平行四边形的性质题型归类

合集下载

平行四边形性质判定题型分类

平行四边形性质判定题型分类

16cm, AC 与BD 相交于点 O, OE L AC 交AD 于丘,求厶DCE 的周长平行四边形的性质和判定一、角度的运算1、 在口 ABCD 中,若/ A -Z B = 40 ° 则/ A= __________ ,/ B = __________ .2、 在平行四边形 ABCD 中,Z A : Z B=3:2,则Z C= _______ 度,/ D= ___________ 度.3、 如图,在平行四边形 ABCD 中,BC=2AB, CAL AB 贝UZ B= _____ 度,Z CAD= _____ 度.4、 已知:如图,在 □ABCD 中,CE L AB 于E , CF 丄AD 于F ,Z 2 = 30 °求Z 1、Z 3的度数.二、求边长(取值范围)、周长1、 已知平行四边形的周长是 100cm, AB:BC=4 : 1则AB 的长是 __________________ .2、 若平行四边形周长为 54cm ,两邻边之差为 5cm ,则这两边的长度分别为 ____________ .3、 口ABCD 中,对角线 AC 和BD 交于O,若AC = 8, BD = 6,则边AB 长的取值范围是 _______ .4、 □ ABCD 的周长为60cm ,其对角线交于 O 点,若△ AOB 的周长比厶BOC 的周长多10cm , 贝H AB = __________ , BC = ___________ .5、 在口ABCD 中 CA L AB , Z BAD = 120 ° 若 BC = 10cm ,则 AC = ______ , AB = ___________ .6、 如图,平行四边形 ABCD 中,AB=5cm, BC=3cm, Z D 与Z C 的平分线分别交 AB 于F,E,求 AE, EF, BF 的长?7、□ ABC [中, E 在边AD 上,以BE 为折痕,将△ ABE 向上翻折,点 A 正好落在 CD 上的点F , 若厶FDE 的周长为8,A FCB 的周长为22,求CF 的长.C B三、求面积1、在口ABCD 中,AE ± BC 于 E ,若 AB = 10cm , BC = 15cm , BE = 6cmU DABCD 的面积为2、 若在口ABCD 中,/ A = 30° AB = 7cm , AD = 6cm ,贝U 9 ABCD= _______ .3、 如图,平行四边形 ABCD 中,DE 丄AB 于E , DF 丄BC 于F ,若L ABCD 的周长为48, DE = 5, DF = 10,求 L ABCD 的面积。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连接三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义 :有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。

⑵对角线互相垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12正方形判定定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EF B′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

专题 平行四边形的性质和判定(解析版)

专题 平行四边形的性质和判定(解析版)

