平行四边形性质专题

合集下载

专题 平行四边形的性质和判定(原卷版)

专题 平行四边形的性质和判定(原卷版)

八年级下册数学《第十八章 平行四边形》专题 平行四边形的性质与判定【例题1】如图,在平行四边形ABCD 中,CE 平分∠BCD ,交AB 于点E ,AE =3,EB =5,ED =4.则CE 的长是( )A .2√2B .6√2C .5√5D .4√5【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .2√6【变式1-2】如图,在▱ABCD 中,O 为对角线AC 与BD 的交点,AC ⊥AB ,E 为AD 的中点,并且OF ⊥BC ,∠D =53°,则∠FOE 的度数是( )A .143°B .127°C .53°D .37°【变式1-3】如图,将平行四边形OABC 放置在平面直角坐标系xOy 中,O 为坐标原点,若点C 的坐标是(1,3),点A 的坐标是(5,0),则点B 的坐标是( )A .(5,3)B .(4,3)C .(6,3)D .(8,1)【变式1-4】如图,在平行四边形ABCD 中P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD =5,AP =8,则△APB 的周长是( )A.18B.24C.23D.14【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是()A.30°B.35°C.40°D.45°【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为()A.13或14B.26或28C.13D.无法确定【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【例题2】(2022•南京模拟)如图,在平行四边形ABCD中,E,F是对角线AC上的两点,且AE=EF =FC.(1)求证:DE∥BF;(2)若BE⊥BC,DE=6,求对角线AC的长.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=√34,AD=3√2,求四边形ADEB的周长.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【例题3】如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【变式3-2】下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有()A.1组B.2组C.3组D.4组【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是()A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【变式3-6】如图,在▱ABCD中,E,F分别是边AD,BC上的点,连接AF,CE,只需添加一个条件即可证明四边形AFCE是平行四边形,这个条件可以是(写出一个即可).【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件.(用题目中的已知字母表示)【例题4】(2021•江华县一模)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【变式4-5】(2021春•西安期末)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD是平行四边形.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【变式5-1】如图,在▱ABCD 中,E 、F 分别为边AB 、DC 的中点,连接AF 、CE 、DE 、BF 、EF ,AF 与DE 交于点G ,CE 与BF 交于点H ,则图中共有平行四边形( )A .3个B .4个C .5个D .6个【变式5-2】如图,已知△ABC 是边长为6的等边三角形,点D 是线段BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交线段AB ,AC 于点F ,G ,连接BE 和CF .则下列结论中:①BE =CD ;②∠BDE =∠CAD ;③四边形BCGE 是平行四边形;④当CD =2时,S △AEF =23,其中正确的有( )A .4个B .3个C .2个D .1个【变式5-3】(2022春•南海区月考)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.【变式5-4】(2022春•重庆月考)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【变式5-5】(2022春•南湖区校级期中)如图,在平行四边形ABCD中,BD是它的一条对角线,过A、C两点分别作AE⊥BD,CF⊥BD,E、F为垂足.(1)求证:四边形AFCE是平行四边形.(2)若AD=13cm,AE=12cm,AB=20cm,求四边形AFCE的面积.【变式5-6】(2021春•南昌期中)如图,点O是平行四边形ABCD对角线的交点,过点O的直线交AD,BC于P,Q两点,交BA,DC的延长线于M,N两点.(1)求证:AP=CQ;(2)连接DM,BN,求证:四边形BNDM是平行四边形.【变式5-7】(2022春•温州校级月考)在Rt△ABC中,∠ACB=90°,D是斜边AB上的一点,作DE ⊥BC,垂足为E,延长DE到F,连结CF,使∠A=∠F.(1)求证:四边形ADFC是平行四边形.(2)连接CD,若CD平分∠ADE,CF=10,CD=12,求四边形ADFC的面积.【变式5-8】(2022春•锦江区校级期中)如图,在等边△ABC中,D、E两点分别在边BC、AC上,BD =CE,以AD为边作等边△ADF,连接EF,CF.(1)求证:△CEF为等边三角形;(2)求证:四边形BDFE为平行四边形;(3)若AE=2,EF=4,求四边形BDFE的面积.。

专题 平行四边形的性质与判定(学生版)

专题  平行四边形的性质与判定(学生版)

