平行四边形及其性质(一)

合集下载

平行四边形及其性质(1)-PPT课件

平行四边形及其性质(1)-PPT课件
学科网
夹在两条平行线间的垂线段相等。
6
例2 如图,放在墙角的立柜的上、下底面是一个等腰直角
三角形,腰长为1.4m,现在要将这个立柜搬过宽为1.2m的 通道,能通过吗?
解: 因为腰长为1.4m大于宽为1.2m的通
道,所以在搬立柜时,如果沿着立柜上、 下底面任一条直角边方向平移,都不能通 过.
如图,作立柜底面三角形ABC斜边上的高CD

B'
l2
∴四边形ABCD是平 行四边形.
∴AB=A'B'.
夹在两条平行线间的平行线段相等。
4
如图,已知直线a//b。 aP H
b
M
N
垂线段PM的长度就是平行线a、b之间的距离.
即两平行直线间的距离就是从一条直线上任一
点到另一条直线的距离.
夹在两条平行线间的垂线段相等。
5
如图:在笔直的铁轨上夹在两根铁轨之间 的枕木是否一样长?
八年级(下 册) 义务教育教科书
学科网
1
知识回顾
A
D
能求出什么?
1350
450
根据?
450 B
定义
1350 C
AB∥CD BC∥AD
平行四边形的对角相等 平行四边形的对边相等
2
练一练:
1、已知平行四边形两邻边的比为2:5,周长为 28cm,求这个平行四边形的四条边长.
4cm、10cm、4cm、10cm
8
练一练:
2、已知 ABCD中,AB=20,AD=16,
AB和CD之间的距离为8,则AD和BC之间
的距离为_1_0____ 学科网
D
C
AE
F
B
利用面积相等求两平行线间的距离

平行四边形及其性质(一)

平行四边形及其性质(一)

教材分析 学情分析
教学目标
教学过程
教学特点
新课引入
当各组充分交流之后,让学生代表进行成果展示.同学之间相互补 充,相互完善,得出了以下结论:
探索新知
平行四边形的对边相等 平行四边形的对角相等
应用举例 课堂小结
【教师活动】 :借助 多媒体 进行演示,直观演示 平行四边形对边、对角的相等关系。
达标检测 上一页 下一页
【设计意图】:1、交流成果,分享快乐,增强自信 心.2、利用多媒体直观教学,增强学生对平行四边形对 边、对角关系的直观认识和学习兴趣。
退出
自主探索 小组交流 成果展示 推理论证
教材分析 学情分析
教学目标
教学过程
教学特点
新课引入 探索新知 应用举例
演示一: 平行四边形的对边关系
A
B
课堂小结
达标检测D
(1)
(2)
(3)
课堂小结
两组对边 达标检测 都不平行
一组对边平行, 一组对边不平行
两组对边 都平行
上一页 下一页 退出
平行四边形
用简洁的语言刻画第三个图形的特征。
四边形
自主探索 小组交流 成果展示 推理论证
教材分析 学情分析
教学目标
教学过程
教学特点
学生举例回答后,老师课件展示一些平行四边形的实例
BC=
.
4、如图,在□ABCD中,DE是∠ADC的平分线,
A
D
F是AB的中点,AB=4,BC=6,则BE∶EF∶FC=__________.
B
EF
C
选做题:(解决问题)农民李某想发展副业致富,经考察地形后,
在耕地旁边的荒地上开一平行四边形形状的鱼塘。能测得∠B= 1200,量得AD=50米,AB=80米,请你帮助李某计算一下 鱼塘的 对边AB、CD之间的距离及这个鱼塘的面积。

