初二平行四边形的性质和判定知识点整理

合集下载

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。

以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。

性质
1. 对边平行性质:平行四边形的两组对边分别平行。

2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。

3. 内角和性质:平行四边形的内角的和为180度。

4. 外角性质:平行四边形的外角的和为360度。

5. 对边长度性质:平行四边形的对边长度相等。

6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。

7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。

判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。

2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。

特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。

2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。

相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。

2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。

以上是关于平行四边形的基本知识点总结。

通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。

平行四边形的性质和判定

平行四边形的性质和判定

平行四边形的性质和判定知识点1 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

记作“□ABCD ”。

知识点2 平行四边形的性质: 边:对边平行且相等。

角:对角相等,邻角互补。

对角线:对角线互相平分。

知识点3 平行四边形的判定:边:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

角:两组对角分别相等的四边形是平行四边形。

对角线:对角线互相平分的四边形是平行四边形。

、 知识点4 两条平行线的距离。

知识点5 三角形的中位线定义:连接三角形两边中点的线段是三角形的中位线。

性质:三角形的中位线平行于第三边且等于第三边的一半。

例1、如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明。

【变式练习】已知,在□ABCD 中,点E 、F 分别在AD 、CB的延长线上,且∠1=∠2,DF 交AB 于G ,BE 交CD 于H 。

求证:EH=FG 。

例2、已知如图,O 为平行四边形ABCD 的对角线AC 的中点,EF 交于F 。

求证:四边形AECF 是平行四边形。

例3、▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,线DC (1)求证:CE=CF ;C ABCDE F(2)若∠ABC=120°,FG ∥CE ,FG=CE ,求∠BDG . 【变式练习】 1、如图,中,AE =CF ,M 、N 分别ED 、FB 的中点.求证:四边形ENFM 是平行四边形.2、在▱ABCD 中,∠ADC 的平分线交直线BC 于点E 、交AB 的延长线于点F ,连接AC .(1)如图1,若∠ADC=90°,G 是EF 的中点,连接AG 、CG . ①求证:BE=BF .②请判断△AGC 的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F 顺时针旋转60°至FG ,连接AG 、CG .那么△AGC 又是怎样的形状.例4、如图,点E 、F 、G 、H 分别是四边形ABCD 的四边中点,求证四边形EFGH 是平行四边形。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

平行四边形初中知识点

平行四边形初中知识点

平行四边形初中知识点
一、平行四边形的定义。

1. 两组对边分别平行的四边形叫做平行四边形。

- 用符号“▱”表示平行四边形,例如平行四边形ABCD记作“▱ABCD”。

二、平行四边形的性质。

1. 边的性质。

- 平行四边形的对边平行且相等。

- 即若▱ABCD,则AB = CD,AD = BC;AB∥CD,AD∥BC。

2. 角的性质。

- 平行四边形的对角相等,邻角互补。

- 在▱ABCD中,∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。

3. 对角线的性质。

- 平行四边形的对角线互相平分。

- 若▱ABCD,对角线AC、BD相交于点O,则AO = CO,BO = DO。

三、平行四边形的判定。

1. 边的判定。

- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

2. 角的判定。

- 两组对角分别相等的四边形是平行四边形。

3. 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

四、平行四边形的面积。

1. 平行四边形的面积等于底乘以高。

- 若平行四边形的底为a,这条底边上的高为h,则面积S = ah。

- 同底(等底)等高的平行四边形面积相等。

平行四边形知识点

平行四边形知识点

A BC DO 平行四边形的性质和判断知识点:一、平行四边形的性质基本概念1、定义:有两组对边分别平行的四边形叫做平行四边形2、图形语言:3、符号语言平行四边形:平行四边形性质(从边、角、对角线、对称性四个方面学习记忆) 性质:1.(边)两组对边分别平行且相等.2. (角) 两组对角分别相等.邻角互补3.(线)对角线互相平分.4.(对称性)中心对称--对称中心为对角线交点.二、【例题讲解】小明用一根36米长的绳子围成了一个平行四边形的场地,其中一条边AB 长8米,其他三条边各长多少?∠A=60°,求其它各角?∠B 的外角为60°,求这个四边形的各内角的度数。

【轻松试一试】1.如图,AB ∥DE,BC ∥EF,CA ∥FD.图中有几个平行四边形?将它们表示出来,并说明理由.AFD2. 已知如图4.2-8,中,EF ∥DC,试说明图中平行四边形的个数.NMH G F E D CBA图4.2-8角的计算:1、中, BC=2AB, CA ⊥AB,则∠B=______度,∠CAD=______度.DCB A2中,∠A : ∠B=3:2,则∠C=___ 度,∠D=______度.边及周长的计算1、如图,平行四边形的对角线相交于点O ,BC=7㎝,BD=10㎝,AC=6㎝。

