大跨度连续梁、连续刚构桥常见病害及防治对策(全面)
高墩大跨连续刚构桥的病害及其对策措施

高墩大跨连续刚构桥的病害及其对策措施摘要:本文将针对这些出现的常见问题进行阐述分析,并对造成的桥体危害提出相应的对策措施。
关键词:连续刚构桥;危害;对策措施Abstract: This article described these common problem and point out some countermeasures for bridge and caused harm.Key words: continuous rigid frame bridge; hazards; countermeasures中图分类号:U448.23 文献标识码:A文章编号:连续刚构桥的常见问题产生的原因及其病害目前,国内连续刚构桥的发展迅速,相关技术也比较成熟。
在桥梁工程领域广泛应用预应力计算体系,使得桥梁在性能、造价成本、安全系数等各方面都相对优于其他桥梁体系。
但在实际使用中仍出现诸多显著的病害。
(一)桥体跨中下挠。
1.对混凝土的收缩认识不到位。
很多桥梁在施工完成后,主梁的混凝土收缩造成桥体跨中下挠。
但现役的连续刚构桥出现,正常下挠后,再出现严重的下挠。
在桥梁建设前期,没有充分认识到混凝土的徐变性具有极大的随机性,造成混凝土预应力的损失使得桥梁的刚度下降。
从而桥梁出现桥体下挠的病害。
在连续刚构桥的设计之初,设计者一般为了减轻主桥梁的自重,都会在桥梁施工时使用高强度的薄板作为主梁。
而其实,在实际的数据中可以知道,加载的时间限制对桥梁混凝土的徐变度也有非常大的影响,桥梁的主梁一般在3天后就开始桥体预应力的加载,形成桥梁的整体。
于是由于浇筑凝固期时间缩短的缘故,使得混凝土的徐变的量增大,桥体的主梁下挠严重。
2.桥梁在前期设计中,计算的模型不够完善。
对桥梁在不同部位温差的考虑也是影响预应力的损失的因素。
目前国内在温差模型上采用三角模型,而该模型在理论值和实际测量值存在较大差距。
经一些国外桥梁专家分析:桥梁的温度分布呈现出非线性的分布,箱梁出现顶板的温度高于底板的温度现象。
大跨度连续刚构桥典型病害成因分析及应对措施

连续刚构桥是墩梁固接的连续梁桥。 中部分张拉锚固后出现的纵向开裂裂缝及
因为这种体系利用主墩的柔性来适应桥梁 墩顶横隔板的竖向和横向裂缝等。
的纵向变形, 所以在大跨度高墩连续梁桥
通过对病害桥梁的调查分析, 其病害
中比较适合。连续刚构桥也分跨中带铰和 原因可归咎于设计上、施工上、材料上等三
跨中无铰两种类型, 两者一般均采用变高 个方面。
( 3) 跨中底板纵向裂缝问题。为了减轻 结构自重, 箱梁底板在跨中一般比较薄, 有 的桥梁底板布设一层纵向预应力钢束, 其 厚 度仅 25~28cm, 布设两层纵向预应力钢 束的厚度为 32cm。为了锚固靠近 腹 板 , 减 小平弯角度, 往往预应力钢束横向布置间 距较小, 一般管道间净距离为 6~7cm, 在此 截面的挖空率非常大, 截面削弱较大, 加之 如横向普通钢筋配置不强, 此部分砼浇筑 质量又有问题, 则在强大的底板纵向预应 力束全部张拉锚固时, 底板砼因承受不了 底板束的压力而导致开裂。
墩, 此外双薄壁墩还有削减墩顶负弯矩峰 力也将产生一定影响, 从设计的角度来分
值的作用。连续刚构桥结构为多次超静定 析其原因主要是对混凝土徐变的影响程度
结构, 混凝土收缩、徐变、温度变化, 预应力 及长期性估计不足。
作用、墩台不均匀沉降等引起的附加内力
连续刚构从设计上为减轻自重而都采
对结构的影响较大, 但同时这种桥具有结 用高强的薄壁箱形主梁, 加载龄期对砼的
预应力砼连续刚构主梁采用的均为高 强度的砼, 但高强砼也有其不足之处, 它不 仅 对 原 材 料 选 择 、生 产 运 输 、施 工 管 理 及 质 量控制等各个方面都有严格的要求, 而且 在材料的性能上也存在许多突出的缺点亟 待解决:
连续刚构桥病害及处理措施

摘要 : 近年 来 , 大跨 度预 应 力混凝 土连 续刚构 桥 梁在我 国得到 了较快 的发展 , 在运 营过 程 中相继 出现 了种 种 病害 。文章研 究探 讨 了大跨 但 度预应 力混凝 土连续 刚构桥 梁的典型 病 害类型及 成 因, 并在 此基础 上 , 出了相应 的处理 措施 。 给