八年级下册数学《第十八章平行四边形》专题平行四边形的性质与判定【例题1】如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是( )A.B.C.D.【分析】由平行四边形的性质和角平分线的性质可证BE =BC =5,由勾股定理的逆定理可求∠AED =90°,由勾股定理可求CE 的长.【解答】解:∵AE =3,EB =5,∴AB =8,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD =BC ,AB =CD =8,∴∠DCE =∠BCE ,∠AED =∠EDC ,∵CE 平分∠BCD ,∴∠DCE =∠BCE ,∴∠BCE =∠BEC ,∴BE =BC =5,∴AD =5,∵AD 2=25=16+9=DE 2+AE 2,∴∠AED =90°,∴∠AED =∠EDC =90°,∴CE =故选:D .【点评】本题考查了平行四边形的性质,角平分线的性质,勾股定理及勾股定理的逆定理,证明∠AED =90°是解题的关键.【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .【分析】据平行四边形的性质证明∠DAE =∠BEA ,∠ADF =∠CFD ,进而证明∠BAE =∠BEA 得到BE =BA=5,∠CDF=∠CFD得到CF=CD=5,由此即可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,CD=AB=6,BC=AD=7,∴∠BAD+∠ADC=180°,∠DAE=∠BEA,∠ADF=∠CFD,∵AG⊥DG,∴∠AGD=90°,∴∠DAE+∠ADF=90°,∴∠BAE+∠CDF=∠BAD+∠ADC﹣∠DAE﹣∠ADF=90°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∵∠BEA+∠CFD=90°,∴BE=BA=5,∠CDF=∠CFD,∴CE=BC﹣BE=2,CF=CD=5,∴EF=CF﹣CE=3,故选:C.【点评】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,证明BE=BA=5,CF=CD=5是解题的关键.【变式1-2】如图,在▱ABCD中,O为对角线AC与BD的交点,AC⊥AB,E为AD的中点,并且OF ⊥BC,∠D=53°,则∠FOE的度数是( )A.143°B.127°C.53°D.37°【分析】先由等角的余角相等证明∠FOC=∠D=53°,再根据三角形的中位线定理证明OE∥CD,则∠COE=180°﹣∠ACD=90°,即可求得∠FOE=143°,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠CAD=∠OCF,∵AC⊥AB,OF⊥BC,∴∠ACD=∠CAB=∠OFC=90°,∵∠D+∠CAD=90°,∠FOC+∠OCF=90°,∴∠FOC=∠D=53°,∵O为对角线AC与BD的交点,∴O为AC的中点,∵E为AD的中点,∴OE∥CD,∴∠COE=180°﹣∠ACD=180°﹣90°=90°,∴∠FOE=∠FOC+∠COE=53°+90°=143°,故选:A.【点评】此题重点考查平行四边形的性质、平行线的性质、等角的余角相等、直角三角形的两个锐角互余、三角形的中位线定理等知识,证明OE∥CD是解题的关键.【变式1-3】如图,将平行四边形OABC放置在平面直角坐标系xOy中,O为坐标原点,若点C的坐标是(1,3),点A的坐标是(5,0),则点B的坐标是( )A.(5,3)B.(4,3)C.(6,3)D.(8,1)【分析】由平行四边形的性质可得BC∥OA,BC=OA=5,即可求解.【解答】解:∵点A的坐标是(5,0),∴OA=5,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=5,∵点C的坐标是(1,3),∴点B坐标为(6,3),故选:C.【点评】本题考查了平行四边形的性质,坐标与图形性质,掌握平行四边形的性质是解题的关键.【变式1-4】如图,在平行四边形ABCD中P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是( )A.18B.24C.23D.14【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP=6,∴△APB的周长=6+8+10=24;故选:B.【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是( )A.30°B.35°C.40°D.45°【分析】证△ABE是等边三角形,得AB=AE,再证△BAC≌△AED中(SAS),得∠BAC=∠AED=80°,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC=60°,AD∥BC,∴∠BAD=180°﹣∠B=180°﹣60°=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=12∠BAD=60°,∴∠B=∠DAE,△ABE是等边三角形,∴AB=AE,∠AEB=∠BAE=60°,在△BAC和△AED中,AB=EA∠B=∠DAEBC=AD,∴△BAC≌△AED(SAS),∴∠BAC=∠AED=80°,∴∠EAC=∠BAC﹣∠BAE=80°﹣60°=20°,∴∠ACE=∠AEB﹣∠EAC=60°﹣20°=40°.故选:C.