平行四边形性质专题Word版
应用文字编辑工具作品-《平行四边形的性质》教学设计-Microsoft-Word-文档

应用文字编辑工具作品-《平行四边形的性质》教学设计-Microsoft-Word-文档平行四边形的性质(第1课时)教学案例评析执教:贵州省道真县玉溪镇大路中学韩书妮评析:贵州省道真县玉溪镇中心学校胡军课题:平行四边形的性质(第1课时)教学内容:人教版新课标教材:八年级下册页一、教学目标:1.掌握并理解平行四边形的概念和平行四边形对边、对角相等的性质。
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。
3.通过观察、猜测、证明、归纳,能运用数学语言进行讨论与质疑,发展学生合理的推理意识,培养学生主动探究的习惯。
4.通过平行四边形性质的探究应用过程,培养学生独立思考的能力,在数学学习活动中获得成功的体验。
同时树立起学习的信心。
5.培养学生发现问题、解决问题的能力及逻辑推理能力。
二、重点、难点:1.重点:平行四边形的定义以及平行四边形的性质。
2.难点:平行四边形性质的探究。
三、教学过程实录及评析:(一)创设情境,导入新课师:多媒体演示(图一)问题1:请同学们欣赏一组日常生活中常见的图片,你能观察到图片中有我们学过的哪些四边形?生:观察思考后回答:图片中的四边形有(如图二):长方形、正方形、平行四边形和梯形。
师:同学们观察得仔细,回答得很好。
问题2:图片中表现出最多的是哪种四边形?生:平行四边形。
问题3:你能举出生活中常见的平行四边形的一些其它例子吗?生:举例略。
问题4:正方形、长方形、平行四边形、梯形和四边形之间有怎能样的关系?生:回忆、思考。
但答不出来。
师:多媒体演示(如图三):并提示:正方形、长方形属于平行四边形,平行四边形、梯形属于四边形。
师:强调:平行四边形属于四边形,具有四边形的性质,但它是具有特殊条件的四边形。
本节课就来研究平行四边形具有哪些特殊性,由此导出课题。
板书:“平行四边形”评析:创设情境出示并四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系。
通过这种问题式谈话开场,清新自然.让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题。
新人教版八年下《19.1平行四边形-判定》word教案3篇

19.1.2 平行四边形的判定(一)教学目知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,B O=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:19.1.2 平行四边形的判定(三)教学目标知识与技能1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法.情感态度与价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.重点掌握和运用三角形中位线的性质.难点三角形中位线性质的证明(辅助线的添加方法)教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?第二步: 引入新课例(教材P98例4) 如图,点D 、E 、分别为△ABC边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)第三步:应用举例例1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ H G ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.第四步:课堂练习1.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.第五步:课后巩固1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△A BC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.课后小结与反思:19.1.2 平行四边形的判定(二)教学目标知识与技能1.掌握用一组对边平行且相等来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点几何推理方法的应用.平行四边形的判定定理与性质定理的综合应用.教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.第二步:应用举例:例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CD.∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC . ∴DE=BF . ∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).∴ BE=DF .此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2(补充)已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形,∴ AB=CD ,且AB ∥CD .∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°.∴ △ABE ≌△CDF (AAS ).∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF.求证:四边形BFDE 是平行四边形.B A OC D EF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CF OC AE AO CFAE ODOB ,OC OA ABCD ∴=-=-∴===∴(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.例4、 已知:如图DBC ADB BF DE ,AC BF ,AC DE ∠=∠=⊥⊥。
(完整版)平行四边形性质和判定习题(答案详细)(可编辑修改word版)

平行四边形性质和判定习题L如图,已知四边形ABCD为平行四边形,AE1BD于E- CF丄BD于F.(1)求证:BE=DF:X _勒(2)若N分别为边AD、BC±的点,且DM=BN.试判断四边形MENF的形状——必说明理由).2.如图所示,UAECF的对角线相交于点0, DB经过点O分別与AE, CF” p交于B. D.求证:四边形ABCD是平行四边形•3・如图,在四边形ABCD中,AB=CD, BF=DE, AE丄BD・CF丄BD,垂足分别为E, F.(1)求证J A ABE=A CDF:(2)若AC与BD交于点0,求证:AO=CO.4・已知:如图,他ABC中,^BAC=90\DE.DF是△ABC的中位线,连接EF、EF=AD・5・如图,已知D是A ABC的边AB上一点,CEIIAB,DE交AC于点0,且OA=0C,猜想线段CD与线段AE的大小关系和位置关并加以证明・B AD.求证:。
(不CNCBAFED FE系E6・如图,已知,UABCD中,AE=CF, M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形•7・如图,平行四边形ABCD, E 、F 两点在对角线BD 上,且BE=DF,连接AE. EG CF, FA ・求证:四边形AECF 是平行四边形•& 在UABCD 中,分别以AD 、BC 为边向内作等边△ADE 和等边△BCF,连接BE. DF ・求证:四边形BEDF 是平 行四边形・DBIIAC,且DB 丄AC. E 是AC 的中点,求证:BC=DE ・2如图,在梯形ABCD 中,ADIIBC, AD=24cm. BC=30cm,点P 自点A 向D 以IcmZs 的速度运动,到D 点Q 自点C 向B 以2cm/s 的速度运动,到B点即停止,直线PQ 截梯形为两个四边形•问当P. Q同时10. 已知脣 点即停止. 出发,几秒后其中一个四边形为平行四边形?IL 如图:已知D 、E 、F 分别是A ABC 各边的中点, 求证:AE 仃DF 互相平分.如图所示, 9・ED13.如图,已知四边形ABCD中,点E, F. G, H分别是AB、CD、AC. BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分・14.如图J oABCD 中,MNIIAC.试说明MQ=NP.15.已知:如图所示「平行四边形ABCD的对角线AC, BD柑交于点6 EF经过点0并且分别和AB. CD相交于点E, F,点G, H分别为OA, 0C的中点.求证:四边形EHFG是平行四边形.-46 如制已知的ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH. 连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,尖余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在A ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证J AF=CE:(2)如果AC=EF,且ZACB=135\试判断四边形AFCE是什么样的四边形,并证明你的结论・18,如图平行四边形ABCD 中.mBC=6(几 点E 、F 分別在CD.BC 的延长线上,AE||BD ・ EEhBB 垂足为点F, DF=2 (1) 求证:D 是EC 中点; (2) 求FC 的长.19.如图,已知A ABC 是等边三角形,点D 、F 分别在线段BC 、AB 匕 厶EFB=60。
(完整版)18.平行四边形的性质及判定(1)(2)

平行四边形的性质(1)课型学习新知课主备人金晓铃鉴定人江远明学生姓名【课程目标】研究并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线相互均分【学习目标】1、理解并掌握平行四边形的看法和平行四边形对边、对角相等的性质.2、会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.【学法指导】研究、合作、交流【自主学习】1. 由 __ _ 条线段首尾按序连接构成的多边形叫四边形;四边形有_条边, ___个角 , 四边形的内角和等于 _____度;2. 如图 AB与 BC叫 _ __边, AB 与 CD叫__ _边;∠ A 与∠ B 叫 _ __角,∠ D与∠ B 叫_ __角 ;3 多边形中不相邻极点的连线叫对角线,如图四边形ABCD中对角线有 __ _ 条,它们是___自学课本1.有两组对边 __________________ 的四边形叫平形四边形,平行四边形用“ ______表”示,平行四边形 ABCD 记作 __________。
