测。
然而,仍然存在一些技术挑战,如监测数据的实时性、准确性
03
以及监测系统的稳定性等。
监控的重要性
1
实时监测连续梁的线型变化,有助于及时发现 施工过程中的问题,保障施工安全。
05
结论与展望
结论
总结词
通过先进的测量设备和技术手段,对大跨 度连续梁的线型进行精确监控,有效提高 了桥梁施工的质量和安全性。
VS
详细描述
大跨度连续梁是现代桥梁工程中广泛采用 的一种结构形式,其线型监控对于保证桥 梁的施工质量和安全性具有重要意义。本 文通过对监控方法的比较和分析,提出了 一种基于先进测量设备和技术手段的线型 监控方法,可实现高精度、实时、动态的 监控,有效提高了桥梁施工的质量和安全 性。

大跨径预应力混凝土连续梁和连续刚构桥梁施工监控技术规程

大跨径预应力混凝土连续梁和连续刚构桥梁施工监控技术规程

大跨径预应力混凝土连续梁和连续刚构桥梁施工监控技术规程大跨径预应力混凝土连续梁和连续刚构桥梁施工监控技术规程第一章总则第一条为了确保大跨径预应力混凝土连续梁和连续刚构桥梁的施工质量和安全,保证工程的顺利进行,制定本技术规程。

第二条本技术规程适用于大跨径预应力混凝土连续梁和连续刚构桥梁的施工监控,包括施工前的准备工作、施工过程中的监控措施、施工后的验收和评估等内容。

第三条施工监控的目标是通过对大跨径预应力混凝土连续梁和连续刚构桥梁施工过程的监测和控制,确保施工质量符合设计要求,保证工程的安全性和可靠性。

第四条施工监控的原则是科学、系统、全面、实时、准确。

第五条施工监控应遵循法律法规、标准规范和相关技术要求,确保监控数据的真实可靠。

第六条施工监控应由具备相应资质和经验的专业监理机构或监理人员进行,并与施工单位建立有效的沟通与协调机制。

第二章施工前的准备工作第七条施工前,应根据设计要求制定详细的施工监控方案,包括监测点的布置、监测仪器设备的选择和安装等内容。

第八条施工前,应对施工现场进行勘察,了解地质地形情况、水文地质条件、气象条件等,为施工监控方案的制定提供依据。

第九条施工前,应对施工材料进行检查和试验,确保材料的质量符合设计要求。

第十条施工前,应对预应力张拉设备进行检查和试验,确保设备的正常运行。

第十一条施工前,应对施工人员进行培训,提高他们的技术水平和安全意识。

第三章施工过程中的监控措施第十二条施工过程中,应按照监测方案的要求进行监测,并及时记录监测数据。

第十三条施工过程中,应加强对预应力张拉过程的监控,包括预应力钢束的张拉力、锚固长度、锚固位置等参数的监测。

第十四条施工过程中,应加强对混凝土浇筑过程的监控,包括混凝土坍落度、浇筑速度、浇筑厚度等参数的监测。

第十五条施工过程中,应加强对模板支撑系统的监控,包括模板变形、支撑点位移等参数的监测。

第十六条施工过程中,应加强对温度和湿度的监控,包括环境温度、混凝土温度、混凝土含水率等参数的监测。

大跨度连续梁线型监控x

大跨度连续梁线型监控x

2023-11-07CATALOGUE目录•工程概述•监控方案•监控数据采集与分析•监控技术与方法•工程应用案例•结论与展望01工程概述随着我国交通基础设施建设的快速发展,大跨度连续梁桥已成为重要的桥梁形式,具有跨越能力大、外形美观、结构合理等优点。