八年级数学下册 4.2 平行四边形及其性质课件1 (新版)浙教版

八年级数学下册 4.2 平行四边形及其性质课件1 (新版)浙教版
第五页,共11页。
• 例2:已知,如图所示,E,F分别(fēnbié)是 ABCD的边AD,BC上的点,
• 且AF∥CE. • 求证:DE=BF, ∠BAF=∠DCE
第六页,共11页。
悟学提高(tí gāo)
• 学校(xuéxiào)买了四棵树,准备栽在花园里, 已经栽了三棵(如图),现在学校(xuéxiào) 希望这四棵树能组成一个平行四边形,你觉 得第四棵树应该栽在哪里?
第七页,共11页。
课后练习
• 1.ABCD中,AB∥ ,AD∥ . • 2.Aห้องสมุดไป่ตู้CD中,∠A+∠D= ,∠A+∠B
= ,∠B+∠C= ,∠C+∠D= . • 3.已知ABCD中,∠A=55°,则∠B=
°,∠C= °,∠D= °.
第八页,共11页。
• 4.在平行四边形ABCD中,∠BAC=26°, ∠ACB=34°,则∠DAC= °,∠ACD= °,∠D= °
4.2平行四边形及其性质 (xìngzhì)
第一页,共11页。
• 自学 • 认真阅读教材P80~5完成以下(yǐxià)问题(时间:6
分钟) • 1.平行四边形的概念: • _______________________叫做平行四边形. • 平行四边形用符号”____________”表示,平行
四边形ABCD可记作“______________”. • 2、平行四边形的性质定理: • 1)______________________________ • 2)_____________________________
第九页,共11页。
• 5.学校门口的伸缩门应用了四边形的 ____________性.
• 6.已知平行四边形相邻(xiānɡ lín)两个角的 度数之比为3∶2,求平行四边形各个内角的 度数.

平行四边形及性质(1)

平行四边形及性质(1)

A平行四边形及性质(1)一.学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 二.学习重点:会用平行四边形的性质解决简单问题,并能进行有关的论证.三.学习过程(一)、复习导入平行四边形的定义: 的四边形叫做平行四边形。

平行四边形ABCD 记作:ABCD ,读作:平行四边形ABCD 连AC 和BD ,则AC ,BD 叫四边形的对角线 (二)学习新课通过观察或者度量填写下列空格 1.平行四边形的性质1:边的性质:AB ∥ ; BC ∥AB= ; BC= 即:平行四边形对边平行且 。

2.平行四边形的性质2: 角的性质:∠A = ,∠B = 即:平行四边形对角 。

3.小结:平行四边形的性质:用几何语言描述平行四边形的性质, ①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD = ②∵四边形ABCD 是平行四边形 ∴ ∠A=∠ , ∠B=∠ 4.例题:例1:如图,在ABCD 中,已知∠B =40,求其他各个内角的度数。

解:∵在ABCD 中,∠B =40∴∠ =∠B =40(平行四边形对角 ) ∵AD ∥ (平行四边形 ) ∴∠A+∠ = ∴∠A=∴∠ =∠A= (平行四边形 )答:其他各个内角分别为 、 、 和 。

例2:如图,在ABCD 中,已知AB=8,周长等于24,求其余三条边的长。

∵在ABCD 中,∴CD=AB= ,AD= (平行四边形 ) ∵ABCD 的周长是24,AB ++ + =24 ∴ 答:其余三条边的长分别为 、和 。

DBADA(三)课堂练习:1、如图,在中,AB=3㎝,AD=5㎝,∠A=43°,∠B=137°,则DC= ,AD= ∠C= ,∠D= .2、在▱ABCD 中∠A=50°则∠B= ,∠C= ,∠D= .3、如图,已知在ABCD 中,AB=5,BC=3,则它的周长是 。

4.在ABCD 中,AB=4cm ,BC=5cm ,∠B=30o,则ABCD 的面积为_______5.已知ABCD 的周长是50cm ,并且AB=23AD 。

16.3平行四边形的定义及性质1

16.3平行四边形的定义及性质1

( A C) AD=BC AB=CD B ( D)
D ( B) ∠BAD=∠DCB
O ( A) C
∠ABC=∠CDA
思考:平行四边形的邻角有什么关系呢?
例 已知:如图,四边形ABCD是平行四边形, 求证:∠A=∠C,∠B=∠D.
证明:∵ 四边形ABCD是平行四边形
A ∴ AB∥CD,AD∥BC(平行四边形的定义) ∴ ∠A+∠B=180° ∠C+∠B=180° (两直线平行,同旁内角互补) B D C
ABCD中,EF∥AB,
B
G
F
C
3 ①则图中有__个平行四边形;
②若GH∥AD,EF与GH交于点O, 9 则图中有__个平行四边形。
二、平行四边形性质探究
1、画一个 ABCD 2、度量对边AB与CD的长,BC与DA的长, 可得什么结论? AB=CD BC=DA 3、度量对角∠A与∠C, ∠B与∠D的大小, 可得什么结论? ∠A=∠C ∠B=∠D
A D
B
C
两条平行线的距离: 两条平行线中,一条直线上任意一点到另一条 直线的距离,叫做这两条平行线的距离
M A B
C
N
D
图 名 形 称
文字语言
图形语言
符号语言
定 两组对边分别 义 平行的四边形

