平行四边形的性质练习题

合集下载

平行四边形性质练习题(含答案)

平行四边形性质练习题(含答案)

平行四边形的性质练习1.在平行四边形ABCD 中,已知∠A =40°,则∠B = 140° , ∠C = 40° ,∠D = 140° .2.在□ABCD中,∠A :∠B =2:3,则∠B = 108° ,∠C = 72° ,∠D = 108° .3.若一个平行四边形相邻的两内角之比为2:3,则此平行四边形四个内角的度数分别为_72°、72°、108°和108°___.4.如图,在平行四边形ABCD 中,∠A -∠B =70º, 求平行四边形各角的度数。

∠A=∠C=125º∠B=∠D=55º5.如图,在□ABCD 中,∠B =120°,DE ⊥AB ,垂足为E ,DF ⊥BC ,垂足为F .求∠ADE ,∠EDF ,∠FDC 的度数.∠ADE=30º, ∠EDF=60º, ∠FDC=30º1、在□ABCD 中,已知AB =8,周长等于24,则BC = 4 ,CD = 8 ,AD = 4 .2、已知□ABCD 的周长为28cm ,AB :BC =3:4,则AB = 6 ,BC = 8 ,CD = 6 ,AD = 8 .3.在□ABCD 中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____21___.4.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是_12或18_5.平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是__2.5__.6.已知:如图,四边形(1)说明(2)(1)CE=CF (2)CE 和CF1.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为_10<X<22____.2.□ABCD 中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比 △OBC 的周长多4,则边AB =___7___,BC =__3___.3.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是_5和2__.A DB C4.□ABCD中,对角线AC长为10 cm,∠CAB=30°,AB长为6 cm,则□ABCD的面积是__30cm2___.5.如图,在□ABCD中,已知对角线AC和BD相交于点O,ΔAOB 的周长为15,AB=6,那么对角线AC和BD的和是多少?AC+BD=186.如图,已知□ABCD的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长长8cm,求这个四边形各边长.AB=CD=19AD=BC=11 7.如图,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么□ABCD的周长为多少?□ABCD的周长为808.已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB 于E,EF∥AC交BC于F,则BE=FC,为什么?BE=DE=FC。