(可以写成□BACD 吗?)2.如图□ABCD 中,对边有 ______组,分别是 ___________________ ,对角有 _____组,分别是 _________________,对角线有 ______条,它们是 ___________________ 。
试一试:1、如图,小明用一根36 m长的绳索围成了一个平行四边形的场所,此中一条边AB 长为 8 m,其余三条边各长多少?2、一个个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:组长检查等级:组长署名:【合作研究】你能猜想ABCD的边、角各有什么关系吗?并证明你的结论。
边的关系:角的关系:证明:证明:从而获取平行四边形的性质:( 1)平行四边形的对边且。
几何语言:( 2)平行四边形的对角,邻角。
几何语言:【当堂检测】(A 层)1、ABCD有一个内角等于40°,则别的三个内角分别为:2、平行四边形的周长为50cm,两邻边之比为2: 3,则两邻边分别为:3、ABCD中,∠A︰∠B︰∠C︰∠D的值可以是()A.1 ︰2︰3︰4︰4︰4︰3︰3︰4︰4︰4︰3︰44. 、ABCD 的周长为 40cm,△ ABC的周长为 27cm,AC 的长为()( B、 C层)1、如图,在平行四边形 ABCD 中,∠B=110 °,延长 AD 至 F ,延长 CD至 E ,连接 EF ,则∠ E+ ∠F 等于 ()A.30 °B.110 °° D.70 °2、如图,在平行四边形 ABCD中,已知 AE⊥BC 于 E,AF⊥CD 于 F,若 AE=4, AF=6,平行四边形 ABCD的周长为 40,则平行四边形 ABCD的面积为多少?3、在ABCD,若一个角的均分线把另一条边分成长是2cm和 3cm 的两条线段,则该平行四边形的周长是4.如图,AD∥ BC,AE∥ CD,BD均分∠ ABC,求证AB=CE.【学后反思】本节课你学会了什么?你还有哪些诱惑?学习等级小组议论教师议论平行四边形的性质(2)课型学习新知课主备人金晓铃鉴定人江远明学生姓名【课程目标】研究并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线相互均分【学习目标】1、理解平行四边形中心对称的特色,掌握平行四边形对角线相互均分的性质.2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题【学法指导】研究、合作、交流。
平行四边形的性质-经典教学教辅文档

18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)思想方法(即为甚么要添加对角线).教学预备教学过程(师生活动)设计理念创设情境,导入新课引言前面我们曾经学习了许多图形与几何知识,掌握了一些探求和证明图形几何性质的方法,本节开始,我们继续研讨生活中的常见图形.成绩 1 观察以下图片, 从中能找到甚么几何图形的抽象?师生活动:先生积极积极发言,教师用电脑演示你知道甚么样的图形叫做平行四边形吗?平行四边形是四边形中比较特殊的一类,那么平行四边形性质有哪些特殊的性质?本节课我们一同来探求平行设计意图:经过图片展现,让先生逼真感受生活中存在大量平行四边形的原型.进而从实践背景中抽象出平行四边形,让先生经历将实物抽象为图形的过程.四边形及其性质!合作探求,探求新知活动1:平行四边形相关概念1、结合之前学习的知识,你能从以下图形中找出平行四边形吗?2、归纳概念让先生本人归纳定义定义:有两组对边__________________的四边形叫平形四边形。
表示方法:平行四边形用“______”表示,平行四边形ABCD记作__________.如图□ABCD中,对边有组,分别是对角有_____组,分别是_________________3、想一想:你还能说出生活中哪些平行四边形的例子吗?设计意图:给出定义,强调定义的作用.621师生活动:教师引导先生回顾小学学习过的平行四边形的概念:两组对边分别平行的四形叫做平行四边形.阐明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的根据.介绍平行四边形的表示方法.活动2:猜想证明,探求性质理想世界中很多物体都有平行四边形的抽象,为甚么平行四边形外形的物体到处可见呢?这与平行四边形的性质有关。
1、由平行四边形的定义可知,平行四边形有甚么性质?2、除此之外,平行四边形的边与边,角与角之间还有怎样的关系呢?大家一同探求平行四边形边、角的其它性质。
第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。
如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。