专题 平行四边形的性质与判定【能力提升】例1.如图已知△ABC ,分别以△ABC 的三边为边在△ABC 的同侧作三个等边三角形:△ABE .△BCD .△ACF ,求证:四边形DEAF 是平行四边形.例2.(1)如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,AD +CD =20,则平行四边形ABCD 的面积为 .(2)在平面直角坐标系中,以O (0,0),A (1,1),B (3,0),C 为顶点构造平行四边形,请你写出满足条件的点C 坐标为 .例3.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是_______. 例4.如图,Rt △ABC 中,∠C =90°,点D 、点E 为边AB 上的点,且AD =BE ,点M 、N 分别为边AC 、BC 上的点.已知:AB =a ,DE =b ,则四边形DMNE 的周长的最小值为 .例5.如图,平行四边形ABCD 中,AB =8cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有多少次?例6.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.(1)如图1:当点M与B重合时,S△DCM=;(2)如图2,当点M与B与A均不重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=;拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.【课后巩固】1.如图,▱ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△CDM 的周长为8,那么▱ABCD 的周长是 .2.△D、G上,点E 、F分别在边BC 上,若BE =DE ,CF =FG ,则∠A 的大小为 度.3.在△ABC 中,∠C =90°,AC =6,BC =8,若以A ,B ,C ,D 为顶点的四边形是平行四边形,则此平行四边形的周长为( )A .28或32B .28或36C .32或36D .28或32或364.如图,△ABC 是等边三角形,P 是形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为18,则PD +PE +PF =( )A .18B .9C .6D .条件不够,不能确定5.如图,已知▱ABCD 的顶点A 是直线l 上一定点,过点B 作BM ⊥l 于点M ,过点D 作DN ⊥l 于点N ,AM =1,MN =3,则对角线AC 长的最小值为 .。

第06讲平行四边形存在性问题专题探究(原卷版)

第06讲平行四边形存在性问题专题探究(原卷版)

第6讲 平行四边形存在性问题专题探究【知识点睛】❖ 知识储备:①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: ❖ 方法策略: (1)有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A 、B 、C 三点,在平面内找第4个点,构成平行四边形;(2)有2个定点,且另外两个动点均在特殊的位置上时,方法策略同上。

类型一 几何背景下的平行四边形存在性问题1.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,BD =12cm ,AC =6cm ,点E 在线段BO 上从点B 以1cm /s 的速度运动,点F 在线段OD 上从点O 以2cm /s 的速度运动.若点E ,F 同时运动,设运动时间为t 秒,当t = 时,四边形AECF 是平行四)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若如,当A 、B 已知,点C 在直线y=x 上,点D 在另一直线上,则设C (a,a );分类还分别分①以AB 为对角线,②以AC 为对角线,③以BC 为对角线;依其性质分别表示出D 点坐标;将点D 坐标再分别带入另一直线解析式,即可求出a 的值,C 、D 坐标就都能求出来了。

边形.2.如图,四边形ABCD中,AB∥DC,DC=6cm,AB=9cm.点P以1cm/s的速度由A点向B点运动,同时点Q以2cm/s的速度由C点向D点运动,其中一点到达终点时,另一点也停止运动,当线段PQ将四边形ABCD截出一个平行四边形时,此时的运动时间为s.3.如图,在▱ABCD中,AB=10cm,F是AB的中点,E为边CD上一点,DE=4cm.点M 从D点出发,沿D→C以1cm/s的速度匀速运动到点C;同时点N从点B出发,沿B→A 以2cm/s的速度匀速运动到点A.一个点停止运动后,另一个点也随之停止运动.当点M 运动时间是秒时,以点M,E,N,F为顶点的四边形是平行四边形.4.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点O也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.3B.3或5C.5D.4或55.如图所示,在平行四边形ABCD中,AB=5cm,AD=9cm.点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时,P、Q同时停止运动,设运动时间为t(s)且t>0,当以P,D,Q,B为顶点的四边形是平行四边形时,则t的所有可能值为.6.如图,在平面直角坐标系中,已知点A的坐标为(9,0),点C的坐标为(3,3),四边形OABC是平行四边形,点D、E份别在边OA、BC上,且OD=OA,CE=4.动点P、Q在平行四边形OABC的一组邻边上,以点D、E、P、Q为顶点的四边形是平行四边形时,其面积为.7.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,动点P、Q分别从A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t秒.(1)AP=,BQ=,(分别用含有t的式子表示);(2)当四边形PQCD的面积是四边形ABQP面积的2倍时,求出t的值.(3)当点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形时,直接写出t的值.类型二“三定一动”求平行四边形的顶点坐标1.在平面直角坐标系xOy中,已知A(1,﹣1),B(4,2),C(0,3),下列坐标不能与A、B、C构成平行四边形的是()A.(﹣3,0)B.(5,﹣2)C.(3,6)D.(﹣3,﹣2)2.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.3.在平面直角坐标系中,已知点A(4,0),点B(﹣3,2),点C(0,2),点P从点B出发,以2个单位每秒的速度沿射线BC运动,点Q从点A出发,开始以1个单位每秒的速度向原点O运动,到达原点后立刻以原来3倍的速度沿射线OA运动,若P,Q两点同时出发,设运动时间为t秒,则当t=时,以点A,Q,C,P为顶点的四边形为平行四边形.4.如图,在平面直角坐标系的第一象限找一点A,第二象限找一点B,使OA=,OB=2,AB=5,且A,B都是格点,连接OA,OB,AB.(画出一个△OAB即可).(1)判断△OAB的形状,并说明理由;(2)是否存在点C,使得O,A,B,C四点构成的四边形为平行四边形?如果存在,请直接写出点C的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.类型三“两定两动”求平行四边形的顶点坐标1.在平面直角坐标系中,已知A(﹣4,2),B(2,5),在x轴、y轴上分别有两动点C、D,若以点A,B,C,D为顶点的四边形是平行四边形,则点C的坐标为.2.在平面直角坐标系中,A(﹣1,1),B(3,2),C(2m,3m+1),点D在直线y=﹣1上,若以A,B,C,D四点为顶点的四边形是平行四边形,则点D的坐标为.3.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)请直接写出点D的坐标,并求出直线BC的函数关系式;(3)若点P是x轴上的一个动点,点Q是线段CB上的点(不与点B、C重合),是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P 点坐标.若不存在,请说明理由.5.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A 在x轴上,点C在y轴上,OA=6,∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求点D的坐标;(2)在线段AC上有一动点P,连接EP和OP,求当△OPE周长最小时,点P的坐标,若M,N是x轴上两动点(M在点N左侧)且MN=1,求当四边形CMNP周长最小时,M点的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.。