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

平行四边形性质专项练习30题(有答案)ok

平行四边形性质专项练习30题(有答案)ok

平行线的性质专项练习30题(有答案)1.如图,▱ABCD中,AB=9cm,对角线AC、BD相交于点O,若△COD的周长为20cm,且AC比BD长6cm,试求对角线AC、BD的长.2.如图,在▱ABCD中,AE⊥BC,E是垂足,如果∠B=50°,那么∠D、∠C、∠1与∠2分别等于多少度?3.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)请找出图中的一对全等三角形,并说明理由.(2)若AB=25,AD=39,AE=15,试求EF的长.4.如图,平行四边形ABCD的对角线AC、BD相交于点O,若平行四边形ABCD的周长是24cm,△AOD的周长比△AOB的周长大4cm,求AB、AD的长.5.如图,▱ABCD中,∠BAD的平分线AE交DC于点E.(1)试说明AD=DE;(2)若AB:CB=3:2,CE=5cm,求▱ABCD的周长.6.如图,▱ABCD中,G是CD上一点,BG交AD延长线于E,且AF=CG,∠DGE=98°.(1)求证:DF=BG;(2)试求∠AFD的度数.7.如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.8.如图,在▱ABCD中,点E、F分别在BC、CD边上,BF=DE,AG⊥BF,AH⊥DE,垂足分别为G、H.求证:AG=AH.9.如图,在▱ABCD中,∠BAC=68°,∠ACB=36°,求∠D和∠BCD的度数.10.如图,在平行四边形ABCD中,BD=CD,∠A=70°,CE⊥BD于E,计算∠BCE.11.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OC的长及▱ABCD的面积.12.如图,已知在▱ABCD中,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为点E、F.(1)求∠EAF的度数;(2)如果AB=6,求线段AE的长.13.如图,已知在▱ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF.14.如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.15.如图,平行四边形ABCD中,对角线AC,BD交于O点,过O点作直线EF,交AD,BC于E、F,(1)试说明OE=OF(2)四边形ABFE的面积与四边形FCDE的面积间有何关系?试说明你的结论.16.已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.17.如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.18.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,求△DEF的面积.19.如图,▱ABCD中,BG平分∠ABC,CE平分∠BCD.求证:AE=DG.20.如图,在平行四边形ABCD中,∠ABC、∠BCD的平分线相交于点O,BO延长线交CD延长线于点E,求证:OB=OE.21.如图,在▱ABCD中,BE平分∠ABC交AD于点E,连接CE,且CE平分∠DCB,试说明.22.已知:如图,A是△EFC边EF上一点,四边形ABCD是平行四边形,且∠EAD=∠BAF.求证:△CEF是等腰三角形.23.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.试说明:CD=CE.24.将▱ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处(如图).(1)求证:△ABE≌△AGF.(2)连接AC,若▱ABCD的面积等于16,,AC•EF=y,试求y与x之间的函数关系式.25.如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.26.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.27.已知如图,四边形ABCD为平行四边形,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).28.如图所示,已知E是▱ABCD边DC延长线上一点,且CE=DC,连接AE分别交BC、BD于点F、点G.求证:△AFB≌△EFC.29.如图,在▱ABCD中,∠B、∠C的平分线相交于点O,BO与CD的延长线交于点E.试比较BO与EO的大小,并说明理由.30.如图,在▱ABCD的形外分别作等边△ABF和等边△BCE,连接DF、FE、ED.(1)求证:△AFD≌△CDE;(2)△DEF是等边三角形吗?试证明你的结论.参考答案:1.∵△COD的周长为20cm,∴OC+OD=20﹣CD=20﹣AB=20﹣9=11,∵AC﹣BD=6,∴2OC﹣20D=6,∴OC=7,OD=4,∴AC=2OC=14,BD=2OD=82.在平行四边形ABCD中,∠D=∠B=50°,∠BAD=∠C,(2分)∵AB∥DC∴∠C=180°﹣∠B=130°,(4分)∵AE⊥BC∴∠1=90°﹣∠B=40°,(5分)∠2=∠BAD﹣∠1=∠C﹣∠1=130°﹣∠1=90°.(6分)故答案为:∠D=50°,∠C=130°,∠1=40°,∠2=90°3.(1)写出图中的一对全等三角形,如△ADE≌△CBF,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,又∵∠AED=∠CFB=90°,∴△ADE≌△CBF;(2)在Rt△ABE中,根据勾股定理得BE=20,同理得DE=36.