平行四边形及其性质详解

平行四边形的定 义:两组对角分 别相等的四边形
判定方法:通过 测量对角线长度, 判断两组对角是 否相等
应用:在几何证 明、图形识别等 领域有广泛应用
注意事项:测量 误差可能导致判 断不准确,需要 多次测量确认
平行四边形的面积
04
和周长计算
面积计算公式
平行四边形的面积可以通过底和高 的乘积来计算 底和高的长度可以通过测量得到
矩形的性质
对边平行且相等
对角线互相平分且相等
内角均为直角
面积等于长乘宽
等腰梯形的性质
性质一:等腰梯形是特殊的平行四边形,具有平行四边形的所有性质 性质二:等腰梯形具有两个对角线相等的性质 性质三:等腰梯形的面积可以通过对角线乘积的一半来计算 性质四:等腰梯形的周长可以通过对角线之和来计算
平行四边形的实际
面积计算公式为:面积 = 底 x 高
平行四边形的周长可以通过四条边 的长度之和来计算
周长计算公式为:周长 = 4 x 边长
周长计算公式
平行四边形的周长等于相邻两边之和的2倍 平行四边形的周长等于对角线之和的一半 平行四边形的周长等于任意一边的2倍加上任意一边的2倍 平行四边形的周长等于任意一边的2倍加上对角线之和的一半
平行四边形的 判定方法:一 组对边平行且
相等
平行四边形的 性质:两组对 边分别平行且
相等
平行四边形的 判定方法:一 组对边平行且 相等,另一组 对边也平行且
相等
两组对边分别平行
平行四边形的定 义:两组对边分 别平行的四边形
平行四边形的判 定方法:两组对 边分别平行的四 边形是平行四边 形
平行四边形的性 质:两组对边分 别平行的四边形 具有平行四边形 的性质
平行四边形的性质分类题组(精排版_有答案)

平行四边形的性质分类题组类1 平行四边形-性质-辨析1.平行四边形对角线一定具有的性质是( )A .相等;B .互相平分;C .互相垂直;D .互相垂直且相等;类2 平行四边形-性质-边长与周长2.用20边与短边的比为3︰2,则它的边长为_______长为________.类3 平行四边形-性质-对角线的中垂线3.如图,□ABCD 的周长为16cm ,AC 、BD 点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( A .4 cm ; B .6cm ; C .8cm ; D .10cm ;AEBDOC类4 平行四边形-性质-等腰模型4.在△MNB 中,BM =6,点A 、C 、 D 分别在BN ,NM 上,四边形ABCD 为平行四边形,∠=∠MDA ,平行四边形ABCD 的周长是( ) A .24; B .18; C .16; D .12;ABMNC D5.在△ABC 中,AB =AC ,点D ,E ,F 分别是AC BC ,BA 延长线上的点,四边形ADEF 形.求证:AD =BF .AB CDEF类5 平行四边形-性质-三角形周长ABCD 的周长为60cm ,对角线交于O ,△OAB 的周长比△OBC 的周长大8cm ,则=____________cm .6 平行四边形-性质-高与面积已知平行四边形面积是144,相邻两边上的高分8和9,则它周长是__________.7 平行四边形-性质-三边关系平行四边形的两条对角线的长分别是6和8,则x 可能的取值范围是( )A .2<x <6;B .2<x <14;C .1<x <7;D .不能确定; 平行四边形的两条对角线长和一边长可依次为( )A .6,6,6B .6,4,3C .6,4,6D .3,4,58 平行四边形-性质-对角线与边垂直.在平行四边形ABCD 中,AC 与BD 相交于点O ,⊥AC ,∠DAC =45°,AC =2,求BD 的长.9 平行四边形-性质-角分线+平行线.如图,在平行四边形ABCD 中,AD =5,AB =AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC ( ) A BC DEA .2和3;B .3和2;C .4和1;D .1和4; .如图,四边形ABCD 是平行四边形,BE 平分ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使=3,AD =5,EF =____________. A C DE F G.如图,已知四边形ABCD 是平行四边形,∠BCDCF 交边AB 于F ,∠ADC 的平分线DG AB 于G .(1)求证:AF =GB .(2)得△EFG 为等腰直角三角形,并说明理由.A BCD EFG类10 平行四边形-性质-对角邻角计算14.已知平行四边形ABCD 中,∠B =4∠A ,=( )A .18°;B .36°;C .72°;D .144°; 15.如图,□ABCD 与□DCFE 的周长相等,且∠=60°,∠F =110°,则∠DAE 的度数为 A BCDEF类11 平行四边形-性质-对角线互相平分16.如图,□ABCD 中,AE ⊥BD 于E ,∠EAC =30AE =3,则AC 的长等于____________. A DBCE类12 平行四边形-性质-面积17.如图,在▱ABCD 中,AB =4,BC =6,∠B 30°,则此平行四边形的面积是( ) ABCDA .6;B .12;C .18;D .24;类13 平行四边形-性质-面积与周长18( ) A .1种;B .2种;C .4种;D .