但同时大跨度连续梁桥的施工难度较大,需要进行严格的监控和管理。

项目背景本工程为某高速公路上的大跨度连续梁桥,主桥采用三跨连续梁结构,桥梁全长360米,其中主跨跨度为180米。

工程规模较大,涉及的施工环节较多,需要采取科学有效的监控措施以保证施工质量和安全。

工程规模本工程位于山区,地形起伏较大,施工环境较为复杂。

工程特点施工环境复杂由于桥梁跨度大,需要采用挂篮施工等高难度技术,施工难度较大。

施工难度大为了保证施工质量和安全,需要采取严格的监控措施,对施工过程中的变形、应力、温度等参数进行实时监测和数据分析。

监控要求高02监控方案监控方案设计确定监控内容对大跨度连续梁的挠度、应力、温度等关键参数进行监测,同时记录施工过程中的材料性能、荷载情况等。

选择监控方法和设备采用非接触式测量方法,如激光测距、红外线测温等,同时使用计算机控制系统进行数据采集和远程监控。

确定监控目的确保大跨度连续梁施工过程中的线型符合设计要求,避免施工误差和变形,保障工程质量。

1监控方案实施23在关键部位设置监测点,安装传感器和数据采集设备,连接电源和网络,确保数据传输的稳定性和安全性。

现场布置通过计算机控制系统自动采集数据,并实时传输到数据中心,以便进行数据分析和处理。

数据采集与传输确保施工现场的安全,采取措施如设置警戒线、安装安全警示标志等,保障工作人员和设备的安全。

现场安全措施对采集到的数据进行处理和分析,提取关键指标,如挠度、应力等,并进行对比和分析,以评估施工质量和安全性。

数据处理与分析监控方案效果评估根据监测结果进行风险评估,对可能存在的风险和问题进行预测和判断,采取相应的应对措施,以确保施工质量和安全。

公路大跨度连续梁线型监测和控制技术

公路大跨度连续梁线型监测和控制技术

公路大跨度连续梁线型监测和控制技术【摘要】随着城市化建设进程的快速发展,我国的公路建设也飞快的发展起来,并取得了不错的成绩。

在公路建设施工中桥梁施工占据着较大的比重,桥梁结构的设计施工中存在各种各样的安全性问题,尤其是复杂的大型桥梁。

当前大跨度桥梁建设正处于上升趋势,对于这种桥梁的施工通常会采用预应力混凝土连续梁的方案,来增强桥梁的稳定性和安全性。

近年来,公路桥梁的安全逐渐受到了社会各界的广泛关注,为了保障公路桥梁施工过程的安全,提高施工的质量,就需要对桥梁的施工过程进行质量控制和监控,本文主要分析了公路大跨度连续梁的施工技术以及施工过程的控制,希望可以给读者提供相关参考和帮助。

【关键词】公路大跨度连续梁;施工技术;施工过程控制1、公路大跨度连续桥梁施工技术流程本技术主要采用计算机建模的方式,对数据进行直接的传输,从而可以准确、及时的绘制出变形图形,从而适用于大跨度的连续梁施工。

在连续施工过程中,系统可以监测每一层施工阶段主梁结构的变形情况,从而可以及时的做出应对措施。

系统通过分析施工过程中的各种数据,制定出具体的施工方案,从而确保工程结构的质量安全。

经过精确的分析和计算,从而调整下一悬浇梁段的立模高程,以保证成桥后的梁体线形和受力状态跟设计基本吻合,施工控制的对象为主梁挠度和内力,具体的施工技术为参数识别法和灰色预测结合法[1]。

1.1技术流程大跨度连续梁桥的施工控制是一个循环的过程,这个过程主要包括“施工——测量——识别——修正——预测——施工”,施工过程中首先要保证大桥结构的安全,只有确保了施工过程的安全性,才能控制大桥施工过程的结构,进而确保桥梁设计达到预期的目标。