∵△ADE≌△CBF,∴BF=DE,∴EF=BF﹣BE=36﹣20=16.4.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,∴2AB+2AD=24cm,∴AB+AD=12cm ①,∵△AOD的周长比△AOB的周长大4cm,∴(OA+OD+AD)﹣(OA+OB+AB)=4cm,∴AD﹣AB=4cm ②,①+②得:AD=8cm,①﹣②得:AB=4cm.答:AB=4cm,AD=8cm.5.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴AD=DE.(2)解:设AB=3kcm,CB=2kcm,∵AD=DE,DC=AB,∴AB﹣AD=CE=5cm,∴3k﹣2k=5,k=5,∴AB=DC=15cm,AD=BC=10cm,∴平行四边形ABCD的周长是:AB+BC+CD+AD=15cm+10cm+15cm+10cm=50cm.6.1)证明:∵▱ABCD,∴∠A=∠C,AD=CB.又AF=CG,∴△ADF≌△CBG.(SAS)∴DF=BG.(2)解:由△ADF≌△CBG得∠AFD=∠CGB=∠DGE=98°7.∵AP∥CQ,∴∠APD=∠CQB,∴∠APB=∠CQD,∵四边形ABCD是平行四边形,∴AB=CD,∴AB∥CD,∴∠ABP=∠CDQ,在△ABP和△CDQ 中,,∴△ABP≌△CDQ,∴BP=DQ.8.连接AE、AF,设△AED的AD边上的高为h,∵S△ADE=AD•h,S□ABCD=AD•h,∴S△ADE =S□ABCD,同理:S△ABF =S□ABCD,∴S△ADE=S△ABF,∵AG⊥BF,AH⊥DE,∴S△ADE =DE•AH,S△ABF =BF•AG,∴DE•AH=BF•AG,∵BF=DE,∴AG=AH.9.∵四边形ABCD为平行四边形,∴∠D=∠B=180°﹣∠BAC﹣∠ACB=180°﹣68°﹣36°=76°,∠BCD=180°﹣∠D=180°﹣76°=104°.10.在平行四边形ABCD中,∠A=∠BCD=70°,∵BD=CD,∴∠CBD=∠BCD=70°,∵CE⊥BD,∠BCE+∠CBE=90°,∴∠BCE=90°﹣70°=20°.11.∵AC⊥BC,∴∠ACB=90°,∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD=10,OA=OC=AC,∵AB=10,BC=8,由勾股定理得:AC==6,∴OC=3,∴平行四边形ABCD的面积是BC×AC=8×6=48.答:OA的长是3,▱ABCD的面积是4812.(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,于是由∠B=60°,得∠C=120°,∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠EAF+∠AEC+∠C+∠AFC=360°,∴∠EAF=60°.(2)在Rt△ABE中,∠AEB=90°,AB=6,由∠B=60°,得∠BAE=30°,∴,由勾股定理,得,即得13.∵四边形ABCD 是平行四边形,∴DC=AB,DC∥AB,∴∠ECA=∠BAC,∠CEO=∠AFO,∵OA=OC,∴△AOF≌△COE,∴CE=AF,∵DC=AB,∴DE=BF14.(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,则CF为△DME的中位线,DF=FE;(2)由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴AC=ME,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中利用勾股定理得AC=AD•sin∠ADC=,∴BE=15.(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AD‖BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF,∴OE=OF;(2)S四边形ABEF=Ss四边形FCDE.理由如下:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠ABC=∠CAD,△AOE≌△COF ∴△ABC≌△CDA(全等三角形的面积相等).又∵△AOE≌△COF,∴S三角形AOE=S三角形COF,∴S四边形ABEF=S四边形CDEF.16.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∠F=∠E.∵AD∥BC,AE∥CF,∴∠FHA=∠CGE,∴△AFH≌△CEG(AAS),∴EG=FH.17.由题意得:BE=DF,BE∥DF.理由如下:连接DE、BF.∵ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.18.∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴∠B=∠ECH,在△BFE和△CHE中,∴△BFE≌△CHE,∴EF=EH=,CH=BF=1,∵S△DHF =DH•FH=4,∴S△DEF =S△DHF =2.19.∵四边形ABCD为平行四边形∴AD∥BC,AB=DC(1分)∴∠2=∠6,∠3=∠5(2分)∵BG平分∠ABC,CE平分∠BCD ∴∠1=∠2,∠3=∠4∴∠1=∠6,∠4=∠5(4分)∴AB=AG,DC=DE(6分)∴AG=DE(7分)∴AG﹣EG=DE﹣EG即AE=DG(8分)20.