【点评】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明△BAC≌△AED是解题的关键.【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是( )A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB<4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=12AC,BO=12BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得1<AB<7.故选:C.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握“平行四边形的对角线互相平分”的性质.【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【分析】设∠A的平分线交BC于点E,可证明AB=EB,再分两种情况讨论,一是EB=5,EC=4,则AB =EB=5,BC=EB+EC=9;二是EB=4,EC=5时,则AB=EB=4,BC=EB+EC=9,分别求出平行四边形ABCD的周长即可.【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【点评】此题重点考查平行四边形的性质、平行线的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBOOD=OB∠FOD=∠EOB,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.【例题2】(2022•南京模拟)如图,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =EF =FC .(1)求证:DE ∥BF ;(2)若BE ⊥BC ,DE =6,求对角线AC 的长.【分析】(1)根据平行四边形的性质得出AD =BC ,AD ∥BC ,AB =CD ,∠BAC =∠DCA ,利用全等三角形的判定和性质得出∠AFB =∠CED ,再由平行线的判定即可证明;(2)根据(1)中全等三角形的性质得出DE =BF =6,再根据直角三角形斜边上的中线等于斜边的一半得出BF =CF =EF =6,即可得出结果.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD =BC ,AD ∥BC ,AB =CD ,∴∠BAC =∠DCA ,∵AE =FC ,∴AE +EF =FC +EF ,即AF =EC ,∴△ABF ≌△CDE (SAS ),∴∠AFB =∠CED ,∴DE ∥BF ;(2)解:由(1)得△ABF ≌△CDE ,∴DE =BF =6,∵BE ⊥BC ,CF =EF ,∴点F 为△BEC 的中点,∴BF =CF =EF =6,∵CF =EF =AE,∴AC=18.【点评】此题主要考查平行四边形的性质,全等三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【分析】证两条线段所在的两个三角形全等.根据“AAS”可证△ABE≌△CDF或△ADF≌△CBE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∠DFC=∠BEA∠FCD=∠EAB,AB=CD∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质和全等三角形的判定及性质,熟练掌握“平行四边形的对边平行且相等”是解题关键.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,∠E=∠FBE=DF,∠EBG=∠FDH∴△BEG≌△DFH(ASA),∴EG=FH.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【分析】(1)根据平行四边形的性质证明A为BF的中点,然后证明△DEC≌△AEF(AAS),进而得出结论;(2)由平行四边形的对边平行证出∠CBF=∠DAF=70°,∠BEA=∠EBC,由等腰三角形的性质得出∠CBE=∠ABE,即可得出答案.【解答】(1)证明:∵CE是∠DCB的平分线,∴∠DCE=∠BCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠DCE=∠CFB,∴∠BCF=∠CFB,∴BC=BF,∵BC=2AB,∴BF=2AB,∴A为BF的中点,∴AB=AF,∴AB=DC=AF,在△DEC和△AEF中,∠DCE=∠F∠DEC=∠AEFDC=AF,∴△DEC≌△AEF(AAS),∴DE=AE;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠BEA=∠EBC,∵△DEC≌△AEF,∴CE=EF,∵BC=BF,∴∠EBC=∠FBE=12∠CBF=35°,∴∠BEA=35°.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握平行四边形的性质和等腰三角形的性质,证明三角形全等是解题的关键.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,∠ADE=∠CBFAD=BC,∠DAE=∠BCF∴△ADE≌△CBF(ASA),∴DE=BF;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=AD=ADEB的周长.