连续桥梁施工过程非常复杂,影响施工的参数也比较多。

比如桥梁的重量、施工荷载、混凝土收缩徐变、结构强度以及温度、预应力等[2]。

过程中需要对施工过程中的控制参数进行求解,假设这些参数都是理想值。

由于设计参数取值不正确而导致施工设计和实际的施工不一致,因此需要系统准确的识别和预测这些参数。

连续刚构桥施工线形控制分析

连续刚构桥施工线形控制分析连续刚构桥是一种大跨度、大载荷的桥梁结构,其施工需要经过严格的线形控制。

在连续刚构桥的施工过程中,线形控制是至关重要的环节,它直接关系到桥梁结构的安全性和使用性能。

本文将从连续刚构桥的施工特点、施工线形控制的基本原则以及线形控制的方法和技术等方面进行分析和探讨。

一、连续刚构桥的施工特点1. 复杂的桥梁结构:连续刚构桥由多个刚构段连接而成,整体结构复杂,需要进行精准的线形控制才能保证结构的稳定性和安全性。

2. 大跨度、大载荷:连续刚构桥一般用于大跨度的桥梁,承受的车辆荷载和自重荷载很大,因此在施工过程中需要充分考虑结构的承载能力和稳定性。

3. 施工周期长:由于连续刚构桥的复杂结构和大跨度,其施工周期一般较长,需要经过多个阶段的施工工序,这就对线形控制提出了更高的要求。

二、施工线形控制的基本原则1. 线形预留原则:在连续刚构桥的设计中,需要提前通过计算和分析确定好每个刚构段的预留线形,即确定每个刚构段在施工过程中应该遵循的线形控制曲线。

这是保证整体桥梁的线形合理性的基础。

2. 线形控制精度原则:线形控制的精度直接关系到桥梁结构的安全性和使用性能,因此在实际施工过程中需要严格按照设计要求进行线形控制,确保每个刚构段的线形控制精度。

3. 线形控制与结构安全原则:线形控制不能脱离对桥梁结构安全的考虑,需要充分考虑桥梁结构的受力性能和稳定性,确保线形控制不会对桥梁结构的安全性造成影响。

三、线形控制的方法和技术1. 预应力控制:预应力是连续刚构桥中常用的一种线形控制技术,通过对刚构段进行预应力控制,可以有效地改变刚构段的线形,从而实现线形控制的目的。

2. 导线控制:在施工现场通过设置导线对刚构段进行实时监测和控制,可以实现对刚构段线形的精确控制,确保其与设计要求一致。

3. 自动控制技术:随着科技的发展,现代桥梁施工中已经广泛应用了自动控制技术,通过激光测距仪、全站仪等设备对刚构段的线形进行实时监测和控制,大大提高了施工的效率和精度。

连续刚构桥合拢施工质量控制


不满足
单端回缩量≤6mm
不满足
无断丝及滑丝
满足
混凝土收缩徐变、钢绞线松弛、锚具变形、 孔道摩阻与混凝土
孔道摩阻、混凝土弹性压缩
弹性压缩量不满足
通过上表,我们QC小组发现,现场张拉主要在 张拉力、伸长量及回缩量、预应力损失四个方面达 不到设计文件及铁路规范的要求。只要能够解决以 上四个问题,就能优质的完成牛角坪特大桥预应力 张拉作业。
出现混凝土强度达到设计要求而龄期不满足要求就开始进
行张拉作业。
效果检查: 在经过以上8个对策后,我们QC小组在进行3#墩纵向束
钢绞线张拉时,将检查的结果如表6所示:
表7 PDCA循环后效果对比图
100 98 96 94 92 90 88 86 84
实施前
1
实施后
2 3
S2 S1
1、张拉控制应力合格率 2、伸长量满足要求合格率 3、回缩量满足要求合格率
牛角坪特大桥预应力施工 QC 小组
2007.10.1
注册时间
2007.10.1
预应力施工质量控制
2007.7.1~2008.9.1
2.小组成员简介 表2 QC小组成员一览表
顺序
姓名
年龄
1
叶庆旱
30
2
胡少敏
41
3
李海
26
4
杨二永
25
5
张家伦
24
6
张军
26
7
洪海涛
25
8
纪振锋
40
9
彭正华
36
性别
男 男 男 男 男 男 男 男 男
员进行操作,并要求试验部门对每台千斤顶至少要校定三次,取三次