专题训练(二) 平行四边形的性质与判定的灵活运用

专题训练(二) 平行四边形的性质与判定的灵活运用

专题训练(二) 平行四边形的性质与判定的灵活运用►类型之一平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.[答案] 32.平行四边形中的一条对角线把平行四边形分成________个全等三角形,两条对角线把平行四边形分成________对全等三角形.[答案] 2 43.如图2-ZT-1所示,E,F是▱ABCD的对角线AC上的两点,且BE∥DF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CFD,∴△ABE≌△CDF.(2)由(1)知△ABE≌△CDF,∴BE=DF.又∵BE∥DF,∴四边形BFDE是平行四边形.4.如图2-ZT-2,E,F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.图2-ZT-2解:(1)证明:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB.(2)四边形ABCD是平行四边形.理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.[点评] 在平行四边形中,本身就包含着全等三角形,平行四边形中的对角线可以将平行四边形分成全等三角形,反之,用两个全等三角形也可以拼成平行四边形.在解决有关问题时,需要灵活运用平行四边形的性质找出判定三角形全等的条件,反之,利用全等三角形也可以找出判定四边形是平行四边形的条件.►类型之二平行四边形与等腰三角形5.如图2-ZT-3所示,在▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是( )图2--3A.10B.12C.14D.16 [答案] D6.如图2-ZT-4所示,在△ABC中,AB=AC=7 cm,D是BC上一点,且DE∥AC,DF∥AB,则DE+DF=________.[答案] 7 cm图2--57.如图2-ZT-5所示,在▱ABCD中,AB=5 cm,AD=8 cm,∠BAD,∠ADC的平分线分别交BC于点E,F,则EF的长为________. [答案] 2 cm8.在▱ABCD中,∠A的平分线分对边BC为3和4两部分,求▱ABCD的周长.图2--6解:如图2-ZT-6,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.当AB=BE=3时,▱ABCD的周长2(AB+BC)=2×(3+7)=20.当AB=BE=4时,▱ABCD的周长2(AB+BC)=2×(4+7)=22.即▱ABCD的周长为20或22.9.如图2-ZT-7所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD 各内角的度数.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.又∵AE=BE,∴AB=BE=AE,∴∠B=60°,∴∠D=60°,∠BAD=∠C=120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以转化出等腰三角形,反之亦然.►类型之三平行四边形中的中点问题图2--810.如图2-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8cm[答案] C11.已知:如图2-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长=________.[答案] 15[解析] ∵EF是△ABC的中位线,∴EF=12AC,同理,HG=12AC,∴EF∥HG,∴四边形EFGH是平行四边形.∴四边形EFGH的周长=2(EF+FG)=2×(12×7+12×8)=15.图2--9 图2--1012.如图2-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________. [答案] 2 213.如图2-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N 分别是BD,CA的中点,求证:EF,MN互相平分.图2--11证明:如图2-ZT-12,连接EM,MF,FN,NE.∵FN是△ABC的中位线,∴FN=12AB,同理,EM=12AB,∴FN∥EM,∴四边形EMFN是平行四边形,∴EF ,MN 互相平分.图2--1214.如图2-ZT -12所示,在▱ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,求▱ABCD 的面积.解:如图2-ZT -13,延长BC 至点E ,使CE =CM ,连接DE.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME. 又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形, ∴DE =AM =9.又∵BD 2+DE 2=122+92=225=152=BE 2, ∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2(12×9×12-12×9×12×13)=72. [点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.类型之四 平行四边形中的开放性问题15.如图2-ZT -14,在▱ABCD 中,延长AB 到点E ,使BE =AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( )图2--14A .∠E =∠CDFB .EF =DFC .AD =2BF D .BE =2CF[答案] D 16.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ; ②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC ;⑤∠A =∠C ,∠B =∠D ; ⑥∠A +∠B =180°,∠A +∠D =180°.其中一定能判定这个四边形是平行四边形的条件共有( )A .3组B .4组C .5组D .6组[答案] C。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