价理措 施
Co i ntnuo s Ri i Fr m e Br d e Da a e nd Ha u g d a i g m g sa ndl e s e i M a ur s ng
王悦 Wa gY e 李 姗 L h n n u ; i a S
中 图分 类 号 : 4 U4
文 献 标 识 码 : A
文 章 编 号 :0 6 4 12 1 0 — 20 O 10 — 3 (00)3 0 0 一 1 1
・
响 程 度 及长 期 性 估 计 不足 。 2) ( 预应 力度 对 混凝 土徐 变 的 影响 。 跨 大 为 了更 好地 发挥 已建 桥 梁 的作 用 , 要 通 过 技 术 手段 对桥 梁 的 度 预 应 力 混凝 土 连 续 刚构 桥 梁 若 预 应 力 度 较 小 , 徐 变 变 形可 能 增 需 则 病害进行 处理 , 以期在短 期内迅速提高桥梁承载 力, 消除交通安全 大 , 致 主 梁 下挠 变形 加 大 。 反 之 , 凝 土 徐 变 变形 加 大 , 应 力 束 导 混 预 隐患。 的 应 力 损 失 也 相 应 加 大 , 一 步 减 小 了预 应 力 度 , 而 导 致 主 梁 下 进 从 1 连续刚构桥特点 挠 变 形值 加 大 。 连 续 刚 构桥 是墩 梁 固接 的 连 续梁 桥 。 续 刚构 桥 也 分 跨 中 带铰 连 23施工 因素 . 和跨 中无铰两种 类型 , 两者 一般均采用变高度梁。高墩的柔度 可以 () 1 混凝土 由多种地方性材料配 制而成 , 施工过程 中对混凝土 适 应 结 构 由预 加 力 、混 凝 上 收 缩 徐 变和 温 度 变化 所 引 起 的纵 向位 原材料 的选择及拌合 、 浇注 控制不严 , 导致混凝 土的品质达不到设 移 。连 续 网 构桥 结构 为多 次 超 静定 结构 , 凝 上 收 缩 、 变 、 0 混 徐 温度 变 计 的 要 求。 ( 箱 梁 的腹 板承 受 各种 荷 载 组 合 下 的 主 拉应 力或 主 压 2) 化 , 应 力 作 用 、 台不 均 匀 沉 降 等 引起 的 附加 内 力 对 结 构 的 影 响 应力 , 预 墩 腹板的厚度较设计厚度减 薄将进一步恶化腹板斜截面 的抗剪 较大 , 但同时这种桥 具有结 构整体性 好、 震性能优越 、 扭潜力 能 力 , 至 会 导 致腹 板 开 裂 。 3 施 工 的 过程 控 制 不严 而 可 能 出现 钢 抗 抗 甚 () 筋连接质量差、 绑扎不到位、 混凝土拌合及振捣质量差、 模板安装不 大、 结构 受力合理、 型简洁明快等优点。 桥 连 续 刚 构 也 具 有特 定 的适 用 条 件 : 为墩 梁 固 结 的 多 次超 静定 牢 固 , 致 漏 振 、 窝 、 面 、 筋 、 虽 导 蜂 麻 露 漏浆 、 台等质 量 问题 。 错 刚架 结 构 , 设计 目标 是使 其 结 构行 为接 近连 续 梁 , 以 跨度 不 宣 太 但 所 24材 料 因素 . 小 、 续 孔 跨 不宜 太 多 、 墩 不 宜太 矮 、 连 桥 总桥 长 不 宜 太长 i 大跨 径 混凝 () 1 自收 缩 开 裂 。高 强 混 凝 土 由于 自干燥 , 由 此 产 生 的 自收 并 土梁 桥 主 要缺 点 是 自重 大 , 承 载 能 力绝 大 部 分 用 于 克服 自重 。 其 缩 , 混 凝 土 产 生早 期 裂 纹 , 长 期 的干 燥 收 缩 是 不 同 的 , 使 与 自收缩 开 2 连 续 剐 构桥 病 害及 成 因分 析 裂 降 低 混凝 土 耐 久 性 。 2 湿 胀 开裂 。 胀开 裂 是 由于 高强 混凝 土 的 () 湿 目前 , 大跨 径 预 应 力 混凝 土 连 续 刚构 桥 出现 的病 害 主 要 集 中 在 水 灰 比低 , 凝 土 中部 分 水 泥 没 有 水 化 , 凝 土 在水 分长 期 作 用 下 , 混 混 膨 两 个 方 面 : 是 混凝 土 开 裂 , 箱 梁 竖 向 开 裂 、 梁 底 板 纵 向 开 裂 、 外 来 水 分扩 散 到 混 凝 土 内部 后 与 水 泥 发 生 水 化 反应 , 胀 应 力超 过 一 如 箱 箱梁腹板 出现斜裂缝 等 ; 另一类是主跨跨 中下挠幅度过大。