求△AOD 的周长。

2平行四边形的周长是100cm, AB:BC=4:1,则AB 的长是_______。

3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.4.用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.平行四边形的判断平行四边形的四个(或五个)判定方法,这些判定的方法是: 从边看: ①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形.(从角看:两组对角分别相等的四边形是平行四边形.)【例题讲解】已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF .分析:证明BE=DF ,可以证明两个三角形全等,也可以证明四边形BEDF 是平行四边形,比较方法,可以看出第二种方法简单. 证明:∵ 四边形ABCD 是平行四边形, ∴ AD ∥CB ,AD=CD . ∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC .∴ DE=BF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形). ∴ BE=DF .例2、已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形, ∴ AB=CD ,且AB ∥CD . ∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°. ∴ △ABE ≌△CDF (AAS ). ∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形)例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF 。

平行四边形的定义性质与判定

平行四边形的定义性质与判定

平行四边形的定义性质与判定
1.定义:两组对边分别平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分;
(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
4.两条平行线间的距离:
定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.
性质:夹在两条平行线间的平行线段相等.
5.平行四边形的面积:
1.平行四边形的面积=底×高;
2.同底(等底)同高(等高)的平行四边形面积相等.
如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.。

平行四边形的性质与判断方法

平行四边形的性质与判断方法

平行四边形的性质与判断方法平行四边形是一种特殊的四边形,具有一些独特的性质和判断方法。

本文将详细介绍平行四边形的定义、性质和判断方法,并提供一些相关的例题。

一、平行四边形的定义平行四边形是指有四条边都两两平行的四边形。

具体而言,如果一个四边形的对边都是平行的,那么它就是一个平行四边形。

二、平行四边形的性质1. 对边性质:平行四边形的对边相等,即对边AB和CD相等,对边AD和BC相等。

2. 同位角性质:平行四边形的同位角相等,即角A和角C相等,角D和角B相等。

3. 内角性质:平行四边形的内角和为180度,即角A+角B+角C+角D=180度。

4. 对角线性质:平行四边形的对角线互相平分,即对角线AC平分角B和角D,对角线BD平分角A和角C。

三、判断方法1. 判断对边平行:如果已知四边形的两条对边相等,那么可以判断这两条对边是平行的。

例如,如果AB=CD,AD=BC,那么可以判断AB和CD是平行的,AD和BC是平行的。

2. 判断同位角相等:如果已知四边形的对角线互相平分,那么可以判断同位角相等。

例如,如果对角线AC平分角B和角D,对角线BD 平分角A和角C,那么可以判断角A和角C相等,角D和角B相等。

3. 判断内角和:如果已知四边形的两组对边相等,那么可以通过计算内角和来判断是否为平行四边形。

例如,如果AB=CD,AD=BC,可以计算角A+角B+角C+角D的和,如果结果等于180度,则为平行四边形。

四、例题演练1. 已知四边形ABCD,AB平行于CD,AD平分角B和角C,如图所示。

判断四边形ABCD是否为平行四边形。

[示意图]解答:由已知条件可知,AB平行于CD,AD平分角B和角C。

根据平行四边形的性质,我们需要验证对边性质和同位角性质。

首先,对边性质:我们比较AB和CD之间的长度和AD和BC之间的长度是否相等。

如果AB=CD且AD=BC,那么就满足平行四边形的对边性质。

其次,同位角性质:我们比较角A和角C的大小,以及角D和角B的大小。

初二平行四边形知识点归纳

初二平行四边形知识点归纳