专题 平行四边形性质与判定五种考法

专题 平行四边形性质与判定五种考法

专题09平行四边形性质与判定常见的五种考法【考法一平行四边形判定填条件】例题:(2022·黑龙江·克东县第三中学一模)如图,点E、F在ABCD的对角线AC上,连接BE、DE、DF、BF,请添加一个条件使四边形BEDF是平行四边形,那么需要添加的条件是______.(只填一个即可)【变式训练】1.(2022·全国·八年级课前预习)ABCD中,已知AB=CD=4,BC=6,则当AD=________时,四边形ABCD 是平行四边形.2.(2022·人大附中北京经济技术开发区学校八年级期中)在四边形ABCD中,AD=BC,要使四边形ABCD是平行四边形,还需添加一个条件,这个条件可以是_____.(只要填写一种情况)3.(2021·全国·八年级课时练习)点A、B、C、D在同一平面内,从(1)AB//CD,(2)AB=CD,(3)BC//AD,(4)BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有_______种4.(2022·全国·八年级)如图,在△ABC中,D、E分别是AB、BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是.5.(2021·全国·八年级课时练习)如图,点E、F是ABCD的对角线BD上的点,要使四边形AECF是平行四边形,还需要增加的一个条件是(只需要填一个正确的即可).【考点二平行四边形性质与判定综合考】例题:(2022·浙江绍兴·八年级期中)如图,等边ABC中,D,E分别是AB,AC的中点,延长BC到点F,使12CF BC=,连接DE,CD,EF.(1)求证:四边形DCFE是平行四边形.(2)若6AB=,求四边形DCFE的周长.【变式训练】1.(2022·河南新乡·八年级期中)如图,平行四边形ABCD的对角线AC,BD相交于点O,AC⊥AB,点E是CD 的中点,若AB=6,OE=5.(1)求BC的长;(2)求平行四边形ABCD的面积2.(2022·山东烟台·一模)已知,如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形.(2)连结BD交AC于点O,若BD=12,AE=EF-CF,求EG的长.3.(2022·新疆昌吉·一模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、AB的中点,连接CE、DE,过D点作DF∥CE交BC的延长线于F点.(1)证明:四边形DECF是平行四边形;(2)若AB=13cm,AC=5cm,求四边形DECF的周长.4.(2022·山东济南·八年级期末)点E 是▱ABCD 的边CD 上的一点,连接EA 并延长,使EA =AM ,连接EB 并延长,使EB =BN ,连接MN ,F 为MN 的中点,连接CF ,DM .(1)求证:四边形DMFC 是平行四边形;(2)连接EF ,交AB 于点O ,若OF =2,求EF 的长.5.(2022·山东·济宁学院附属中学八年级期末)已知:△ABC ,AD 为BC 边上的中线,点M 为AD 上一动点(不与点A 重合),过点M 作ME ∥AB ,过点C 作CE ∥AD ,连接AE .(1)如图1,当点M 与点D 重合时,求证:①△ABM ≌△EMC ;②四边形ABME 是平行四边形(2)如图2,当点M 不与点D 重合时,试判断四边形ABME 还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BM 交AC 于点N ,若点M 为AD 的中点,求MN AE的值.【考点三平行四边形动点问题】例题:(2022·湖北宜昌·八年级期末)如图,ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE AB于点E,连接PQ交AB于点D.(1)若设AP=x,则PC=,QC=;(用含x的式子表示)(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化,请说明理由.【变式训练】1.(2021·浙江·衢州市菁才中学八年级期中)如图,在平行四边形ABCD中,AB=8cm,BC=12cm,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F.若动点P以1cm/s的速度从点B出发,沿BC向终点C运动;与此同时,动点Q以2cm/s的速度从点C出发,沿CB向终点B运动;当有其中一点到达终点时,另一点也将停止运动.当点P运动_________秒时,以点P、Q、E、F为顶点的四边形是平行四边形.2.(2022·安徽·宣州市雁翅乡初级中学二模)如图1,在梯形ABCD 中,90A B ∠=∠=,AD BC ∥,12,21,AB AD ==,16BC =,一动点P 从点A 出发,在线段AD 上以每秒2个单位长度的速度向点D 运动,动点Q 同时从点B 出发在线段BC 上以每秒1个单位长度的速度向点C 运动,当点P 运动到点D 时,点Q 随之停止运动,设运动时间为t (秒),(1)当t 为何值时,四边形PQCD 是平行四边形;(2)当t 为何值时,PQC △是以PQ 为腰的等腰三角形3.(2021·福建·三明一中九年级开学考试)如图,点B 是∠MAN 的边AM 上的定点,点C 是边AN 上的动点,将△ABC 绕点逆时针旋转得到△,且点A 的对应点D 恰好落在边AB 上,连结CE .当BC =AC 时,(1)求证:四边形ABEC 是平行四边形;(2)若AB =15,AD =18,求AC 的长.4.