【分析】(1)由已知证得AB=EF,DE=AE,根据全等三角形的判定证得△FDE≌△BEA,根据全等三角形的性质可得结论;(2)由勾股定理得求得DE=3,EF=5,由(1)知,AB=EF,BE=DF,即可求得结论.【解答】(1)证明:∵AE⊥CD,∴∠FED=90°,∵四边形ABCD是平行四边形,∠ABC=45°,AB=DC,∴∠BAE=∠FED=90°,∠ADE=∠ABC=45°,∴AE=DE,∵CE=AF,∴AB=EF,△FDE和△BEA中,DE=AE∠FED=∠BAE EF=AB,∴△FDE≌△BEA(SAS),∴DF=BE;(2)在Rt△ADE中,AE=DE,AD=由勾股定理得:DE=3,在Rt△FDE中,DE=3,DF=∴EF=5,由(1)知,AB=EF=5,BE=DF∴四边形ADEB的周长为:AD+DE+BE+AB=35=【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,证得AB=EF,DE=AE,是解决问题的关键.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【分析】(1)利用平行四边形的性质得AB=CD,AD∥BE,再证明∠BAE=∠E得到AB=BE,然后利用等边对等角等知识证得结论即可;(2)根据平行四边形的性质得到AD=BC,AD∥BE,求得∠D=∠DCE,∠DAF=∠FEC,根据全等三角形的性质得到AF=EF=4,根据勾股定理得到BF=到结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=CD,AB=CD,∴△ABE为等腰三角形,∴AB=BE=6,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,∵BC =CE =3,∴AD =CE ,∴△ADF ≌△ECF (ASA ),∴AF =EF =4,∴BF ⊥AE ,∵AB =BE =6,∴BF==∵S △ABF =12AB •FG =12AF •BF ,∴FG =故FG【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.【例题3】如图,平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE 【分析】由平行四边形的性质或全等三角形的性质进行逐一判断即可.【解答】解:若CE=AF,则无法判断OE=OE,故A选项符合题意;如图,连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项B不符合题意;∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD∥BC,∴∠ADF=∠CBE,在△ADF和△CBE中,∠ADF=∠CBEAD=BC,∠DAF=∠BCE∴△ADF≌△CBE(ASA),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项C不符合题意;∵AF∥CE,∴∠AFB=∠CED,∴∠AFD=∠CEB,在△ADF和△CBE中,∠ADF=∠CBE∠AFD=∠CEB,AD=BC∴△ADF≌△CBE(AAS),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项D不符合题意;故选:A.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,掌握平行四边形的判定方法是解题的关键.【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有( )①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③错误.不满足三角形全等的条件,无法证明相等的一组对边平行;④正确.可以利用三角形全等证明平行的一组对边相等且平行.故是平行四边形.故选:B.【点评】本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是记住全等三角形的判定方法以及平行四边形的判定方法,属于中考常考题型.【变式3-2】下列条件能判定四边形ABCD是平行四边形的是( )A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定方法分别对各个选项进行判断即可.【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有( )A.1组B.2组C.3组D.4组【分析】根据平行四边形的5个判断定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,即可作出判断.【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:一组对边平行,一组对角相等的四边形可得是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,还可能是等腰梯形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定定理,解题关键是准确无误的掌握平行四边形的判定定理.