引起这 混凝土的抗拉强度时造成 的开裂。 3 脆性。 () 高强混凝土的延性比普 通 混 凝 土差 , 混凝 土 的延 性 随 强度 的增 加 而 降低 。 素 些病害 的原 因大致可以归结为设计、 施工以及材料三个方面。 21箱 梁 开 裂 。 3 处 理 措施 ( ) 板 斜 裂 缝 问题 。 对 于 大跨 径 桥 梁 , 主 拉 应 力 较 大 的 梁 1腹 在 31针 对 承载 能力 小 足 的 加 固措 施 . 段 , 往 设 置 了 竖 向预 应 力 筋 , 大 大 抵 消 荷 载 作 用 引起 的主 拉 应 往 能 ( ) 过 增 大原 结构 构 件 截 面 提 高 原 结 构 的 强度 和 刚 度 ;2) 1通 ( 更 取 () 力 。 用纵 向预 应 力布 置 方案 , 预 应 力 钢 束 线 形尽 量 简 化 , 束 平 换 结 构 构 件 或新 增 构 件 , 代 承 载 能 力 不 足 的构 件 ;3 改 变 原 结构 采 将 钢 降 (】 以 弯和竖弯种类较少且极有规律 , 预应力施工难度较小 , 消了下弯 的 受 力体 系 , 低 部 分 构 件 的受 力 ;4 对 原 结 构 施 加 外 应 力 , 改 取 束和弯起束, 箱梁 腹 板 9 %以上 长 度 范 围 内均 无 纵 向预 应 力 通 道 穿 变其 应 力 分布 , 到 提高 原 结 构 的 强度 和 刚 度 。 0 达 3 . 对 混凝 土开 裂 的 加 固措 施 2针 过 , 利 于 钢 筋 骨 架 的 绑 扎 和 腹 板 混凝 土 的 浇筑 , 容 易 保 证 硅 的 有 更 针对混凝土开裂 的加固措施为了约 束箱梁裂缝的进一步发展 , 质量。 2 顶板 纵向开裂 问题。 () ①主梁项板在较长悬臂箱梁翼板的根 部 , 载、 恒 活载 产 生 的 负 弯 矩 均 较 大 , 板 跨 中 的 活 载 正 弯 矩 较 大 , 加强对腹板 混凝土的约束 , 强腹板抗 剪承载能力和刚度 , 项 增 可采取 横 向预 应 力钢 绞 线 布 设 不 可 能 在 悬 臂 根 部 布 置 在 顶 板 上 缘 而 在 跨 腹板 内侧粘贴钢板 的措施。 对于粘贴钢板需要注意两点 :1混凝土 () 中却布置于顶板下缘。② 根据计算 分析 , 连续 刚构箱梁在浇筑完一 表面先要找平处理 ,表面不平整则无法保证 混凝 土与钢板紧密粘 () 节混凝土后 即张拉完该节段桥面横 向预应力钢束 , 由于应力分布和 贴 ;2 粘贴胶质 量一定要有保证。 叠 加 , 面 板 中 横 向 预 应 力分 布 极 不均 匀 , 也 是 造 成 桥 面 板 出 现 桥 这 4 结 语 通 过 以 上 分 析 , 以得 出如 下 结 论 : 1 除 施 工 缺 陷外 , 凝 土 可 () 混 局 部 纵 向开 裂 的原 因之 一 。 3 跨 中底板 纵 向裂 缝 问题 。 了减 轻 结 () 为 开 裂 和 主 跨 跨 中 区 段 下 挠 幅 度 过 大 是 预 应 力 混 凝 土 连 续 刚 构 桥 最 构 自重 , 梁 底板 在 跨 中一 般 比较 薄 。 了锚 固 靠 近腹 板 , 小 平 弯 箱 为 减 产 ( 针 角度 , 往预应力钢束横 向布置 间距较 小 , 往 在此截面 的挖空率非 常 常 见 的两 种 病 害 形式 , 生病 害 的原 因往 往 不 是 单 一 的 ;2) 对 混 针对跨 大 , 面 削 弱 较 大 , 之 如 横 向普 通 钢 筋 配 置 不 强 , 截 加 此部 分混 凝 土 浇 凝 土开裂 的常用维修
大跨径连续刚构桥梁的常见病害及控制措施

大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1)适当增加梁高,提高结构的承载能力(2)设置足够的施工预拱度(3)应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5)延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响。
我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法,即在建造期间通过设置预拱度来抵消桥梁长期下挠变形。