无数种; .在平行四边形ABCD 中,EF 过对角线交点O , AB =6cm ,AD =5cm ,OF =2cm ,那么四边BCEF 的周长为_____________..已知:点P 是▱ABCD 的对角线AC 的中点,经P 的直线EF 交AB 于点E ,交DC 于点F .求AE =CF . A BCDEF P14 平行四边形-性质-对角线上两个点.如图,四边形ABCD 是平行四边形,BE 、DF ABC ,∠ADC 的平分线,且与对角线AC E 、F .求证:AE =CF .ABCDE F.如图,E 、F 是平行四边形ABCD 对角线AC 上BE ∥DF .求证:BE =DF .AFE D15 平行四边形-性质-对角平行线.如图,在平行四边形ABCD 中,∠B ,∠D 的E 、F ,交四边形对角线AC于点G 、H .求证:AH =CG .ABCDE FHG类16 平行四边形-性质-一边中点※24.如图,在平行四边形ABCD 中,AB =4,∠的平分线与BC 的延长线交于点E ,与DC F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G 若DG =1,则AE 的边长为( )A .B .C .4;D .8;A B CDFEG※25.如图 ,在平行四边形ABCD 中,BC =2M 为AD 的中点,CE ⊥AB 于E ,试说明∠DME 3∠AEM .A BCDEM类17 平行四边形-性质-折叠26.如图,将□ABCD 沿对角线AC 折叠,使点落在B ′处,若∠1=∠2=44°,则∠B 为( )114°;D .124°; C最值1的⊙A 上一点,AC 为对角线作ABCD 面积的最大值( ) C .对角互补;AB =4,则BC =( ) D .28;中,AB =3cm ,BC O ,则OA 的取B .2cm <OA <8cm ;D .3cm <OA <8cm ; (端点除外)作两腰 B .一腰的长; D .两腰的和; 2AB ,CE 平分∠BCD AB 的长为( )A .4;B .3;C .52; D .2;BC DAE33.如图,在Rt △ABC 中,∠B =90°,AB =3,=4,点D 在BC 上,以AC 为对角线的所有□中,DE 最小的值是( )A .2;B .3;C .4;D .5; CA B DEO34.如图,平行四边形ABCD 的对角线相交于点且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△的周长为10,则平行四边形ABCD 的周长为____________. ABDC E O35.在平行四边形ABCD 中,AD ∥BC ,AC ⊥AB =4,AC =6,则BD =__________.36.如图,□ABCD 中,点E 、F 分别在AD ,上,且AE =CF .求证:BE =DF .BCDAFE37.如图,在□ABCD 中,E 、F 为对角线BD 两点,且∠BAE =∠DCF .ABCD 的对角线线段BE 与线C∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°.15.&【答案】25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.类11 平行四边形-性质-对角线互相平分16.解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.类12 平行四边形-性质-面积17.B.;解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=AB=×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,类13 平行四边形-性质-过中心直线平分面积与周长18.D.;19.15;20.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠P AE=∠PCF,∵点P是▱ABCD的对角线AC的中点,∴P A=PC,在△P AE和△PCE中,,∴△P AE≌△PCE(ASA),∴AE=CF.类14 平行四边形-性质-对角线上两个点21.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABC=∠CDA,AB∥CD∴∠BAC=∠DCA∵BE、DF分别是∠AB C.∠ADC的平分线,且与对角线AC分别相交于点E、F∴∠ABE=21∠ABC,∠CDF=21∠ADC∴∠ABE=∠CDF∴ABE∆≌CDE∆(AAS)∴AE=CF;22.证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD …2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分类15 平行四边形-性质-对角平行线23.