【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是( )A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【分析】由平行四边形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠ADE=∠E,∴AB∥CE,又∵DF∥BC,∴四边形DBCE为平行四边形;故选项A不符合题意;B、∵DF∥BC,∴∠ADE=∠B,∵∠B=∠E,∴∠ADE=∠E,∴AB∥CE,∴四边形DBCE为平行四边形;故选项B不符合题意;C、∵DF∥BC,∴DE∥BC,又∵DE=BC,∴四边形DBCE为平行四边形;故选项C不符合题意;D、由DF∥BC,BD=CE,不能判定四边形DBCE为平行四边形;故选项D符合题意;故选:D.【点评】本题考查了平行四边形的判定、平行线的判定与性质等知识;熟练掌握平行四边形的判定是解题的关键.【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A .∠B =∠F B .DE =EFC .AC =CFD .AD =CF【分析】利用三角形中位线定理得到DE ∥AC ,DE =12AC ,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC ,A 、当∠B =∠F ,不能判定AD ∥CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;B 、∵DE =EF ,∴DE =12DF ,∴AC =DF ,∵AC ∥DF ,∴四边形ADFC 为平行四边形,故本选项符合题意;C 、根据AC =CF ,不能判定AC =DF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;D 、∵AD =CF ,AD =BD ,∴BD =CF ,由BD =CF ,∠BED =∠CEF ,BE =CE ,不能判定△BED ≌△CEF ,不能判定CF ∥AB ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;故选:B .【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.【变式3-6】如图,在▱ABCD 中,E ,F 分别是边AD ,BC 上的点,连接AF ,CE ,只需添加一个条件即可证明四边形AFCE 是平行四边形,这个条件可以是 (写出一个即可).【分析】根据▱ABCD的性质得到AD∥BC,然后由“对边相等且平行的四边形是平行四边形”添加条件即可.【解答】解:如图,在▱ABCD中,AD∥BC,则AE∥FC.当添加AE=FC时,根据“对边相等且平行的四边形是平行四边形”可以判定四边形AFCE是平行四边形,故答案是:AE=FC(答案不唯一).【点评】此题考查了平行四边形的性质与判定.解题过程中注意平行四边形的判定与平行四边形的性质的综合运用.【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件 .(用题目中的已知字母表示)【分析】在平行四边形ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边,只需证明OE=OF.【解答】解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握平行四边形的性质,证明OE=OF是解题的关键.【例题4】(2021•江华县一模)如图,△ABC 为等边三角形,D 、F 分别为BC 、AB 上的点,且CD =BF ,以AD 为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)点D 在线段BC 上何处时,四边形CDEF 是平行四边形且∠DEF =30°.【分析】(1)在△ACD 和△CBF 中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF =30°,即为∠DCF =30°,在△BCF 中,∠CFB =90°,即F 为AB 的中点,又因为△ACD ≌△CBF ,所以点D 为BC 的中点.【解答】证明:(1)由△ABC 为等边三角形,AC =BC ,∠FBC =∠DCA ,在△ACD 和△CBF 中,AC =BC ∠DCA =∠FBC CD =BF,所以△ACD ≌△CBF (SAS );(2)当D 在线段BC 上的中点时,四边形CDEF 为平行四边形,且角DEF =30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=12×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【分析】(1)根据BC=EF求出BC=EF,根据垂直定义得出∠ACB=∠DFE=90°,再根据全等三角形的判定定理SAS推出即可;(2)根据全等三角形的性质得出AB=DE,∠ABC=∠DEF,根据平行线的判定得出AB∥DE,再根据平行四边形的判定定理推出即可.【解答】证明:(1)∵BE=CF,∴BE﹣CE=CF﹣CE,即BC=EF,又∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,AC=DF∠ACB=∠F,BC=EF∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF,∴AB=DE,∠ABC=∠DEF,∴AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了全等三角形的判定定理和性质定理,平行线的判定,平行四边形的判定等知识点,能熟记有一组对边平行且相等的四边形是平行四边形是解此题的关键.