是对高标号混凝土的收缩、徐变的考虑不足,且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂,如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1)选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4)增设腹板纵向预应力下弯束(5)适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6)合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径。
箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足,也会导致砼的开裂. 墩柱的约束过大,导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
大跨度连续刚构桥典型病害成因分析及应对措施

( 1) 混凝土由多种地方性材料配制而 成, 施工过程中对混凝土原材料的选择及 拌合、浇注控制不严, 再加上施工各方片面 追求高强度而忽视混凝土的综合性能指 标, 导致混凝土的品质达不到设计的要求。
( 2) 箱梁的腹板承受各种荷载组合下 的主拉应力或主压应力, 腹板的厚度较设 计厚度减薄将进一步恶化腹板斜截面的抗 剪能力, 甚至会导致腹板开裂。因此, 施工 过程中因模板安装不好导致的腹板厚度过 薄将直接影响到腹板的抗裂性能, 过厚又 增加了悬臂箱梁的重量。
3 大跨度连续刚构病害应对措施
大跨度连续刚构病害的应对措施应分 为两个方面: 即新建桥梁的设计对策及已 有病害桥梁的加固措施。 3.1 新建桥梁设计对策
( 1) 改善主梁断面设计方式。按零弯矩 或少弯矩设计主梁断面, 以利于减小连续 刚构的徐变挠度。
( 2) 改善纵向预应力束的布置方式。跨 内纵向预应力束下弯到箱梁截面中心附 近、边梁现浇段配置曲线预应力束以提供 较大的预剪力, 使得腹板的主拉应力有较 大的改善。
从已加固的一些连续刚构桥中发现, 孔道的压浆有时不饱满, 存在着一些孔隙, 有的则浆体分离, 孔道一经戳破即有水流 出, 处于这样孔道中的预应力束肯定会发 生锈蚀, 导致有效预应力的降低, 不但会引 起梁体下挠, 而且有可能出现受弯竖向裂 缝, 也降低了抗主拉应力的能力。 2.1.2 箱梁开裂问题
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施

浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施摘要:本文对大跨径预应力混凝土连续刚构桥的常见病害及成因进行了分析,针对各病害提出了可行的控制方法。
或可为该类桥梁的设计施工提供参考。
关键词:预应力混凝土,连续刚构,病害,控制措施。
1常见病害通过调查,我国已建成的大跨径连续刚构桥梁中,常见的病害主要有以下几种:(1) 跨中挠度过大;(2) 箱梁梁体产生裂缝;(3) 墩顶0#块开裂;(4)桥墩(或塔墩)靠承台区段的竖向裂缝。
2跨中挠度过大的成因分析及控制措施跨中挠度过大,通常是由于梁体本身刚度不足所致,而梁体由混凝土、普通钢筋和预应力钢筋组合而成,故梁高过小、腹板厚度不足、混凝土标号不足、普通钢筋配置不足、预应力不足都会导致梁体刚度不足,进而导致跨中挠度过大。
其中,预应力配置不足可以由设计中预应力配置不足或者预应力筋应力松弛过大、混凝土收缩徐变导致预应力损失过大引起。
此外,如设置的预拱度不足,也会导致桥梁合龙后跨中挠度过大。
可通过以下方法降低跨中挠度:(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少挠度。
3箱梁梁体裂缝的成因分析及控制措施3.1箱梁节段间施工接缝处腹板竖向裂缝箱梁节段间施工接缝处腹板竖向裂缝处于两施工节段之间,严重的缝宽1-2mm甚至更宽。
开裂原因:(1)悬臂浇注移动支架的整体刚度不够,浇注过程中变形大;(2)混凝土浇注程序不对:先浇注后端(紧靠前一浇注节段),然后逐步向前端浇注,前端的荷载引起悬臂支架变形,导致后端混凝土裂开。