证明:∵∠ABC=∠CDA(平行四边形对角相等) BE平分∠ABC,DF平分∠CDA(已知)∴∠ADH=∠CBG在△ADH和△CBG中AD=CB∠ADH=∠CBG(已证)∠DAH=∠BCG(两直线平行,内错角相等)∴△ADH≌△CBG(SAS)∴AH=CG(全等三角形的对应边相等);类16 平行四边形-性质-一边中点24.B.;解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC ∥AB , ∴∠BAE =∠DF A , ∴∠DAE =∠DF A , ∴AD =FD , 又F 为DC 的中点, ∴DF =CF ,∴AD =DF =12DC =12AB =2,在Rt △ADG 中,根据勾股定理得:AG =3, 则AF =2AG =23, 在△ADF 和△ECF 中, ⎩⎪⎨⎪⎧∠DAF =∠E ∠ADF =∠ECF DF =CF, ∴△ADF ≌△ECF (AAS ), ∴AF =EF ,则AE =2AF =43.25.解:连接CM 并延长交BA 于F ,A BCD EM F x2xxx x αα αα α 2α设CD =x ,∴BC =2AB =2x , ∵M 为AD 的中点, ∴AM =MD =x , ∴DM =DC =x ,∴设∠DCM =∠DMC =α=∠AMF , 在平行四边形ABCD 中,AB ∥CD , ∠DCM =∠F =α, ∴△CDM ≌△FAM ∴MF =MC 又∵CE ⊥AB在Rt △CEF 中,M 为CF 的中点,∴EM =12 CF =MF∴∠F =∠FEM =α, ∵∠EMC 为△EFM ∴∠EMC =∠F +∠=2α,∴∠EMD =∠EMC +∠CMD =3α=3∠∠EMC ; 即,∠DME =3∠AEM .类17 平行四边形-性质-折叠26.C .;【考点】平行四边形的性质. 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B ′AC , ∴∠BAC =∠ACD =∠B ′AC =∠1=22°, ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;类18 平行四边形-性质-最值27.解:由已知条件可知,当AB ⊥AC 时□ABCD 的面积最大,以点A 为圆心,3AB =3,所以点B 为圆上动点,要使□ABCD 面积最大,即是要△ABC 的面积最大,我们以AC 为底,高即是B 点到直线AC 的垂线段BH 的长,如下图,点B 与点E 重合时,垂线段BH 最长,即AB ⊥AC时□ABCD 的面积最大,APBD EH∵AB =3,AC =2 ∴S △ABC =132AB AC ⋅= ∴S □ABCD =2S △ABC =3∴□ABCD面积的最大值为故答案为作业28.C .;29.B . 30.C .; 31.D .;32.B33.B.;解:∵在Rt △ABC 中,∠B =90°,AB =BC =4, ∴AC 5=.∵四边形ADCE 是平行四边形, ∴OD =OE ,OA =OC =2.5.∴当OD 取最小值时,DE 线段最短(点O 到BC 垂线段最短),此时OD ⊥BC ,∴OD =12AB =1.5,∴ED =2OD =3.34.20.解:∵四边形ABCD 是平行四边形, ∴OB =OD ,AB =CD ,AD =BC , ∵OE ⊥BD , ∴BE =DE ,∵△CDE 的周长为10,即CD +DE +EC =10, ∴平行四边形ABCD 的周长为:AB +BC +CD +=2(BC +CD )=2(BE +EC +CD )=2(DE +EC +CD )=2×10=20. 35.10; ABCDO 4 3 35 536.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∵AE =CF ,∴DE =BF ,DE ∥BF , ∴四边形DEBF 是平行四边形, ∴BE =DF .37.证明:∵□ABCD 中,AB =CD ,AB ∥CD , …………2分∴∠ABE =∠CDF ……4分BAE =∠DCF ,∴△ABE ≌△CDF ,…6分 BE =DF …8分 .猜想:BEDF .∵四边形ABCD 是平行四边形 ,…2分 CB AD =,CB ∥AD . BCE DAF ∠= . BCE △和DAF △,CB ADBCE DAF CE AF =∠=∠= BCE △≌DAF △. ………………5分 BE DF =,BEC DFA ∠=∠, BE ∥DF . BE DF .……………7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
F
B
E
D
A
一、平行四边形基本定义:
1、平行四边形
定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□”来表示。
2、平行四边形性质:
3、扩展性质:
二.平行四边形的面积:
平行四边形的面积:
等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其
对边的距离,即对应的高。
平行四边形中的等积法使用:
DF
BC
DE
AB⨯
=
⨯
三、总结:
(1)平行四边形的性质和扩展性质要能够理解并灵活运用。
(2)平行四边形中对角线是常用辅助线。
例题1如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD
边于点E,且AE=3,则AB的长为()A.4 B.3 C.