(2021·四川·达州市通川区第八中学八年级阶段练习)已知在▱ABCD中,动点P在AD边上,以每秒0.5cm的速度从点A向点D运动.(1)如图1,在运动过程中,若CP平分∠BCD,且满足CD=CP,求∠B的度数.(2)在(1)的条件下,若AB=4cm,求△PCD的面积.(3)如图2,另一动点Q在BC边上,以每秒2cm的速度从点C出发,在BC间往返运动,P,Q两点同时出发,当点P到达点D时停止运动(同时Q点也停止),若AD=6cm,求当运动时间为多少秒时,以P,D,Q,B四点组成的四边形是平行四边形.5.(2021·山东青岛·八年级期中)如图,△ABC是边长为6的等边三角形,P是AC边上一动点(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),连接PQ交AB 于D.(1)设AP的长为x,则PC=,QC=;(2)当∠BQD=30°时,求AP的长;(3)过点Q作QF⊥AB交AB延长线于点F,过点P作PE⊥AB交AB延长线于点E,则EP,QF有怎样的关系?说明理由;(4)在运动过程中,线段ED的长是否发生变化?如果不变,求出线段ED的长【考点四平行四边形动点最值问题】例题:(2022·广东·九年级专题练习)如图,在平行四边形ABCD 中,∠B =60°,AD =8,AB =4,点H 、G 分别是边DC 、BC 上的动点,其中点H 不与点C 重合.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF ,则EF 的最大值与最小值的差为_____________.【变式训练】1.(2022·安徽·九年级专题练习)如图,在平行四边形ABCD 纸片中,∠BAD =45°,AB =10.将纸片折叠,使得点A 的对应点A '落在BC 边上,折痕EF 交AB 、AD 、AA '分别于点E 、F 、G .继续折叠纸片,使得点C 的对应点C '落在A 'F 上.连接GC ',则GC '的最小值为()A .52B .2C .54D 2.(2021·贵州·仁怀市教育研究室二模)如图,在Rt ABC 中,90C ∠=︒,4AB =,3BC =,点D 在AC 边上,以AB 为对角线的平行四边形ADBN 中,M 是对角线的交点,DN 的最小值是__________.3.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠B=90°,AC=5,BC=4,点D在线段BC上一动点,以AC为对角线的ADCE中,则DE的最小值是______.【考点五平行四边形中无刻度作图】例题:(2021·湖北恩施·九年级阶段练习)如图,平行四边形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度直尺画图.(保留作图痕迹)(1)在图1中,画出∠DAE(2)在图2中,画出∠AEC的平分线.【变式训练】1.(2021·全国·八年级专题练习)在图1,图2中,点E是ABCD边AD上的中点,请仅用无刻度直尺按要求画图,(保留作图痕迹)(1)在图1中,以BC为边作三角形,使其面积等于ABCD的面积;(2)在图2中,以BE,ED为邻边作四边形,使其面积等于ABCD面积的一半.2.(2022·江苏省锡山高级中学实验学校八年级期末)如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AC的中点,请仅用无刻度的直尺........分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AD上的中线CM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.3.(2021·江西赣州·八年级期末)在平行四边形ABCD中,点E在AD上,仅用无刻度的直尺按要求作图(保留作图痕迹).(1)如图1,在BC上找一点F,使AE=CF.(2)如图2,若AB=AE,作∠D的平分线DG.4.(2020·江西南昌·八年级期中)如图1,2,平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列作图.(1)在图1中,在四边形外部画一个与三角形ABE全等的三角形.(2)在图2中,在四边形内部画一个与三角形ABE全等的三角形.5.(2020·江西南昌·八年级期中)如图,在▱ABCD中,AC为对角线,AC BC,AE是△ABC的中线,请使用无刻度的直尺分别按下列要求画图.(1)在图1中,过点E画出CD的平行线EF;(2)在图2中,画出△ABC的高CH.6.(2021·江西·九年级)请分别在下列图中使用无刻度的直尺按要求画图.(1)在图1中,点P是▱ABCD边AD上的中点,过点P画一条线段PM,使PM=12 AB;(2)在图2中,点A、D分别是▱BCEF边FB和EC上的中点,且点P是边EC上的动点,画出△PAB的一条中位线.11。

平行四边形知识点及经典例题

平行四边形知识点及经典例题

第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。

2、平行四边形的对边相等,对角相等,邻角互补。

3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。

知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。

10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。

平行四边形的性质分类题组(精排版_有答案)