控制措施:(1)支架的刚度和强度必须满足施工要求,必须采用相当于实际荷载的荷载预压,除强度满足需要外,其最大挠度应小于或等于2.0cm。
大跨径连续刚构桥梁常见问题与对策的研究

径连 续刚构桥 粱在施 工过程 中常遇 的 问题 , 并对此提 出 了相 关的对 策。 关键 词 : 大跨 径连续 刚构桥 梁 ; 问题 ; 策 对
1常 见 害 病 一 半立方抛 物线 和二次抛物线 。采用二次抛物线 身大多为柔性墩 ,常见的有双肢薄壁墩和空心 J U 段的梁高减小 , 4 减小 了结构 薄壁墩。 双肢薄壁墩常用于墩身不高的情况, 墩 经过对国内已建成的大跨径连续 刚构 桥梁 可 以使箱梁 I  ̄ 8 但对克服该 区段 的主拉应力不利 。 身较 高常采用空心薄壁墩。分析大跨径连续刚 的来 看 , 通过调查 , 国已成的大跨径连续 刚构 自重 , 我 设计合适可靠 的竖 向预应力 。箱梁施加竖 构 桥墩身开裂的原因 , 由于混凝土的收缩、 均是 桥梁中 , 的病害主要有 以下几种情况 : 中 出现 跨 内外 而造 挠 度过大 ; 箱梁腹板 、 底板产生裂缝 ; 墩顶 梁 向预应力的主要 目的是克服主拉应力 ,竖向预 日照温差 、 温差 的影 响 , 成表面开裂 。 应力的有效性 , 对箱梁腹板的受力影响很大 竖 为 了减 小混凝 土的收缩 , 增强混凝土的抗裂性 , 段 开裂 ; 桥墩墩身裂缝。 2裂缝形成的原因 向预应力常采用精轧螺纹粗钢筋或钢绞线 。 设计 与施工 中除 了配置足 够的受力钢筋外 , 尚 增加纵 向预应力下弯束。由于竖 向预应力 应在主筋 的外表 面设置 防裂钢筋 网片 ,同时在 目 , 国大跨径预应力混凝土连续梁桥 前 我 适 裂缝形成 的原因 , 主要有 以下几方面 : 在主桥总 的施工质量很难完全达到设计要求 , 当增设 混凝土 中加人—定的抗 裂防水膨胀剂。 4 4跨 中挠度过大预防 体设计 中, 比例 、 跨径 箱梁截面尺寸的拟定不合 腹板下弯束 ,对克服腹板 内的主拉应力和剪应 理; 结构设 计抗弯剪能力不足 ; 对有预应力钢束 力有利 ,同时下弯 束应弯至截 面高度 的 2 , 3以 很多大跨径连续 刚构桥梁虽然在 主梁 的设 在 提 引起的附 力估计不足 ;对温度应力 的重视不 下。 中跨跨 中及悬臂中部设置横隔板 , 高箱 计 中没有足够的预拱度 ,但在建成通车—段时 Ⅱ 够; 施工质量 不好 , 中包括 : 其 混凝 土浇筑 与养 梁畸变 刚度 , 而提高箱梁受力的整体性 。 从 间后 , 跨中均 出现不同程度 的下挠 , 箱梁 这不但 生不好 、预应力钢柬的保护层厚度达不到谢 } . 适 当增加边跨 现浇段的底板和腹 板厚度 , 给行车带 来麻烦 , 而且 会使结构 开裂 、 坏 , 破 给 要求、支架与模板变形过大、预 应力 张拉力 不 并设置 足够 的防崩钢筋 。由于受力和锚固的需 结构带来安全隐患 。 因此 , 设计与施工 中可以 在 要, 边跨底板预应力束在边跨现浇段 向顶板方 采取 以下措施 : 足、 灌浆不及时或其它质量问题等 。 2 l腹板剁象 原因 逢 蜥 向弯 曲, 且该处钢柬竖 弯曲线半径较小 。 钢束弯 适当增加梁高, 提高结构的承载能力。高、 腹板偏薄 ; 了竖弯束 ; 向预应力筋作 曲产生 的附 加径 向力使预应力管道下缘混凝土 跨比是影响主梁受力的主要参数,适当增加梁 取消 竖 用不如初期设计期待的好 ; 施工粗糙 , 未达设计 承受径 向荷载 的作用 ,底板因受过大的径向力 高 , 以提高结构的承载能力 。 可 要求 。 而容易产生崩裂。 梁高 , 可增加 主梁的刚度 , 改善主梁应力状 2 . 中底板纵 向裂缝原因分析 2跨 合拢段 的混凝土标号提高半级或一级 。由 况 。 根据设计经验 , 国内早期连续刚构箱梁根部 底 板厚度偏薄 ; 向普通钢筋配设不强 ; 横 张 于连续刚构桥往往具有跨度 大,施工过程存在 梁高一般为中跨 长度 的 1 6 I8 / ,/ ,近期 设计的 1,1 - 拉 进行孑道灌浆 。 L 结构体 系转换 的特 点。合拢段不但是结构最薄 连续刚构桥 ,箱梁根部梁高— 般为中跨长度的 2 3顶板纵向裂缝原因分析 弱的部 分, 而且该部分为后浇混凝土。 箱梁合拢 11 -11 。 ,6 -/7 主梁截面箱宽与翼板宽不当 , 向预应力 段混凝 土的浇 注 , 横 使得结构 由原来的静定结构 设置 足够的施工预拱度。混凝土的收缩徐 钢束设置不合理;横向预应力钢束张拉时间不 转换成 了超静定结构 ,同时 由于合拢温度的影 变对挠度的影响较大, 而根据 目 前的理论, 较难 当, 造成横向预应力分布不均匀; 箱梁温度应力 响 , 使得该部分的应力状况相对 较为复杂 , 高 准确计算 , 提 因此适当加大跨中预拱度, 以抵消箱 计算与实际清况不符。 混凝土的等级 , 以提高结构的抗裂效应。 可 梁 的后期下挠 。 3后期主梁下挠过大的原 因分 析 合理确定箱宽与悬臂翼缘 宽的比例,合理 增加底板预应力束, 并采用分批张拉, 部分 后期主梁下挠过大 的原因主要有 以下几个 设置横向预应力钢束 ,使顶板 在各种 工况情况 底板预应力束可滞后 1 年左右的时间, 待混凝 方面 :当前大型预应力混凝土连续刚构桥梁一 下不出现引起开裂的拉应力。适 当加强桥 面铺 土完成一定的收缩 、 变后再张拉。 徐 般采用泵送混凝土浇筑 , 混凝土强度高 、 水灰 比 装钢筋 , 如混凝 土桥面 , 则应注意设置混凝士桥 在中跨底板适当设置体外备用钢束, 待需 较大 , 各种添 加剂触 水剂 、 早强剂 、 凝剂) , 面变形纵 向缝 的位置。 缓 多 根据计算分析 , 合理设置 要时进行 张拉。 对 混凝土的收缩徐变特性有较大的影响 ,尤其 箱 梁桥面板横 向预应力钢束 张拉 锚固程 序 , 分 延长 混凝土 的加载龄期 , 减少徐变对结构 是 对混凝 土后期徐变的影响。加 载龄期对 混凝 批 张拉横 向预应力钢束 ,使横 向预应力分布趋 的影 响 , 如工期 容许 , 要求纵 向预应力的张拉龄 土的徐变有较大影响。预应力度 的大小对 混凝 于均匀 。 期不 少于 7 o d 土的徐变有影响。 混凝土徐变变形加大 , 预应力 4 2墩顶 0 梁段裂缝预 防 # 在施工中要控制混凝土的坍落度最好在 进一步减小 了预 通过分析 , 这些裂缝的产生主要是 由于温 1 厘米以下, 8 并且尽可能的延长混凝土的加载 应力度 , 从而导致 主梁下挠变形值加大。 度内力、 主梁预加应力及混凝土收缩引起 的。 为 龄期, 并加强施工控制, 保证主梁设汁线形。 4设计与施 工对策 了防止裂缝的产生 , 计与施工 中可 以采取 以 设 5结束语 从对连续阿 桥出现 问题的原 因进行分析 下措施 : 构 虽然 连续 刚构桥不 论在设计方面还是在施 的结果来看 , 其实这些问题在早期并不影响结 箱梁 梁段的横 隔板 的厚度不宜太厚 , 应 工方面, 都有较为成熟的经验, 而且在国内建成 构的整体安全, 但随着时间的推移, 会逐渐降低 尽 可能与顶板 、 的刚度匹配 , 腹板 以改善箱梁 。 较多 , 由于 目 对连续刚构桥梁认识的局限 社 但 前 结构 的耐久性 。针对 大跨径连续 刚构桥 问题 出 梁段的受力状况。 性, 很多大跨径连续刚构桥均出现了不同程度 现的特点,在设计与施工中可以采取相应的有 由于主墩墩顶弯矩较大, 而墩、 梁交接处为 的病 害。 如何克服和尽量减少病害的产生, 目 是 效措施 , 来克服和尽量减少问题的产生。 2 次施工的分 点, 使得该处受力不利 。因此箱 前在设计与施工过程中急需解决的问题。 4 箱梁裂缝 的预防 1 梁 梁段 的竖 向预应力 可延伸至墩顶 以下 5 ~ 参 考 文献 根据现有桥梁问题 的产生 ,箱梁的裂缝主 lr, O 以改善墩 、 e 梁交接处的受力。 『江 滂 . 1 】 大跨馒 连 续刚构桥 施工 关键技 术研 究 要出现在腹板、 底板和顶板 , 板裂缝 多出现在 腹 设置足够 的底板钢筋,必要时设置临时预 【】 济大学,06 D同 20. 1-  ̄ 7 1 之间 , 47 底板裂缝多 出现在跨 中部位及边 应力 。在箱粱 梁段 的内、 外主筋的表面设置 【 陈浩. 高墩 连续 刚构桥 的稳定性 分析【l 2 】 大跨 D 跨现浇段。分析原因 , 主要是腹板 内的剪应力 、 防裂 钢筋 网片, 同时箱梁 梁段的混凝土中可 西南交通大学 。 o. 2 7 o 主拉应力 和局部拉应力场作用的结果 。针对 这 加入抗混凝 土开 裂的杜拉纤维或钢纤维 ,以提 【杨 军 , 预 应力混凝 土葙梁桥常见结构裂 2 】 李坚. 些情况, 在设计与施工中可以采取 以下措施 : 高结构 的抗裂性能。 缝分析与设计对策田 海公路, 9. 上 17 9 选择合适的箱梁下缘曲线 。大跨径连续 刚 4 3桥墩墩身裂缝预防 f詹建辉 , . 大跨度连 续刚构主梁下挠及 4 ] 陈卉 特 构桥多采用变截面箱粱, 底板下缘曲线常采用 根据大跨径连续刚构桥的受力特| ,其墩 箱梁裂缝成因分 析切 冲外公路, 0. 25 0