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【分析】延长CE交AB于M,证两三角形全等,推出E为CM中点,根据三角形中位线推出DE∥AB,根据平行四边形的判定推出即可.【解答】证明:延长CE交AB于M,∵AE⊥CE,∴∠AEC=∠AEM=90°,∵AE是∠BAC的平分线,∴∠MAE=∠CAE,在△MAE和△CAE中,∠AEM=∠AECAE=AE,∠MAE=∠CAE∴△MAE≌△CAE(ASA),∴CE=EM,∵D为BC中点,∴DE∥AB,∵EF∥BC,∴四边形BDEF是平行四边形.【点评】本题考查了全等三角形的性质和判定,三角形的中位线,平行四边形的判定的应用,注意:有两组对边分别平行的四边形是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【分析】证DG是△BCF的中位线,得DG∥CF,2DG=CF,则DG∥AF,再证DG=AF,即可得出四边形AFDG为平行四边形.【解答】解:点G为线段BF的中点时,四边形AFDG为平行四边形,理由如下:∵AD是BC边的中线,∴BD=CD,∵点G为线段BF的中点,∴DG是△BCF的中位线,∴DG∥CF,2DG=CF,∴DG∥AF,∵2AF=CF,∴DG=AF,∴四边形AFDG为平行四边形.【点评】本题考查了平行四边形的判定以及三角形中位线定理等知识,熟练掌握平行四边形的判定,证明DG为△BCF的中位线是解题的关键.【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【分析】(1)分别证明AB∥ED,AE∥BD,得出结论;(2)利用勾股定理求出BH AF,即可得出结论.【解答】(1)证明:∵∠ADE=∠BAD,∴AB∥ED,∵AE⊥AC,∴∠EAC=90°,∵BD垂直平分AC,∴∠BFA=90°,∴∠EAC=∠BFA,∴AE∥BD,∴四边形ABDE是平行四边形,(2)解:∵DA平分∠BDE,∴∠ADE=∠ADB,∵∠ADE=∠BAD,∴∠ADB=∠BAD,∴BA=BD,∵AB=3,∴BD=3过B作BH⊥AD,∴AH=HD=12AD=2,∴BH=∵BD垂直平分AC,则AF=FC,∵S△ABD =12DA⋅BH=12DB⋅AF,∴AF =DA⋅BH DB∴AC 【点评】本题考查平行四边形的判定以及利用勾股定理解直角三角形,利用等积法求高是解决问题的关键.【变式4-5】(2021春•西安期末)如图,在△AFC 中,∠FAC =45°,FE ⊥AC 于点E ,在EF 上取一点B ,连接AB 、BC ,使得AB =FC ,过点A 作AD ⊥AF ,且AD =BC ,连接CD ,求证:四边形ABCD 是平行四边形.【分析】证Rt △AEB ≌Rt △FEC (HL ),得BE =CE ,则∠CBE =∠BCE =45°,再证出∠BCE =∠CAD ,得BC ∥AD ,即可证出四边形ABCD 是平行四边形;【解答】证明:∵FE ⊥AC ,∴∠FEA =∠FEC =90°,∵∠FAC =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∠AFE =∠FAE =45°,在Rt △AEB 和Rt △FEC 中,AB =FC AE =FE ,∴Rt △AEB ≌Rt △FEC (HL ),∴BE =CE ,∴∠CBE =∠BCE =45°,∵AD ⊥AF ,∴∠FAD =90°,∴∠CAD =90°﹣45°=45°,∴∠BCE=∠CAD,∴BC∥AD,又∵BC=AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握平行四边形的判定,证明Rt△AEB≌Rt△FEC是解题的关键.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【分析】(1)由含30°角的直角三角形的性质得AB=2BC,再由等边三角形的性质得AB=AE,AB=2AF,则AF=BC,由HL即可得出结论;(2)由等边三角形的性质得∠DAC=60°,AC=AD,再证EF∥AD,然后由全等三角形的性质得EF=AC,则EF=AD,即可得出结论.【解答】(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,∵△ABE是等边三角形,EF⊥AB,∴AB=AE,AB=2AF,∴AF=BC,在Rt△AFE和Rt△BCA中,AE=BAAF=BC,∴Rt△AEF≌Rt△BAC(HL);(2)解:四边形ADFE是平行四边形,理由如下:∵△ACD是等边三角形,∴∠DAC =60°,AC =AD ,∴∠DAB =∠DAC +∠BAC =90°,∴AD ⊥AB ,又∵EF ⊥AB ,∴EF ∥AD ,由(1)得:△AEF ≌△BAC ,∴EF =AC ,∴EF =AD ,∴四边形ADFE 是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握平行四边形的判定,证明Rt △AEF ≌Rt △BAC 是解题的关键.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【分析】只要证明△ABE ≌△CDF ,即可解决问题.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠ABE =∠CDF ,①在△ABE 和△CDF 中,AB =CD ∠ABE =∠CDF BE =DF,。