平行四边形的性质分类题组(精排版_有答案)

平行四边形的性质分类题组类1 平行四边形-性质-辨析1.平行四边形对角线一定具有的性质是( )A .相等;B .互相平分;C .互相垂直;D .互相垂直且相等;类2 平行四边形-性质-边长与周长2.用20边与短边的比为3︰2,则它的边长为_______长为________.类3 平行四边形-性质-对角线的中垂线3.如图,□ABCD 的周长为16cm ,AC 、BD 点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( A .4 cm ; B .6cm ; C .8cm ; D .10cm ;AEBDOC类4 平行四边形-性质-等腰模型4.在△MNB 中,BM =6,点A 、C 、 D 分别在BN ,NM 上,四边形ABCD 为平行四边形,∠=∠MDA ,平行四边形ABCD 的周长是( ) A .24; B .18; C .16; D .12;ABMNC D5.在△ABC 中,AB =AC ,点D ,E ,F 分别是AC BC ,BA 延长线上的点,四边形ADEF 形.求证:AD =BF .AB CDEF类5 平行四边形-性质-三角形周长ABCD 的周长为60cm ,对角线交于O ,△OAB 的周长比△OBC 的周长大8cm ,则=____________cm .6 平行四边形-性质-高与面积已知平行四边形面积是144,相邻两边上的高分8和9,则它周长是__________.7 平行四边形-性质-三边关系平行四边形的两条对角线的长分别是6和8,则x 可能的取值范围是( )A .2<x <6;B .2<x <14;C .1<x <7;D .不能确定; 平行四边形的两条对角线长和一边长可依次为( )A .6,6,6B .6,4,3C .6,4,6D .3,4,58 平行四边形-性质-对角线与边垂直.在平行四边形ABCD 中,AC 与BD 相交于点O ,⊥AC ,∠DAC =45°,AC =2,求BD 的长.9 平行四边形-性质-角分线+平行线.如图,在平行四边形ABCD 中,AD =5,AB =AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC ( ) A BC DEA .2和3;B .3和2;C .4和1;D .1和4; .如图,四边形ABCD 是平行四边形,BE 平分ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使=3,AD =5,EF =____________. A C DE F G.如图,已知四边形ABCD 是平行四边形,∠BCDCF 交边AB 于F ,∠ADC 的平分线DG AB 于G .(1)求证:AF =GB .(2)得△EFG 为等腰直角三角形,并说明理由.A BCD EFG类10 平行四边形-性质-对角邻角计算14.已知平行四边形ABCD 中,∠B =4∠A ,=( )A .18°;B .36°;C .72°;D .144°; 15.如图,□ABCD 与□DCFE 的周长相等,且∠=60°,∠F =110°,则∠DAE 的度数为 A BCDEF类11 平行四边形-性质-对角线互相平分16.如图,□ABCD 中,AE ⊥BD 于E ,∠EAC =30AE =3,则AC 的长等于____________. A DBCE类12 平行四边形-性质-面积17.如图,在▱ABCD 中,AB =4,BC =6,∠B 30°,则此平行四边形的面积是( ) ABCDA .6;B .12;C .18;D .24;类13 平行四边形-性质-面积与周长18( ) A .1种;B .2种;C .4种;D .无数种; .在平行四边形ABCD 中,EF 过对角线交点O , AB =6cm ,AD =5cm ,OF =2cm ,那么四边BCEF 的周长为_____________..已知:点P 是▱ABCD 的对角线AC 的中点,经P 的直线EF 交AB 于点E ,交DC 于点F .求AE =CF . A BCDEF P14 平行四边形-性质-对角线上两个点.如图,四边形ABCD 是平行四边形,BE 、DF ABC ,∠ADC 的平分线,且与对角线AC E 、F .求证:AE =CF .ABCDE F.如图,E 、F 是平行四边形ABCD 对角线AC 上BE ∥DF .求证:BE =DF .AFE D15 平行四边形-性质-对角平行线.如图,在平行四边形ABCD 中,∠B ,∠D 的E 、F ,交四边形对角线AC于点G 、H .求证:AH =CG .ABCDE FHG类16 平行四边形-性质-一边中点※24.如图,在平行四边形ABCD 中,AB =4,∠的平分线与BC 的延长线交于点E ,与DC F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G 若DG =1,则AE 的边长为( )A .B .C .4;D .8;A B CDFEG※25.如图 ,在平行四边形ABCD 中,BC =2M 为AD 的中点,CE ⊥AB 于E ,试说明∠DME 3∠AEM .A BCDEM类17 平行四边形-性质-折叠26.如图,将□ABCD 沿对角线AC 折叠,使点落在B ′处,若∠1=∠2=44°,则∠B 为( )114°;D .124°; C最值1的⊙A 上一点,AC 为对角线作ABCD 面积的最大值( ) C .对角互补;AB =4,则BC =( ) D .28;中,AB =3cm ,BC O ,则OA 的取B .2cm <OA <8cm ;D .3cm <OA <8cm ; (端点除外)作两腰 B .一腰的长; D .两腰的和; 2AB ,CE 平分∠BCD AB 的长为( )A .4;B .3;C .52; D .2;BC DAE33.如图,在Rt △ABC 中,∠B =90°,AB =3,=4,点D 在BC 上,以AC 为对角线的所有□中,DE 最小的值是( )A .2;B .3;C .4;D .5; CA B DEO34.如图,平行四边形ABCD 的对角线相交于点且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△的周长为10,则平行四边形ABCD 的周长为____________. ABDC E O35.在平行四边形ABCD 中,AD ∥BC ,AC ⊥AB =4,AC =6,则BD =__________.36.如图,□ABCD 中,点E 、F 分别在AD ,上,且AE =CF .求证:BE =DF .BCDAFE37.如图,在□ABCD 中,E 、F 为对角线BD 两点,且∠BAE =∠DCF .ABCD 的对角线线段BE 与线C∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°.15.