A D A D A
C ∵AB∥CD,AD∥BC B
∴…是平行四边形 ∵四边形ABCD是平 C 行四边形 ∴AB∥CD,AD∥BC B AB=CD,AD= BC C ∠DAB=∠BCD, O ∠ABC=∠CDA B OA=OC,OB=OD
1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行
对边相等
对角相等

平行四边形的性质(第1课时)PPT课件

平行四边形的性质(第1课时)PPT课件

中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB, D∥AB,∴∠DAE=∠AEB,∠ADF=∠
∴∠DAE=∠AEB,∠ADF=∠DFC.∵AE平 DFC,∵AE平分∠BAD,DF平分
分∠BAD,DF平分
∠ADC,∴∠BAE=∠DAE,∠ADF=
∠ADC,∴∠BAE=∠DAE,∠ADF=∠CDF, ∠CDF,∴∠BAE=∠AEB,∠CFD=
8.如图所示,在▱ABCD中,E是CD的中点,AE的延长线与BC的延 长线相交于点F. 求证BC=CF.
解析:先证明△ADE≌△FCE,得出AD=CF,再根据平行四边形的性 质可知AD=BC,继而得出结论.
证明:∵四边形ABCD为平行四边形, ∴AD∥BC,AD=BC. ∴∠ADE=∠FCE.
∵E是CD的中点,∴DE=CE.
八年级数学·下 新课标[冀教]
第二十二章 四边形
学习新知
检测反馈
问题思考
学习新知
问题1:同学们,你们观察过阳光透过长方形窗 口投在地面上的影子是什么形状吗?
问题2:爱动脑筋的小刚观察到平行四边形的影 子有一种对称的美,他说只要量出一个内角的度数, 就能知道其余三个内角的度数;只需测出一组邻边 的长,便能计算出它的周长,这是为什么呢?
由已知条件,得 2(AB+AD)=22, ∴AB+AD=11.
又∵AB+AD+BD=18, ∴BD=18-11=7.
(教材第128页例1)已知:如图所示,在▱ABCD中,∠B+∠D=260°, 求∠A,∠C的度数.
解:在▱ABCD中, ∵∠B=∠D,∠B+∠D=260°,
. ∴∠B=∠D=260 =130° 2
解析:设该平行四边形的两边长分别为x cm,y cm,且x>y,根据题

《平行四边形及其性质(一)》说课稿

《平行四边形及其性质(一)》说课稿

2011年中学中青年教师说课稿《平行四边形及其性质(一)》说课稿武陵源二中杜猛各位评委、老师,你们好!今天我给大家说课的内容是湘教版八年级下册第三章第67页《平行四边形及其性质(一)》。

我将从以下几个方面对本节课进行讲述。

一、背景分析:1、学习任务平行四边形的性质是在学习了平行线和全等三角形之后编排的,是平行线和三角形知识的应用和深化。

在探究平行四边形的定义和性质的过程中,渗透学生类比,分类,数形结合的思想,培养学生观察,分析,发现问题并解决问题的能力。

同时在利用性质解决实际问题的过程中,进一步让学生感受数学源于生活,又服务于生活。

本节课的教学重点:平行四边形的定义及性质。

突破重点的方法:首先教师引导学生分组交流,学会用类比的方法,归纳出平行四边形的定义,接着让学生操作,从直观上得到性质,最后引导学生利用已有知识推理证明得到性质。

2、学生情况首先是学生心理特征,八年级学生具有好奇、好动、好表现的特点。

我们的课堂教学就要创设生动的教学情景,抓住学生的好奇心,通过学生动手操作,进一步调动学生的求知欲。

其次是学生的知识特征,此时学生动手能力强,合作交流能力融洽,但在归纳定义和性质时不够严密,而且推理能力和语言表达都比较薄弱。

因此在教学过程中,让学生主动交流,并通过教师的指导归纳,形成定义和定理。

本节课的教学难点:探究平行四边形的性质。

突破难点的方法:充分调动学生的自主学习,以及利用多媒体展示,使学生由直观的视觉认识提升为感性认识,最后上升为理性认识。

二、教学目标1、知识、技能目标:(1)理解平行四边形的定义和探究平行四边形的性质。

(2)了解平行四边形在生活中的应用,能根据平行四边形的性质解决实际问题。

2、教学目标:根据平行四边形的性质进行简单的计算,培养学生的推理能力和逻辑思维能力。

进一步提高学生应用知识解决数学问题的能力。

3、情感、态度目标:在应用平行四边形的性质的过程中培养独立思考的习惯,在数学学习活动中获得成功的体验。

平行四边形的性质(第一课时 对边和对角的关系)(课件)

平行四边形的性质(第一课时 对边和对角的关系)(课件)

生活中常见的平行四边形
说一些生活中常见的平行四边形的例子
平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“▱”表示,
下图记作“▱ABCD”。
A

几何描述:
∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
B

探索平行四边形对边、对角的关系
根据平行四边形的定义,尝试画一个平行四边形,通过直尺和量角器测量,你
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠D=180°,
又∵∠A-∠D=40°,
∴∠A=110°,∠D=70°,
∴∠C=∠A=110°.
故选:C.