平行四边形判定,题型归纳(较难)

平行四边形判定,题型归纳(较难)

对角线取值范围问题(同三角形第三边中线取值范围)平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a的取值范围为( ) A.4<a<16 B.14<a<26 C.12<a<20 D.8<a<32平行四边形的判定:1:定义法:两组对边分别平行的四边形是平行四边形2:一组对边平行且相等的四边形是平行四边形3:两组对边分别相等的四边形是平行四边形4:对角线相互平分的四边形是平行四边形14.平行四边形的判定(一)定义法:两组对边分别平行的四边形是平行四边形例题1:如图,四边形ABCD是平行四边形,连接AC.过点A作AE⊥BC于点E;过点C作CF∥AE,交AD于点F;求证:四边形AECF为平行四边形练习:1、已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.(1)求证:四边形BCFD是平行四边形;证明:(1)∵△ABC为等边三角形,且AE=AD,∴由题可知∠AED=∠ADE=∠EAD=60°∴EF∥BC,又∵EC=EF,∴△ECF为等边三角形,即∠EFC=∠EDB=60°,∴CF∥BD∴四边形BCFD为平行四边形.2、如图:平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q。

试说明PQ与MN互相平分。

3、如图,在四边形ABCD中,AH、CG、BE、FD分别是∠A、∠C、∠B、∠D的角平分线,且BE∥FD,AH∥CG,证明四边形ABCD为平行四边形.15.平行四边形的判定(二):一组对边平行且相等的四边形是平行四边形例题1:如图,在ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G。

求证:AF=DF【答案】解:(1)证明:如图1,连接BD、AE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD。