&【答案】25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.类11 平行四边形-性质-对角线互相平分16.解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.类12 平行四边形-性质-面积17.B.;解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=AB=×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,类13 平行四边形-性质-过中心直线平分面积与周长18.D.;19.15;20.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠P AE=∠PCF,∵点P是▱ABCD的对角线AC的中点,∴P A=PC,在△P AE和△PCE中,,∴△P AE≌△PCE(ASA),∴AE=CF.类14 平行四边形-性质-对角线上两个点21.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABC=∠CDA,AB∥CD∴∠BAC=∠DCA∵BE、DF分别是∠AB C.∠ADC的平分线,且与对角线AC分别相交于点E、F∴∠ABE=21∠ABC,∠CDF=21∠ADC∴∠ABE=∠CDF∴ABE∆≌CDE∆(AAS)∴AE=CF;22.证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD …2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分类15 平行四边形-性质-对角平行线23.证明:∵∠ABC=∠CDA(平行四边形对角相等) BE平分∠ABC,DF平分∠CDA(已知)∴∠ADH=∠CBG在△ADH和△CBG中AD=CB∠ADH=∠CBG(已证)∠DAH=∠BCG(两直线平行,内错角相等)∴△ADH≌△CBG(SAS)∴AH=CG(全等三角形的对应边相等);类16 平行四边形-性质-一边中点24.B.;解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC ∥AB , ∴∠BAE =∠DF A , ∴∠DAE =∠DF A , ∴AD =FD , 又F 为DC 的中点, ∴DF =CF ,∴AD =DF =12DC =12AB =2,在Rt △ADG 中,根据勾股定理得:AG =3, 则AF =2AG =23, 在△ADF 和△ECF 中, ⎩⎪⎨⎪⎧∠DAF =∠E ∠ADF =∠ECF DF =CF, ∴△ADF ≌△ECF (AAS ), ∴AF =EF ,则AE =2AF =43.25.解:连接CM 并延长交BA 于F ,A BCD EM F x2xxx x αα αα α 2α设CD =x ,∴BC =2AB =2x , ∵M 为AD 的中点, ∴AM =MD =x , ∴DM =DC =x ,∴设∠DCM =∠DMC =α=∠AMF , 在平行四边形ABCD 中,AB ∥CD , ∠DCM =∠F =α, ∴△CDM ≌△FAM ∴MF =MC 又∵CE ⊥AB在Rt △CEF 中,M 为CF 的中点,∴EM =12 CF =MF∴∠F =∠FEM =α, ∵∠EMC 为△EFM ∴∠EMC =∠F +∠=2α,∴∠EMD =∠EMC +∠CMD =3α=3∠∠EMC ; 即,∠DME =3∠AEM .类17 平行四边形-性质-折叠26.C .;【考点】平行四边形的性质. 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B ′AC , ∴∠BAC =∠ACD =∠B ′AC =∠1=22°, ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;类18 平行四边形-性质-最值27.解:由已知条件可知,当AB ⊥AC 时□ABCD 的面积最大,以点A 为圆心,3AB =3,所以点B 为圆上动点,要使□ABCD 面积最大,即是要△ABC 的面积最大,我们以AC 为底,高即是B 点到直线AC 的垂线段BH 的长,如下图,点B 与点E 重合时,垂线段BH 最长,即AB ⊥AC时□ABCD 的面积最大,APBD EH∵AB =3,AC =2 ∴S △ABC =132AB AC ⋅= ∴S □ABCD =2S △ABC =3∴□ABCD面积的最大值为故答案为作业28.C .;29.B . 30.C .; 31.D .;32.B33.B.;解:∵在Rt △ABC 中,∠B =90°,AB =BC =4, ∴AC 5=.∵四边形ADCE 是平行四边形, ∴OD =OE ,OA =OC =2.5.∴当OD 取最小值时,DE 线段最短(点O 到BC 垂线段最短),此时OD ⊥BC ,∴OD =12AB =1.5,∴ED =2OD =3.34.20.解:∵四边形ABCD 是平行四边形, ∴OB =OD ,AB =CD ,AD =BC , ∵OE ⊥BD , ∴BE =DE ,∵△CDE 的周长为10,即CD +DE +EC =10, ∴平行四边形ABCD 的周长为:AB +BC +CD +=2(BC +CD )=2(BE +EC +CD )=2(DE +EC +CD )=2×10=20. 35.10; ABCDO 4 3 35 536.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∵AE =CF ,∴DE =BF ,DE ∥BF , ∴四边形DEBF 是平行四边形, ∴BE =DF .37.证明:∵□ABCD 中,AB =CD ,AB ∥CD , …………2分∴∠ABE =∠CDF ……4分BAE =∠DCF ,∴△ABE ≌△CDF ,…6分 BE =DF …8分 .猜想:BEDF .∵四边形ABCD 是平行四边形 ,…2分 CB AD =,CB ∥AD . BCE DAF ∠= . BCE △和DAF △,CB ADBCE DAF CE AF =∠=∠= BCE △≌DAF △. ………………5分 BE DF =,BEC DFA ∠=∠, BE ∥DF . BE DF .……………7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
F
B
E
D
A
一、平行四边形基本定义:
1、平行四边形
定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□ ”来表示。