大跨度桥梁的线形控制

目录第一篇大跨度桥梁的线形控制 (2)1桥梁线形控制的意义及目的 (2)2桥梁线形控制的工作流程 (2)3桥梁线形测试截面及测点总体布置 (3)4桥梁线形监控方法 (3)5桥梁线形监控影响因素 (3)6桥梁线形控制计算 (4)7桥梁线形监控要点 (4)8小榄水道特大桥施工监控实例介绍 (4)9沙田赣江特大桥施工监控实例介绍 (8)第一篇大跨度桥梁的线形控制1 桥梁线形控制的意义及目的桥梁线形控制不仅是桥梁施工技术的重要组成部分,也是确保桥梁施工宏观质量控制的关键及桥梁建设的安全保证,它在施工过程中起着安全预警、施工指导以及及时为设计提供依据。

任何体系的桥梁在每一个施工阶段的变形和内力是可以预计的,因此当施工中发现监测的实际值和预计值相差过大时,随即进行检查和分析,找出原因并排除问题后方可继续施工,避免出现事故,造成不必要的损失。

1 )通过各桥梁施工过程中的线形监测,及时掌握桥梁施工过程中的线形状态,了解施工过程中各关键截面的挠度变化。

2)通过各桥梁施工过程中控制截面的应力测试,及时跟踪各施工阶段关键截面的应力大小,了解桥梁结构的应力状况。

3 )通过测定新型结构桥梁施工过程中的温度效应、混凝土的收缩徐变效应,为施工过程中的相关决策提供数据依据。

4 )通过对桥梁施工过程中关键工况的应力及变形监测,吊杆力、斜拉索力等的监测,了解施工过程最不利工况下关键截面的受力状况、关键截面的挠度,并与理论计算结果作对比,评价施工工艺的可行性,并在必要时提供改进建议。

2 桥梁线形控制的工作流程一般大跨度桥梁的施工控制是一个施工→量测→识别→修正→预告→施工的循环过程。

该过程中需要对主梁标高和应力实行双控。

它主要包括两个部分:数据采集系统,即在桥上埋设各类传感器和设置监控系统,采集资料;资料分析仿真模拟系统,将采集到的资料进行分析处理,以确定下一个施工阶段的参数。

桥梁线形等监控系统框图3 桥梁线形测试截面及测点总体布置桥梁结构位移测试截面及测点布置如下:悬臂梁段的各节段,拱、塔的位移控制断面.在结构位移测试的同时,通常进行其他如应力的测试:1)应力测试截面及测点布置:结构控制截面、受力复杂位置。

大跨径挂篮施工连续刚构桥上部线型控制

大跨径挂篮施工连续刚构桥上部线型控制作者:卢岩来源:《城市建设理论研究》2013年第22期摘要:在大跨度连续刚构桥施工的过程中,上部箱梁的线形控制极为重要,不仅影响着桥梁的外观质量,更影响着桥梁的内在质量。

石门坎特大桥是一座主桥为l18+220+118m的特大型连续刚构桥,本文以其上部箱梁施工为例,探讨了大跨径挂篮施工连续刚构桥的上部线型控制,阐述了线型控制的目的和意义,介绍了线型控制的方法及具体过程,以期指导实践,保证施工精确度,使结构更安全。

关键词:线型控制,方法,监控观测,施工控制中图分类号:TU7 文献标识码:A 文章编号:1工程概况石门坎特大桥是国道厦蓉高速贵州省境内贵阳至都匀段高速公路上的一座特大型桥梁。

桥址位于低中山山麓深切峡谷地貌,主桥横跨一深V型峡谷,两个主墩坐落在陡峭的山坡中部,墩身高87 m,桥面距谷底落差近200 m。

大桥上部结构为118+220+118 m三跨预应力T 形连续刚构箱梁,设计为上下行两幅,每幅箱梁均为独立的单箱单室,梁根部梁高14 m,跨中梁高4 m,顶板厚28 cm,箱梁高度和底板厚度按1.8次抛物线变化,箱梁顶板横向宽12.75m,箱底宽7 m,两侧翼缘悬臂长2.85 m。