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。

平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。

(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。

北师大版数学八年级下册第六章平行四边形典型题型总结

北师大版数学八年级下册第六章平行四边形典型题型总结

平行四边形1.平行四边形的性质题型一 利用平行四边形的性质求角度或线段的长如图,在▱ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点F ,若BC=2AB ,∠FBC=70°,求∠EBC 的度数.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F ,若∠BAF=90°,BC=5,EF=3,求CD 的长.题型二 利用平行四边形的性质证线段相等如图,在▱ABCD 中,平行于对角线AC 的直线分别交DA,DC 的延长线于点M,N ,交BA ,BC 于点P,Q.求证:MP=QN.题型三 与平行四边形有关的探究性问题如图,已知平行四边形ABCD 中,∠ABC ,∠BCD 的平分线交于点E ,且点E 刚好落在边AD 上,分别延长BE ,CD 交于点F.(1)CE 与BF 之间有什么位置关系?证明你的猜想.(2)AB 与AD 之间有什么数量关系?证明你的猜想.2.平行四边形的判定题型一 平行四边形判定方法的灵活选用如图,在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE=CF,BF=DE,四边形ABCD 是平行四边形吗?题型二 平行四边形的性质与判定的综合运用如图,▱ABCD 中,点E,F 在AC 上,且AF=CE ,点G ,H 分别在AB ,CD 上,且AG=CH,AC 与GH 相较于点O ,求证EG ∥FH.A B C D E题型三利用平行四边形的判定和性质解决动点问题如图,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从点A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,已知P,Q两点同时出发,则几秒后所截得的两个四边形种,有一个为平行四边形吗?题型四平行线之间的距离如图,已知直线m∥n,点A,B为直线n上两点,点C,P为直线m上两点.(1)请写出图中面积相等的三角形:__________________________;(2)如果点A,B,C为三个定点,点P在m上移动,那么无论点P移动到什么位置,总有_________与△ABC的面积相等,理由是_________________________________ .题型五设计方案问题如图,工人师傅需将一等腰直角三角形的铁板通过切割,焊接成一个含有45°角的平行四边形,请你帮他设计一种方案,并说明理由.3.构造平行四边形解六类题类型一证角相等如图,E是BC中点,点A在DE上,且AB=CD.求证∠BAE=∠CDE.类型二证线段相等如图,线段AB,CD相交于点O,AC∥DB,AO=BO,E,F分别为OC,OD的中点,连接AE,BF.求证:AF=BE.类型三证线段互相平分如图,点O是平行四边形ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分类型四说明线段互相平分如图,在▱ABCD中,E,F分别为AC,CA延长线上的点,且CE=AF,请探讨线段BF与DE的位置及大小关系.类型五证线段的和、差、倍、分关系如图,在四边形BCED中,DE∥BC,延长边BD,CE交于点A,在边BD上截取BF=AD,过点F作FG∥BC 交EC于点G.求证:DE+FG=BC.类型六解决面积问题如图,四边形ABCD中,AD∥BC,E是AB的中点,EF⊥CD于点F,CD=6,EF=5,求四边形ABCD的面积.4.三角形的中位线题型一利用三角形的中位线定理解决折叠问题如图,D,E分别是△ABC两边AB,AC的中点,将△ABC沿线段DE所在直线折叠,使点A落在点F处,若∠B=55°,则∠BDF=_____________.题型二构造三角形中位线解决问题如图,在△ABC中,点D是AB的中点,CE平分∠ACB,AE⊥CE于点E.求证:DE∥BC.题型三利用三角形的中位线定理解决实际问题如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,分别取它们的中点M,N.若测得MN=15m,则A,B两点间的距离为_______________.题型四三角形中位线定理与其他知识的综合应用如图,点E是▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,判断AB与OF的位置关系和数量关系,并证明你的结论.题型五运用三角形中位线定理解决规律性问题如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点…按这样的规律下去,P n M n的长为_________________(n为正整数).5.多边形的内角和与外角和题型一综合多边形的内角和与外角和求边数一个正多边形的一个内角比相邻的外角大36°,求这个正多边形的边数.题型二应用多边形内角和定理求不规则图形的内角和如图,∠A+∠B+∠BCE+∠ADF+∠E+∠F=_____________ 度.题型三多边形的裁剪问题一个多边形截去一个角后,所得多边形的内角和为2520°,则原多边形的边数是____________.题型四求多边形中某个角的度数如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是________.题型五与多边形内角和或外角和有关的实际应用题有个五边形的小公园(如图),图中∠1=95°,则王老师沿公园边由点A经B,C,D,E,一直到F的行程中共转过了________度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
A
D
F
B
C
例、如图,在平行四边形ABCD中,AE、BF分别平分
∠DAB和∠ABC交CD于点E、F,AE、BF相交于点M. (1)请说明AE⊥BF
(2)判断线段DF与CE的大小关系,并说明理由
C
D
F
E
A
B
一位老人有一块平行四边形形状的土地,如图所示,记为 ABCD,老人临终前对两个儿子说:“这块土地,你们兄弟 俩平分,但水井(图中点O位置)共用。”怎样才能按老人 的要求平分土地?
平行四边形的性质
考点题型归类
考点一:平行四边形的定义
例:如图,在平行四边形ABCD中,过点P作线段EF、GH分别平行于AB、 BC,则图中共有 个平行四边形
A P B F C E
D
考点二:平行四边形的性质及应用
例:如图,在平行四边形ABCD中, ∠A:∠B=2:7,求∠C的度数
A
D
B C
考点三:两平行线之间的距离
A
如图,连接OA、OB、OC、OD,则OA、OB、OC、 OD将平行四边形 ABCD分成△AOB、△BOC、 △COD、△DOA四块,把△AOB和△COD的土地分 给一个儿子,而把△BOC和△DOA的土地分给一个 •
D O
B
C
另儿子,就符合老人的要求。
你知道其中的道理吗?
平行四边形的判别
考点四:平行四边形的面积
例、E为平行四边形ABCD的一边AD上 考点四:平行四边形的面积 任意一点,若△EBC的面积为S1,平行 四边形ABCD的面积为S,则下列S与S1 的大小关系中正确的是( ) A. C.
S1 1 2 1 2 S
B. S 1<
1 2
S
A
E
D
S 1>
S
D.无法确定
B
C
综合应用题型
例、如图所示, ABCD的相邻边AD:AB=5: 4,过点A作AE⊥BC,AF⊥CD,垂足分别为E、 F,AE=4cm,求AF的长。
BCD为平行四边形,且∠EAD=∠BAF. (1)试说明△CEF是等腰三角形; (2)猜测CE与CF的和与平行四边形ABCD的周长有何关 系,并说明理由。
相关文档
最新文档