2、平行四边形性质:
3、扩展性质:
二.平行四边形的面积:
平行四边形的面积:
等于底和高的积,即S □ABCD =ah ,其中a 可以是平行四边形的任何一边,h 必须是a 边到其对边的距离,即对应的高。

平行四边形中的等积法使用:
DF BC DE AB ⨯=⨯
三、总结:
(1)平行四边形的性质和扩展性质要能够理解并灵活运用。

(2)平行四边形中对角线是常用辅助线。

平行四边 形性质
平行四边形对边相等; 平行四边形对角相等; 平行四边形对角线互相平分。

平行四边形对角线分平行四边形成面积相等的四个小三角形。

平行四边形对角线分平行四边形成四个小三角形中,相邻两个小三角形周长差等于边长差
平行四边形对角线的一半和大于任意一边长
过平行四边形对角线交点的任意一条直线分平行四边形成面积相等两部分
例题1如图,在▱ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4 B .3 C .
2
5
D .2 例题2如图,平行四边形ABCD 中,A
E 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点
F .下列结论中:①△ABC ≌△AED ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CDE ;⑤S △ABE =S
△CEF
.其中正确的是( )A .①②③B .①②④C .①②⑤D .①
③④
平行四边形的面积问题
实例:如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB=AC . (1)求证:△BAD ≌△AEC ;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.
平行四边形中的折叠
实例:如图,在▱ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G. 求证:(1)∠1=∠2; (2)DG=B′G.
DE=B′F,∴△DEG ≌△B′FG,∴DG=B′G.
一、选择题
1、如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18 B .28 C .36 D .46
A .246
B .216
C .-216
D .274
2如图,在Rt△ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值是( )A .2 B .3 C .4 D .5 *3如图,在平行四边形ABCD 中,AB >CD ,按以下步骤作图:以A 为圆心,小于AD 的长为半径画弧,分别交AB 、CD 于E 、F ;再分别以E 、F
为圆心,大于
2
1
EF 的长半径画弧,两弧交于点G ;作射线AG 交CD 于点H .则下列结论:①AG 平分∠DAB ,②CH=2
1
DH ,③△ADH 是等腰三角形,
④S △ADH =2
1
S 四边形ABCH .其中正确的有( )A .①②③B .①③④C .②④D .①③.
**4如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( )
A .3:4
B 13:25
C 13:26
D .23 : 13
**5、如图,四边形ABCD 是平行四边形,BE 平分∠ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使EF=
4
1
AD ,那么平行四边形ABCD 应满足的条件是( )A .∠ABC=60°B.AB :BC=1:4 C .AB :BC=5:2 D .AB :BC=5:8
**6如图,在▱ABCD 中,分别以AB 、AD 为边向外作等边△ABE、△ADF,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结
论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边△;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④
二、填空题:
*7如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边
的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积
S2
的大小关系是
**8 在▱ABCD中,∠DAB的平分线分对边BC为3cm和5cm两部
分,则▱ABCD的周长为
**9、如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.
三、解答题:
*10如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交
于点F.
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并
说明理由.
**11如图,在平行四边形ABCD中,∠B AD=32°.分别以BC、CD为
边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF.
(1)求证:△ABE≌△FDA;
(2)当AE⊥AF时,求∠EBG的度数.
**12(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE ∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.
请直接应用上述信息解决下列问题:
当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.。

相关文档
最新文档