初二平行四边形知识点归纳平行四边形是初中数学中的一个重要概念,它具有许多特性和性质。

在初二学习阶段,我们需要对平行四边形进行深入了解和掌握。

本文将对初二平行四边形知识点进行归纳和总结。

一、定义和性质1. 平行四边形的定义:具有两对对边平行的四边形称为平行四边形。

平行四边形的对边相等且对角线互相平分。

2. 平行四边形的性质:两对对边分别平行且相等;两对对角线互相平分;相邻角互补、对角角互补;对角线长度之积等于平行四边形边长之积。

二、判断平行四边形的方法1. 判断对边是否平行:通过观察四边形的边是否平行,若两对边都平行,则为平行四边形。

2. 判断对边是否相等:通过测量四边形的边长,若两对边相等,则为平行四边形。

三、平行四边形的特殊情况1. 矩形:具有四个直角的平行四边形称为矩形。

矩形的对边相等且平行,对角线相等。

2. 正方形:具有四个直角且对边相等的平行四边形称为正方形。

正方形的对边相等且平行,对角线相等,且对角线互相垂直。

四、平行四边形的性质应用1. 利用平行四边形的性质求解问题:根据平行四边形的性质可以解决许多几何问题,如计算对边的长度、对角线的长度等。

2. 平行四边形的周长和面积:平行四边形的周长等于四条边长之和,面积等于底边长度乘以高。

3. 平行四边形的变形:平行四边形可以通过平移、旋转、缩放等变形操作得到其他形状的四边形。

五、与平行四边形相关的定理和推论1. 反向定理:如果一个四边形的两对对边分别平行且相等,则它是一个平行四边形。

2. 副对角线平分定理:平行四边形的副对角线互相平分。

3. 对角线长度定理:平行四边形的对角线长度之积等于平行四边形边长之积。

4. 三角形面积定理:平行四边形的两条对角线将平行四边形分成两个相等的三角形,它们的面积相等。

六、解题技巧和注意事项1. 观察图形特征:通过观察平行四边形的边长、角度、对边关系等特征,可以快速判断和解决问题。

2. 利用性质和公式:熟练掌握平行四边形的性质和公式,灵活运用于解题过程中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二平行四边形的性质和判定专题1.平行四边形的定义(1)定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义有两层意思:①是四边形;②两组对边分别平行.这两个条件缺一不可.(2)表示方法:平行四边形用符号“”表示.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.(3)平行四边形的基本元素:边、角、对角线.平行四边形的定义的作用:平行四边形的定义既是性质,又是判定方法.①由定义可知平行四边形的两组对边分别平行;②由定义可知只要四边形中有两组对边分别平行,那么这个四边形就是平行四边形.【例1】对于平行四边形ABCD,AC与BD相交于点O,下列说法正确的是().A.平行四边形ABCD表示为“ACDB”B.平行四边形ABCD表示为“ABCD”C.AD∥BC,AB∥CDD.对角线为AC,BO解析:两组对边分别平行的四边形是平行四边形,可知平行四边形的两组对边平行,故选C.答案:C2.平行四边形的性质(1)平行四边形的对边平行且相等.例如:如图①所示,在ABCD中,AB CD,AD BC.由上述性质可得,夹在两条平行线间的平行线段相等.如图2,直线l1∥l2.AB,CD是夹在直线l1,l2间的平行线段,则四边形ABCD是平行四边形,故AB CD.(2)平行四边形的对角相等,邻角互补.例如:如图①所示,在ABCD中,∠ABC=∠CDA,∠BAD=∠BCD.∠ABC+∠BAD=180°,∠ABC+∠BCD=180°,∠BCD+∠CDA=180°,∠BAD+∠CDA=180°.(3)平行四边形的对角线互相平分.例如:如图①所示,在ABCD中,OA=OC,OB =OD.图③(4)经过平行四边形对角线的交点的直线被对边截得的两条线段相等,并且该直线平分平行四边形的面积.例如:如图③所示,在ABCD 中,EF 经过对角线的交点O ,与AD 和BC 分别交于点E ,F ,则OE =OF ,且S 四边形ABFE =S 四边形EFCD .【例2】ABCD 的周长为30 cm ,它的对角线AC 和BD 交于O ,且△AOB 的周长比△BOC 的周长大5 cm ,求AB ,AD 的长.分析:依题意画出图形,如图,△AOB 的周长比△BOC 的周长大5 cm ,即AO +AB +BO -(BO +OC +BC )=5(cm).因为OA =OC ,OB 为公共边,所以AB -BC =5(cm).由AB +BC =302=15(cm)可求AB ,BC , 再由平行四边形的对边相等得AD 的长.解:∵△AOB 的周长比△BOC 的周长大5 cm ,∴AO +AB +BO -(BO +OC +BC )=5(cm).∵四边形ABCD 是平行四边形,∴AO =OC ,∴AB -BC =5(cm).∵ABCD 的周长为30 cm ,∴AB +BC =15(cm).