箱梁0号块长18 m,每个悬浇“T”纵向对称划分为28个节段,两幅连续刚构箱梁均采用菱形挂篮进行悬臂浇注施工。

2线型控制的目的及意义监控人员在悬臂浇筑过程中对每段箱梁线型进行分析和动态控制,通过对当前节段(记作n 号节段)施工过程中监控点位标高数据的计算和分析,提供下个(n+1)号节段的理论预抬值,进而可以推出(n+1)号节段箱梁的立模标高,现场技术人员按照此立模标高进行施工。

进而,再对这个( n+1)号节段施工过程中监控点位标高数据的分析,并且不断在过程中对预抬值进行修正,以准确提供下个( n+2)号节段的立模标高并指导施工,以此类推,直至两侧悬臂箱梁合拢为止。

过程中的严格观测和线型的动态控制,既能保证大桥的合拢误差在最小范围内,更能减小附加应力对连续结构的不利影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大跨度连续刚构桥线型控制重庆鱼洞长江大桥发表人:侯圣慧中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部2010年12月16日目录一、工程概况 (1)二、小组概况 (1)三、选题理由 (2)四、现状调查 (2)五、设定目标 (3)六、原因分析 (4)七、要因分析 (4)八、制定对策 (5)九、对策实施 (8)十、效果检验 (11)十一、巩固措施 (14)十二、总结和今后打算 (15)大跨度连续刚构桥线型控制一、工程概况重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。

桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。

在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。

全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。

全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。

桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。

本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。

二、小组概况本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

三、选题理由对于悬臂施工的预应力混凝土刚构桥,各个块件是通过预应力筋、普通钢筋及混凝土与前块件相接而成,其几何状态(平面、立面位置)是难以事后调整的,直接影响连续梁桥的外形美观。

所以,施工控制主要通过事前预测和事中控制来实现,主要体现在施工控制中结构模拟(前进、倒退)计算,结构变形、应力监测、预警,施工误差分析与后续施工状态预测、调整、梁段立模标高提供、合拢方案制定等。

四、现状调查1、影响连续刚构桥线型因素汇总表制表人:侯圣慧 2010年10月2、不合格点频率统计表制表人:魏力 2010年10月3、影响连续刚构桥线型因素排列图制图人:侯圣慧 2010年10月从图中我们可以看出,影响连续刚构桥线型的主要问题是节段高程及混凝土沉降过大。

这是我们首先必须解决的问题。

五、设定目标从统计表可以看出只要小组通过活动节段高程、混凝土沉降问题后,合格率可以达到业主要求的93.3%,考虑到能同时改进其他缺陷因素(轴线、错台等因素),将外观综合合格率标准定为95%以上。

制图人:许巍2010年10月六、原因分析制图人:孙建 2010年10月七、要因分析1.前上横梁弹性变形前上横梁的弹性变形直接影响到混凝土的沉降,弹性变形大,需要修改计算立模标高的条件。