∵AB∥DC,∴∠ABE=∠CEB,又∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠CEB,∴CB=CE,∴△BCE是等腰三角形,又∵CO平分∠BCE,∴∠BCO=∠ECO,∴OB=OE.21.在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE平分∠ABC交AD于点E,且CE平分∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠ABE=∠AEB,∠ECD=∠DEC,即AB=AE,CD=ED,又AB=CD,∴可得点E为AD的中点.即AB=BC22.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴∠EAD=∠F,∠BAF=∠E,∵∠EAD=∠BAF,∠F=∠E,∴CE=CF,∴△CEF是等腰三角形.23.∵DE是∠ADC的角平分线,∴∠1=∠2,在平行四边形ABCD中,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CD=CE.24.1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,又根据题意得:AG=CD,∠EAG=∠BCD,∴AB=AG,∠BAD=∠EAG,∴∠BAE=∠GAF,(1分)又∵AB∥CD,AE∥GF,AD∥BC,∴∠BEA=∠EAF=∠GFA,∴△ABE≌△AGF(AAS);(2)解:连接CF,由(1)得:EC=AE=AF,而AF∥EC,∴四边形AECF是平行四边形,∴▱AECF是菱形,∴y=AC•EF=2×菱形AECF的面积,又∵▱ABCD的面积等于16,∴S△ABC=8,∵,=,∴△AEC的面积等于8x,∴菱形AECF 的面积等于16x , ∴y=32x .25.(1)证明:延长DC 交BE 于点M , ∵BE ∥AC ,AB ∥DC ,∴四边形ABMC 是平行四边形,∴CM=AB=DC ,C 为DM 的中点,BE ∥AC , ∴CF 为△DME 的中位线, ∴DF=FE ; (2)解:由(1)得CF 是△DME 的中位线,故ME=2CF , 又∵AC=2CF ,四边形ABMC 是平行四边形, ∴BE=2BM=2ME=2AC , 又∵AC ⊥DC ,∴在Rt △ADC 中,AC=AD •sin ∠ADC=,∴BE=.(3)解:可将四边形ABED 的面积分为两部分,梯形ABMD 和△DME , 在Rt △ADC 中:DC==,∵CF 是△DME 的中位线, ∴CM=DC=,∵四边形ABMC 是平行四边形, ∴AB=MC=,BM=AC=,∴梯形ABMD面积为:=; 由AC ⊥DC 和BE ∥AC 可证得△DME 是直角三角形, 其面积为:,∴四边形ABED 的面积为+.26.(1)∵平行四边形ABCD ,∴BC=AD=10,AB=CD=6,AD ∥BC ,在△ABC 中,BA=6,AC=8,BC=10,由勾股定理的逆定理得BA 2+AC 2=BC 2,∴△ABC 为Rt △,∠BAC=90°, ∵AD ∥BC ,∴∠CBF=∠AFB ,∠DAE=∠BCE , 又∵BF 平分∠ABC , ∴∠ABF=∠CBF , ∴∠ABF=∠AFB ,∴AF=AB=6(等角对等边), ∴FD=AD ﹣AF=10﹣6=4.(2)由(1)知△AEF ∽△CEB , ∴AF :BC=AE :EC , ∴AF :(AF+BC )=AE :(AE+EC )即6:(6+10)=AE :8, ∴AE=3∵E 是∠ABC 的平分线BF 上的点,EG ⊥BC ,EA ⊥AB , ∴EG=AE=3, S △BEC =×10×3=15.27.1)证明:在平行四边形ABCD 中,则AD=BC , ∵AC ∥BM ,∴∠AFD=∠E , 又CM ∥DE ,∴∠BMC=∠E , ∴∠BMC=∠AFD , 同理∠FAD=∠MBC ,则在△ADF 与△BCM 中.,∴△ADF ≌△BCM . (2)解:在△ACD 中, ∵AC ⊥CD ,∠ADC=60°, ∴CD=AD=a , 则AC=a ,AF=a , 又由(1)可得BE=a ,S ABED =S △ADF +S ABEF =•AF •CD+(AF+BE )•CD=×a ×a+(a+a )×a=a 2.28.平行四边形ABCD 中:AB ∥CD , 且AB=CD ,∠BAE=∠CEA , ∵CE=AB ,∠AFB=∠EFC , ∴△AFB ≌△EFC . 29.BO=EO .理由如下:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴∠ABC+∠BCD=180°,∵∠B、∠C的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠DCB,∴∠OBC+∠OCB=∠ABC+∠DCB=(∠ABC+∠DCB)=90°,∴CO⊥BE,∴∠EOC=∠COB=90°,∵∠ECO=∠BCO,OC=OC,∴△COB≌△COE,∴△COB≌△COE(ASA),∴BO=EO.30.(1)证明:∵四边形ABCD是平行四边形,△FAB和△EBC都是等边三角形,∴AD=BC=EC,AF=AB=DC,∠BAD=∠DCB,∠FAB=∠BCE=60°,∴∠BAD+60°=∠DCB+60°,∴∠FAD=∠DCE,在△AFD和△CDE中∵,∴△AFD≌△CDE(SAS);(2)△DEF是等边三角形,证明:设∠DCB=x,则∠ABC=180°﹣x,∠DCE=60°+x,∠EBF=360°﹣120°﹣(180°﹣x)=60°+x∴∠DCE=∠EBF,FB=AB=DC,BE=EC,在△FBE和△DCE中∵,∴△FBE≌△DCE(SAS),∴EF=FD=ED,即:△DEF是等边三角形.平行线的性质----11。