∴⎩⎪⎨⎪⎧ AB -BC =5,AB +BC =15,得⎩⎪⎨⎪⎧AB =10,BC =5. ∴AB =10 cm ,AD =BC =5 cm.3.平行四边形的判定(1)方法一:(定义判定法)两组对边分别平行的四边形叫做平行四边形.平行四边形的定义是判定平行四边形的根本方法,也是其他判定方法的基础.关于边、角、对角线方面还有以下判定定理.(2)方法二:两组对边分别相等的四边形是平行四边形.如图,连接BD ,由AD =BC ,AB =CD ,可证明△ABD ≌△CDB ,所以∠CDB =∠ABD ,∠CBD =∠ADB ,从而得到AB ∥CD ,AD ∥BC .由定义得到四边形ABCD 为平行四边形.其推理形式为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.(3)方法三:两组对角分别相等的四边形是平行四边形.如图,由∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,可得∠B+∠C=180°,∠A+∠B=180°.从而得到AB∥DC,AD∥BC.由定义得到四边形ABCD为平行四边形,其推理形式为:∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.其推理形式为:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.(5)方法五:一组对边平行且相等的四边形是平行四边形.其推理形式为:如图,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形.(1)判定方法可作为“画平行四边形”的依据;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形.【例3】已知,如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.四边形ABCD是平行四边形,请说明理由.解:因为AB∥CD,所以∠BAC=∠DCA.又因为AO =CO ,∠AOB =∠COD ,所以△ABO ≌△CDO .所以BO =DO .所以四边形ABCD 是平行四边形.4.三角形的中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.(2)性质:三角形两边中点连线平行于第三边,并且等于第三边的一半.(1)一个三角形有三条中位线,每条中位线与第三边都有相应的位置关系和数量关系;(2)三角形的中位线不同于三角形的中线,三角形的中位线是连接两边中点的线段,而三角形的中线是连接三角形一边的中点和这边所对顶点的线段.【例4】如图所示,在△ABC 中,点D ,E ,F 分别是AB ,BC ,CA 的中点,若△ABC 的周长为10 cm ,则△DEF 的周长是__________cm.解析:由三角形的中位线性质得,DF =12BC ,EF =12AB ,DE =12AC , 所以△DEF 的周长=12×10=5(cm). 答案:55.两条平行线间的距离定义:两条平行线中,一条直线上任意一点到另一直线的距离,叫做这两条平行线间的距离.如图所示,a ∥b ,点A 在直线a 上,过A 点作AC ⊥b ,垂足为C ,则线段AC 的长是点A 到直线b 的距离,也是两条平行线a ,b 之间的距离.(1)如图,过直线a 上点B 作BD ⊥b ,垂足为D ,则线段BD 的长也是两条平行线a ,b 之间的距离.于是由平行四边形的性质可知平行线的又一个性质:平行线间的距离处处相等.(2)两条平行线之间的距离是指垂线段的长度,当两条平行线的位置确定时,它们之间的距离也随之确定,它不随垂线段的位置的改变而改变,是一个定值.【例5】如图所示,如果l 1∥l 2,那么△ABC 的面积与△DBC 的面积相等吗?由此你还能得出哪些结论?解:△ABC的面积与△DBC的面积相等.因为l1∥l2,所以它们之间的距离是一个定值.所以△ABC与△DBC是同底等高的两个三角形.所以S△ABC=S△DBC.结论:l1上任意一点与B,C连接,构成三角形的面积都等于△ABC的面积,这样的三角形有无数个.6.平行四边形性质的应用平行四边形性质的应用非常广泛,可以利用它说明线段相等、证明线段平行、求角的度数、求线段的长度、求图形的周长、求图形的面积等.对平行四边形的性质、平行线的性质、勾股定理、含30°角的直角三角形、三角形的面积、三角形的内角和定理等知识点的理解和掌握,是解决此类问题的关键.【例6】如图,ABCD的对角线相交于点O,过O作直线EF,并与线段AB,CD的反向延长线交于E,F,OE与OF是否相等,阐述你的理由.解:OE与OF相等.理由:∵四边形ABCD是平行四边形,∴BE∥DF,OB=OD,∴∠FDO=∠EBO,∠E=∠F.∴△BOE≌△DOF.∴OE=OF.7.平行四边形的判定的应用熟练掌握判定定理是平行四边形的判定的关键.