经过测量班在浇注混凝土的同时进行前上横梁的弹性变形观测,弹性变形最大2cm,与理论值相符。

制表人:许巍2010年11月确认结果:非要因2.挂篮弹性变形挂篮在施工到一定节段后,为保证线型的准确,挂篮的弹性变形值需重新测量、设定。

通过测量班与监控单位的配合,对挂篮的变形值进行了测量。

确认结果:要因3.后锚锚固不紧质检员在每次挂篮移动到位、钢筋绑扎完成后(即混凝土浇注前),均要对挂篮的后锚进行检查。

经检查发现,挂篮后锚精轧钢受力不均匀。

确认结果:要因4.缺乏施工经验项目员工大多数是近几年刚毕业的大学生,对悬臂施工仅有点理论的印象,没有任何的施工经验。

结合本项目的特点,特地外聘有丰富施工经验的同志作为项目T构长,专门负责T构施工,并带领一部分员工深入现场学习。

确认结果:要因5.吊带未调整到位项目质检人员在施工过程中由于对前吊带的检查力度不够,导致有些吊带还未竖直受力,就浇注混凝土。

直接影响到混凝土的沉降问题。

确认结果:要因6.手拉葫芦与前吊带未转换工人在施工过程中,由于为了抢工期。

部分手拉葫芦未全部松掉,导致葫芦直接受力。

在浇注混凝土过程中很容易就把葫芦拉断。

既有完全隐患,又存在质量问题。

确认结果:要因7.翼板对拉葫芦翼板对拉葫芦是用来调整桥梁边线的。

在检查中发现,工人不紧对翼板利用葫芦对拉,而且还利用槽钢对翼板进行外撑,确保了边线的线型。

是值得推广学习的。

确认结果:非要因8.民工技术素质差通过现场对技术工人的观察,工人对挂篮施工有较深的认识。

而且还利用空闲时间对技术工人进行了理论与施工的技术加强培训。

确认结果:非要因农民工技术培训9.质量重视不够施工中,项目领导对施工的质量总是放在第一位,对质量要求特别严格。

加之,中国铁建业主的现场监督,项目所有员工都对质量问题不敢有半点马虎。

确认结果:非要因10.后下横梁锚固不紧在挂篮移动到位后,施工队就对后锚吊带进行了锚固。

后锚总共六根吊带,全部利用扁担和千斤顶锚固。

杜绝了底板错台的问题。

确认结果:非要因11.模板加固不牢外模板在钢筋绑扎前就利用贯通的28螺纹钢进行对拉。

内模板则采用10cm的钢管进行对撑。

而且每根模板的对拉杆全利用28螺纹钢配螺帽进行对拉。

完全保证了在浇注混凝土中模板的稳定。

确认结果:非要因12.混凝土配合比由于我项目所使用的混凝土为商品混凝土,大大的减少了试验室的工作量。

但在每次浇注混凝土前必须由项目试验室提供每次浇注的混凝土配合比。

在浇注混凝土期间对每车混凝土的塌漏度进行严格控制,一经发现不合格,立即退掉。

确认结果:非要因13.纵向预应力张拉纵向预应力所用的钢绞线全部是经过权威部门鉴定过的。

在张拉期间严格控制张拉力值,而且还保证了张拉力值与钢绞线伸长量的一致。

确认结果:非要因八、制定对策小组对末端因素逐一进行了现场确认,找出5个要因,并采取如下对策:九、对策实施实施一:后锚通过质检员在混凝土浇注前,对后锚精轧钢进行检查,每根精轧钢必须受力均匀。

可以采取穿心千斤顶进行加强,并且确定千斤顶对应的张拉油表的力值一致;也可以击打每根精轧钢,听声音辨别受力情况(施工经验丰富的老同志可以做到)。

检查通过后方可浇注混凝土。

实施二:前吊带在浇注混凝土前,质检员对每个前吊带进行检查,确保吊带竖直并且每根吊带都要均匀受力。

挂篮后锚精轧钢挂篮前吊带实施三:手拉葫芦与前吊带的转换检查挂篮的每个需要转换的环节,确保在浇注混凝土时手拉葫芦不受力,吊带与精轧钢直接受力。

实施四:挂篮弹性变形观测。

由测量班在浇注混泥土过程中对挂篮弹性变形进行观测,并把数据交与监控方(监控是由业主指派的重庆交通大学完成)。

由监控方根据观测数据来调整挂篮变形值与立模标高。

利于软件建立模型和材料性能指标之后,依据设计参数和控制参数,结合桥梁结构的结构状态、施工工况、施工荷载、二期恒载、活载等,输入前进分析系统中。

从前进分析系统中可获得结构按施工阶段每阶段的内力和挠度及最终成桥状态的内力和挠度。

接着,假设成桥时为理想状态,对桥梁结构进行倒拆分析,利用前进分析所得的数据,可获得使桥梁结构最终成为理想状态的各阶段的预抛高值,得出各施工阶段的立模标高以及混凝土浇筑前、混凝土浇筑后、钢筋张拉前、钢筋张拉后的预计标高。