大跨度连续梁连续刚构桥常见病害及防治对策

跨中挠度(mm)
3.7
8.5
9.4 3
4
潭洲大桥(125m)挠度、裂缝相关分析
开裂程度
5.0 5.6
2
2.1 施工过程中的病害
裂缝
– – – – – 顶板横向、纵向 腹板接缝处竖向 底板纵向 预应力锚头附近 底板分层劈裂(事故)
下挠
– 纵向 – 横向
底板分层劈裂事故
2.2 成桥后的病害
裂缝
针对运营阶段的长期问题
– – – – – – 提高预应力度、改变徐变次内力 施加体外预应力 限制荷载 减轻桥梁重量 组合结构桥梁 改变结构体系
4.1针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
4.1针对施工阶段的问题
提高预应力施加的可靠性
– 纵向预应力
3.3 施工质量问题、措施不当
预应力灌浆质量
– 灌浆不饱满 – 忘记灌浆 – 管道内存在水分,造成预应力钢筋锈蚀
3.3 施工质量问题、措施不当
模板刚度
– 挂篮变形无规律
节段之间高低不平 阶段内高低不平,横坡误差大
– 内模刚度不足
– 大范围超重,达到恒载4~5%,抵消 1~2Mpa预应力
3.3 施工质量问题、措施不当
大跨度预应力混凝土连续梁、连 续刚构桥常见病害及防治对策
桥梁工程系研究生专业讲座
ФФФ 2006年12月
1 PC连续梁(刚构)桥的发展
世界
– Worms Bridge 首创悬臂浇注施工方法 – 1964年 Bendorf Bridge 208米 – 1985年 Gateway Bridge 260米 – 1998年 Stolma Bridge 301米 – 2006年 石板坡复线 340米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道不平顺 管道内漏浆
– 竖向预应力:锚口损失
锚具不垂直 锚具与垫板间有杂物
– 横向预应力管道上浮
顶板横桥向裂缝
3.3 施工质量问题、措施不当
预应力灌浆质量
– 灌浆不饱满 – 忘记灌浆 – 管道内存在水分,造成预应力钢筋锈蚀
3.3 施工质量问题、措施不当
模板刚度
图 塔高(h)和索力(S)优化
悬臂施工实现吻合索
4.2 针对运营阶段的长期问题
施加体外预置 成桥时压重,以后慢慢取出
– 对于旧桥
植筋设转向块后,增加体外预应力 效果不好
– 体内预应力的效应无法判断 – 植筋进一步造成混凝土开裂
先预压,后取出
3.4 汽车超重
总重量
– 增加总体下挠 – 薄弱截面经常出现临时裂缝,横向裂缝
轴重
– 桥面板局部开裂,纵缝
4 处治对策
针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
针对运营阶段的长期问题
– 提高预应力度、改变徐变次内力 – 施加体外预应力 – 限制荷载 – 减轻桥梁重量 – 组合结构桥梁 – 改变结构体系
下挠
– 纵向
垮桥
黄石长江大桥 245米
下挠32厘米 6000多条裂缝
虎门大桥辅航道桥跨中挠度
Deformation ( Unit: mm )
225 200 175 150 125 100
75 50 25
0 -25
0
Right Left
10
20
30
40
50
60
70
80
Time after been open to traffic ( Unit: Month )
裂缝、下挠的机理
– 先裂缝,再下挠? – 先下挠,大应变造成裂缝? – 开裂后的应力重分布,稳定吗?
已建桥梁的承载能力
– 下挠、开裂后的剩余承载能力 – 剩余寿命
4.2 针对运营阶段的长期问题
提高预应力度、改变徐变次内力
– 零弯矩配索、减小上下缘压应力差配索
问题,跨度超过200米几乎无法体内实现 体内,体外预应力同时? 体外什么时间施加?