平行四边形性质判定练习题

平行四边形性质判定练习题

平行四边形性质判定练习题平行四边形是几何学中常见的一个概念,它具备一些独特的性质和判定条件。

为了更好地理解和应用这些性质,下面将通过一些练习题来帮助你巩固对平行四边形的认识。

练习题一:已知四边形ABCD,AB∥CD。

如果∠BAD = 80°,则∠ADC等于多少度?解析:由于AB∥CD,根据平行线性质可知∠BAD + ∠ADC = 180°。

又∠BAD = 80°,代入得80° + ∠ADC = 180°,解方程得∠ADC = 100°。

练习题二:在平行四边形ABCD中,已知AB = 6 cm,BC = 8 cm,AD = 5 cm,求CD的长度。

解析:由平行四边形的性质可知,对角线相等,即AC = BD。

又ABCD为平行四边形,AB∥CD,所以AD与BC平行,根据平行线性质可知∠ADC = ∠CBD。

根据余弦定理,可以得出∠ADC关于边长AD、CD、AC的关系:AD² + CD² - 2·AD·CD·cos∠ADC = AC²代入已知数据,得5² + CD² - 2·5·CD·cos∠ADC = AC²根据AC = BD,即6² + 8² = 10²,可以求得AC = 10 cm。

再代入已知数据,得25 + CD² - 10·CD·cos∠ADC = 100整理得CD² - 10·CD·cos∠ADC - 75 = 0根据解一元二次方程的方法,求得CD = 15 cm。

练习题三:平行四边形ABCD中,已知AB = 7 cm,将ABCD绕点A逆时针旋转120°得到四边形A'B'C'D',连接DD'交AC于点E。

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

2022-2023学年人教版八年下学期数学18.1..1平行四边形的性质 同步练习

2022-2023学年人教版八年下学期数学18.1..1平行四边形的性质 同步练习

18.1.1平行四边形的性质同步练习一、选择题1.在平行四边形ABCD中,如果∠A=35°,那么∠C的度数是()A.145°B.65°C.55°D.35°2.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AC=6,BD=10,则AB的长是()A.3B.4C.5D.63.如图,平行四边形ABCD的顶点A,B,C的坐标分别是(0,2),(-1,-1),(2,-1),则顶点D的坐标是()A.(-3,2)B.(3,-2)C.(3,2)D.(2,2)4.如图,四边形ABCD是平行四边形,以点A为圆心,AB的长为半BF的长为半径径画弧,交AD于点F;分别以点B,F为圆心,大于12画弧,两弧相交于点G;连接AG并延长,交BC于点E,若AE=2√10,BF=2√6,则AB的长为()A.3B.4C.5D.85.如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E. 若∠B=46°,则∠AEC的大小为()A.110°B.113°C.125°D.134°6.如图,平行四边形ABCD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.8cmB.9cmC.10cmD.12cm7.如图,在平行四边形ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.137° B.153° C.127° D.143°8.如图,四边形ABCD为平行四边形,作∠BAD的平分线AE,交DC 边于点E,若∠DEA=30°,则∠C的度数为()A.45°B.60°C.80°D.120°9.如图,在平行四边形ABCD中,对角线AC,BD交于点O,BC=8,DB=12,AC=20,则四边形ABCD的面积是()A.48B.40C.24D.9610.如图,平行四边形ABCD的对角线AC,BD交于点O,DE平分∠ADC交BC于点E,∠BCD=60°,AD=2AB,连接OE,下列结论:=AB∙BD; ②DB平分∠ADE;③AB=DE;④S∆CDE=①S平行国边形ABCDS∆BOC,其中正确的有()A.1 个B.2个C.3个D.4 个二、填空题1.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,在DCCD,连接OE交BC于点F,若BC=12,的延长线上取点E,使CE=12则CF=________。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题

平行四边形性质与判定练习题苏萍一、选择题1、如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()A.14cm B.18cm C.24cm D.28cm2、如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A.12个B.9个C.7个D.5个3、如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定4、图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲二、填空题5、如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为______________6、如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()7、如图,在▱ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形____________A.AE=CF B.∠AED=∠CFB C.∠ADE=∠CBF D.DE=BF8、如图,平行四边形ABCD,E,F分别是BC,AD上的点,BE=DF,M,N分别是AE,CF的中点,四边形EMFN是平行四边形吗?请说明理由.9、如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由10、如图所示,在平行四边形ABCD中,E、F分别在AD、BC上,AE=CF,AF与BE交于点G,CE与DF交于点H,猜想EF与GH间的关系?并证明你的猜想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10月15日平行四边形的性质1
预习评估
1. __________________________________的四边形叫做平行四边形。

__________________________叫做平行四边形的对角线
平行四边形的对角线把它分成的两个三角形______________.
2. 平行四边形对边___________,对角____________
3. 如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠
D=__________,∠A=_________,∠C=__________.
4. 如图,四边形ABCD 是平行四边形,对角线AC 、BD
相交于点O ,边AB 可以看成由_____________平移得来的,△ABC 可以看成由__________绕点O 旋转______________得来。

例题与练习
例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.
变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________.
变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,
∠ABC=60°,求平行四边形面积。

A
B
C D A B
C D O A B C D E A B C D F E A B C D
A B C D。

相关文档
最新文档