立模标高为:gl i i i i i sji lmi f f f f f f H H ++++++=∑∑54321式中:lmiH ----i 节段立模标高;sjiH ----i 节段设计标高;∑if1----由各梁段自重在i 节段产生的挠度总和;∑if2----由张拉各节段预应力筋在i 节段产生的挠度总和;i f 3----混凝土收缩徐变在i 节段产生的挠度; i f 4----其他临时施工荷载在i 节段产生的挠度;if 5----运营荷载在i 节段产生的相关挠度(即预拱度值); glf ----挂篮变形值。

∑if1、∑if 2、if 3、if 4四项在前进分析和倒退分析计算中已经加以考虑,倒退分析输出结果中的预抛高值ypgiH 即为这4项挠度的总和。

上述可改为gli ypgi sji lmi f f H H H +++=5但是,实际的施工状态与理想的施工状态是有差别的。

这就是说,如果按照计算的预抛高值施工,最终成桥状态不一定是理想的状态。

这时,具有反馈控制的实时跟踪分析系统就是实现桥梁结构施工控制的关键。

通过参数调整(如温度影响调整),预告出各阶段的实际状态值,结合实际观测值,得出调整方案,最终完成整个控制过程。

实施五:理论知识的学习。

利用空闲时间与晚上时间,到临近标段、兄弟单位进行现场观摩、学习。

并由总工带头加强理论知识的学习,对各个环节的施工方案在讨论中学习,并应用于现场施工中。

挂篮施工技术培训十、效果检验经过小组活动,到11月30日连续刚构桥梁外观质量综合合格率由80.8%上升到95.6%,外观质量得到有效控制,达到了QC小组活动目的。

1.连续梁混凝土外观质量缺陷汇总表制表人:吴安峰2010年11月2、不合格点频率统计表制表人:魏力 2010年11月3、QC活动后影响连续刚构桥线型因素排列图制图人:侯圣慧2010年11月综上可以看出,经过QC小组活动,15#墩T构线型得到有效控制。

主桥15#墩线形测量说明:主桥表中设计标高为距箱梁上游侧翼缘板角点5.8米处桥面设计标高,理论标高包括了除挂篮变形以外的预拱度。

制表人:宋成伟 2010年11月制图人:宋成伟 2010年11月重庆鱼洞长江大桥二期工程拍摄于2010年11月十一、巩固措施此次的QC活动比较成功,圆满解决了连续刚构桥线型缺陷的问题。

为了巩固本次成果,并进一步提高施工质量,在项目部挑选一批工程管理人员和技术工人进行了专门的培训,将该工艺在标段范围内推广、运用。

同时,我们又进行了以下工作:1.归纳整理了连续梁施工工艺和操作规范,各项工序严格按照操作规范实施。

悬臂施工工艺流程图2.实行了小组人员岗位责任制,各负其责并定时组织质量大检查,做到及时发现问题,即时解决问题。

3.要求小组成员要不断完善预应力混凝土连续刚构桥的施工,积极研究、认真学习保证在施工过程中能够将新技术熟练掌握、灵活运用。

十二、总结和今后打算本次QC小组活动在创造性地解决了生产中的实际问题的同时,也使小组成员的综合素质得到了提高。

这次QC活动进展顺利,完全实现了小组的预定目标,并取得了良好的社会效益和经济效益。

具体的经验和体会有以下几点:1、小组必须要有明确的目标。

它是QC 攻关的方向,也是QC 活动的目的。

2、对原因的分析要准确、透彻,采取针对性的措施,做到事半功倍,确保目标实现。

3、小组人员分工要明确,确保按计划完成每一项措施。

4、对于技术含量较高的项目,应该加强与高等院校的联系,做到理论与实际的有机结合。

相关文档
最新文档