– 吻合索配索
一次落架连续梁,有徐变,无次内力 悬臂施工实现吻合索
悬臂施工实现吻合索
m h(m)
ht (t)
合理配筋
– 齿板配筋
保证锚固长度
– 底板配筋
设置一定数量的拉筋 保证弧线内侧的保护层厚度
4.1针对施工阶段的问题
科学施工、提高施工精度
– 接缝安排
竖向,横向,有接缝的位置适当增加防裂钢筋
– 工期安排
混凝土养生时间控制 合拢步骤的安排
– 施工机具操作
挂篮变形控制——锚杆的紧固 模板变形控制
汽车超重
3.1 设计理念
预应力度
– 全预应力 – 变形用预拱度抵消
预应力压力
外荷载拉力 1
– 问题
徐变次内力难以估计
预应力损失难以估计
3.1 设计理念
预应力完全抵消外荷载弯矩
– 好处:梁处于轴心受压状态,只有纵向变形 – 弱点:费材料
小跨径 大跨径?截面上无法布置
3.1 设计理念
1 PC连续梁(刚构)桥的发展
中国
– 1982年 重庆长江大桥 178米 最大T型刚构 – 1985年 沙洋汉江桥111米 连续梁首次过百 – 1988年 洛溪桥180米,第一座连续刚构 – 1997年 虎门大桥辅航道桥270米 世界纪录 – 2006年 石板坡复线 340米
2 PC连续梁桥常见病害
-150 -100
100m左幅 100m右幅 125m左幅 125m右幅
-50
2001年7月
2001年12月
0
2002年6月
2000年8月
2005年6月
2006年4月
50
100 1996年1月 1998年1月 2000年1月 2002年1月 2004年1月 2006年1月
96~06年挠度变化对比 (以00年8月观测数据为参考点)
悬臂施压、成桥拆除
4.2 针对运营阶段的长期问题
施加体外预应力
– 对于新桥
预留体外预应力转向块及张拉位置 成桥时压重,以后慢慢取出
– 对于旧桥
植筋设转向块后,增加体外预应力 效果不好
– 体内预应力的效应无法判断 – 植筋进一步造成混凝土开裂
佛开高速公路汾江大桥
跨中挠度(mm)
-200 1996年12月成桥
裂缝
– 施工过程中 – 长期
下挠
– 施工过程中 – 长期
汾江大桥裂缝与下挠图
跨中挠度(mm) 开裂程度
0 (1996成桥)2 0 40 80 120 160
4 桥龄(年) 6
3.9
6.8
4.6 3.7
5.05.6
8
10
0
7.7
1
2 8.5 9.4
3
200
4
240
跨中顶板裂缝 支点腹板裂缝
跨中底板裂缝 左幅挠度
大跨度预应力连续梁、连续刚构 桥常见病害及防治对策
桥梁工程系研究生专业讲座
1 PC连续梁(刚构)桥的发展
世界
– Worms Bridge 首创悬臂浇注施工方法 – 1964年 Bendorf Bridge 208米 – 1985年 Gateway Bridge 260米 – 1998年 Stolma Bridge 301米 – 2006年 石板坡复线 340米
后果
– 长期挠度大 – 梁体裂缝
腹板斜裂缝 底板横桥向裂缝
3.2 构造钢筋
齿板钢筋
– 锚固长度不够 – 钢筋有内折角
3.2 构造钢筋
受压板的拉筋
– 没有设拉筋 – 拉筋设置错误 – 造成底板纵向裂缝 – 严重时底板崩溃
底板分层压溃
底板分层压溃
3.3 施工质量问题、措施不当
预应力施加质量
5 跨中腹板裂缝 右幅挠度
潭洲大桥(125m)挠度、裂缝相关分析
2.1 施工过程中的病害
裂缝
– 顶板横向、纵向 – 腹板接缝处竖向 – 底板纵向 – 预应力锚头附近 – 底板分层劈裂(事故)
下挠
– 纵向 – 横向
底板分层劈裂事故
2.2 成桥后的病害
裂缝
– 顶板纵向 – 腹板斜向 – 底板横向
石板坡复线桥
4.2 针对运营阶段的长期问题
采用组合结构桥梁
– 腹板、底板钢板,顶板混凝土 – 波折腹板 – 桁架腹板
4.2 针对运营阶段的长期问题
改变结构体系
– 新桥
矮塔斜拉桥?
– 已经下挠的桥梁
增加拉索体系 Puttesund Bridge
5 待研究的问题
徐变规律
– 实际情况与实验室的差异
4.2 针对运营阶段的长期问题
限制荷载
– 设置称重系统,计重收费 – 全国已经有多个省实行
4.2 针对运营阶段的长期问题
减轻桥梁重量
– 减小跨中梁高
跨中梁高:主跨的1/80
– 跨中使用轻质材料
轻质混凝土
– Stolma Bridge和RaftSundet Bridge
跨中段采用钢梁
– 石板坡复线桥
虎门大桥辅航道桥跨中挠度
Parrotts Ferry Bridge 195米
Koror-Babeldaob 240米
3 病害的原因
设计理念
– 预应力只要使混凝土不出现拉应力 – 预应力抵消大部分恒载弯矩
构造设计错误
– 普通钢筋配筋问题
施工质量问题、措施不当
– 预应力施加质量 – 模板刚度 – 预应力灌浆质量 – 分层分段问题
4.1针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
4.1针对施工阶段的问题
提高预应力施加的可靠性
– 纵向预应力
塑料波纹管 真空压浆 严格双控
– 竖向预应力
采用带圆头的锚具 二次张拉
– 横向预应力
防止管道上浮,多设几道定位钢筋
4.1针对施工阶段的问题
– 挂篮变形无规律
节段之间高低不平
– 内模刚度不足
阶段内高低不平,横坡误差大
– 大范围超重,达到恒载4~5%,抵消1~2Mpa 预应力
3.3 施工质量问题、措施不当
分层分段问题
– 竖向分层间的不同步收缩
腹板后浇混凝土开裂,竖向裂缝
– 纵向节段间的不同步收缩
主要出现在0号与1号块,顶板纵向裂缝