2
5
D.2
例题2如图,平行四边形ABCD中,AE平分∠BAD,交BC于
点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论
中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④
S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是()A.
平行四边
形性质
平行四边形对边相等;
平行四边形对角相等;
平行四边形对角线互相平分。
平行四边形对角线分平行四边形成面积相等的四个小三角形。
平行四边形对角线分平行四边形成四个小三角形中,相邻两个小三角形周
长差等于边长差
平行四边形对角线的一半和大于任意一边长
过平行四边形对角线交点的任意一条直线分平行四边形成面积相等两部分
①②③B .①②④C .①②⑤D .①③④
平行四边形的面积问题
实例:如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB=AC . (1)求证:△BAD ≌△AEC ; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.
平行四边形中的折叠
实例:如图,在▱ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G . 求证:(1)∠1=∠2; (2)DG=B′G .
DE=B′F ,∴△DEG ≌△B′FG ,∴DG=B′G .
一、选择题
1、如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18 B .28 C .36 D .46
A .246
B .216
C .-216
D .274 2如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有▱ADC
E 中,DE 最小的值是( )A .2 B .3 C .4 D .5 *3如图,在平行四边形ABCD 中,AB >CD ,按以下步骤作图:以A 为圆心,小于AD 的长为半径画弧,分别交AB 、CD 于E 、
F ;再分别以E 、F
为圆心,大于
2
1
EF 的长半径画弧,两弧交于点G ;作射线AG 交CD 于点H .则下列结论:①AG 平分∠DAB ,②CH=2
1
DH ,③△
ADH 是等腰三角形,④S △ADH
=
2
1
S 四边形ABCH .其中正确的有( )A .①②③B .①③④C .②④D .①③.
**4如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( )
A .3:4
B 13:25
C 13:26
D .23 :
13
**5、如图,四边形ABCD 是平行四边形,BE 平分∠ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使EF=
4
1
AD ,那么平行四边形ABCD 应满足的条件是( )A .∠ABC=60°B .AB :BC=1:4 C .AB :BC=5:2 D .AB :BC=5:8
**6如图,在▱ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、
△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结论一定正确的是( )①△CDF ≌△EBC ;②∠CDF=∠EAF ;③△ECF 是等边△;④CG ⊥AE .A .只有①②B .只有①②③C .只有③④D .①②③④
二、填空题:
*7如图,过▱ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的▱AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是 **8 在▱ABCD 中,∠DAB 的平分线分对边BC 为3cm 和5cm 两部分,则▱ABCD 的周长为 **9、如图,▱ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为 .
三、解答题:
*10如图,在▱ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F .
(1)求证:△ADE ≌△BFE ;
(2)若DF 平分∠ADC ,连接CE .试判断CE 和DF 的位置关系,并说明理由.
**11如图,在平行四边形ABCD 中,∠BAD=32°.分别以BC 、CD 为边向外作△BCE 和△DCF ,使BE=BC ,DF=DC ,∠EBC=∠CDF ,延长AB 交边EC 于点G ,点G 在E 、C 两点之间,连接AE 、AF .
(1)求证:
△ABE≌△FDA;
(2)当AE⊥AF时,求∠EBG的度数.
**12(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.
请直接应用上述信息解决下列问题:
当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.。