利用平行四边形的性质求解
如图,在▱ABCD中,CE⊥AB,E为垂足.如果∠A=120°,∠BCE的度数为(
A.20° B.30° C.40° D.60°
求证:AC、GH、BC之间的关系
∵ DA、GH、CB垂直于 a
D
H
A
G
C
b
∴ DA // GH // CB 而a // b
∴ ▱AGHD, ▱ABCD, ▱HGBC
∴ AD = GH = BC
B
a
如果两条直线平行,那么一条直线上的所有点到另一条直线的距离都相等,
即两条直线之间的距离相等。
利用平行四边形的性质求解
在平行四边形中,∠与∠的度数之比为: ,则∠C的度数是( )
A.°
B.°
【详解】
解:∵四边形ABCD是平行四边形
∴∠A+∠B=180°,∠A=∠C
∵∠A:∠B=5:4∴∠A=100°
∴∠C=100°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形及其性质(一)
一、教学目标:
1.理解并掌握平行四边形的概念和平行四边形对边、对角的性质.
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的.3.培养学生发现问题、解决的能力及逻辑推理能力.
二、重点、难点
1.重点:平行四边形的定义,平行四边形对角、对边相等及对角线互相的性质,以及性质的应用.
2.难点:运用平行四边形的性质进行有关的论证和计算.
三、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护栏,想一想它们是四边形。

平行四边形是我们常见的图形,请你在举出平行四边形在生活中应用的例
子。

你能说出平行四边形的定义吗?
(1)定义:两组对边分别的四边形是平行四边形.
(2)如右图:平行四边形用符号“”来表示.读作。

2:平行四边的定义:
①用文字语言表示为:
(如图是图形语言)
在四边形ABCD中,AB平行于DC,AD平行于BC,那么四边形ABCD是.②用符号语言表示为:
∵AB//DC,AD//BC,∴四边形ABCD是。

(判定);反过来:
∵四边形ABCD是。

∴AB//DC,AD//BC(性质).
注意:平行四边形中对边是指无公共的边,对角是指不相邻的角,邻边是指有公共的边,邻角是指有一条公的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.
所以我说定义很特殊:既可以当用,又可以当用。

3;平行四边的性质:
【探究】平行四边形是一种特殊的四边形,它除具有四边形的一般性质(如内角和为360°)和两组对边分别平行外,还有什么特殊的性质呢?我们进行探究.
我们根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,度量它的边和角,发现平行四边形的对边,对角,邻角,
(1)证明,如图:∵AB∥CD,AD∥BC∴∠+∠BAD=180°,∠+∠
=180°∴平行四边形中,相邻的角互为补角.
(2)猜想平行四边形的对边相等、对角相等.
下面证明这个结论的正确性.
已知:如图ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形即可得到结论.
(作对角线是解决四边形问题常用的线,通过作对角线,可以把四边形的问题转化为形的问题来解决.)
证明:连接AC,如图
∵AB∥,AD∥BC,∴∠1=∠3,∠=∠4.又AC=CA,∴△ABC≌△CDA (ASA).
∴AB=,=AD,∠=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:用文字语言表示为
平行四边形性质1 平行四边形的对边相等.
平行四边形性质2 平行四边形的对角相等.
用符号语言表示为:
∵如图在ABCD中∴AB=,CB=AD,∠B=∠,∠A=∠C.
五、例习题分析
例1如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
分析:要证AF=CE,需证△≌△CBE,由于四边形ABCD是平行四边形,因此有∠=∠B ,AD= ,AB=CD,又AE=CF,根据等式性质,可得=DF.由“边角边”可得出所需要的结论.
证明.在ABCD中,∵AB=CD,又∵= ∴BE=DF.
∵CB=AD,∠B=∠D ∴△≌△∴.
六、随堂练习
1.填空:
50,则∠B= 度,∠C= 度,∠D= 度.
(1)在ABCD中,∠A=
(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.
2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,
求证:BE=DF.
七、课后练习。

相关文档
最新文档