已学了平行四边形的五种判定方法,记忆时要注意技巧,其中三种方法都与边有关:(1)一种关于对边的位置关系(两组对边分别平行的四边形是平行四边形);(2)一种关于对边的数量关系(两组对边分别相等的四边形是平行四边形);(3)一种关于对边的数量与位置关系(一组对边平行且相等的四边形是平行四边形).平行四边形的判定方法是今后解决平行四边形问题的基础知识,应该熟练掌握.判定平行四边形的一般思路:①考虑对边关系:证明两组对边分别平行;或两组对边分别相等;或一组对边平行且相等;②考虑对角关系:证明两组对角分别相等;③考虑对角线关系:证明两条对角线互相平分.【例7】如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,__________,__________;求证:四边形ABCD是平行四边形.分析:选用①③关系时,证明两组对边分别平行的四边形是平行四边形;选用①④关系时,证明两组对边分别平行的四边形是平行四边形;选用②④关系时,证明一组对边平行并且相等的四边形是平行四边形;选用③④关系时,证明两组对边分别平行的四边形是平行四边形.解:已知:①③,①④,②④,③④均可,其余均不可以.举例如下:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°.∵∠A=∠C,∴∠C+∠B=180°.∴AB∥CD.∴四边形ABCD是平行四边形.8.平行四边形的性质和判定的综合应用平行四边形的性质和判定的应用主要有以下几种情况:(1)直接运用平行四边形的性质解决某些问题,如求角的度数、线段的长、证明角相等或互补、证明线段相等或倍分关系;(2)判定一个四边形为平行四边形,从而得到两角相等、两直线平行等;(3)综合运用:先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题;或先运用平行四边形的性质得到线段平行、角相等等,再判定一个四边形是平行四边形.【例8】如图所示,在ABCD中,E,F分别是AD,BC上的点,且AE=CF,AF 与BE交于G,DF与CE交于H,连接EF,GH,试问EF与GH是否互相平分?为什么?解:EF与GH互相平分.理由:在ABCD中,∵AD BC,AE=CF,∴AE CF.∴DE BF.∴四边形AFCE,BEDF都是平行四边形.(一组对边平行且相等的四边形是平行四边形)∴AF∥CE,BE∥DF.∴四边形EGFH是平行四边形.(平行四边形的定义)∴EF与GH互相平分.9.三角形的中位线性质的应用三角形的中位线的性质不仅反映了线段间的位置关系,而且还揭示了线段间的数量关系,借助三角形中位线的性质可以进行几何求值(计算角度、求线段的长度)、证明(证明线段相等、证明线段的不等、证明线段的倍分关系、证明两角相等)、作图,且能解决生活实际问题.应用三角形中位线定理解决问题时,已知条件中往往给出两个中点,若已知条件只给出一个中点,必须要证明另一个点也是中点,才能运用此定理.【例9】在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( ).A .9.5B .10.5C .11D .15.5解析:∵△EDF 是△EAF 折叠而形成的图形,∴△EDF ≌△EAF .∴∠AEF =∠DEF .∵AD 是BC 边上的高,由折叠可知AD ⊥EF ,∴EF ∥CB .∴∠AEF =∠B ,∠BDE =∠DEF .∴∠B =∠BDE .∴BE =DE =AE .∴E 为AB 的中点.同理点F 是AC 的中点.∴EF 是△ABC 的中位线.∴△DEF 的周长为△EAF 的周长,即AE +EF +AF =12×(AB +BC +AC )=12×(12+9+10)=15.5. 答案:D10.平行四边形的性质探究题平行四边形是一类特殊的四边形,它的特殊性体现在对边相等、对角相等、邻角互补、对角线互相平分几方面,因此,由平行四边形可以得到很多相等线段、相等角.所以,要学会利用对比的方法正确区分平行四边形的判定定理和性质定理,正确地运用相关的结论解决相关的问题.平行四边形的探究型问题,关键是根据平行四边形的性质和判定,构造出平行四边形.【例10】如图,已知等边△ABC 的边长为a ,P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D ,E ,F 分别在AC ,AB ,BC 上,试探索PD +PE +PF 与a 的关系.解:如图,作DG∥BC交AB于点G,因为△ABC为等边三角形,所以∠A=∠B=∠C=60°.所以∠A=∠AGD=∠ADG=60°.所以GD=AG.又可得EP=GD,所以EP=AG,DP=GE.同理可得PF=EB,所以PD+PE+PF=a.11.平行四边形的判定的探究题平行四边形是一类特殊的四边形,并且它是学习矩形、菱形、正方形和梯形的基础.在有关平行四边形判定的探究型问题中,要会判定一个四边形是平行四边形,运动型问题的关键是把运动的问题转化为静止的问题.运动变化题,这类题的解决技巧是把“运动”的“静止”下来,以静制动,同时注意不同的情况.【例11】如图所示,已知在四边形ABCD中,AD∥BC(AD>BC),BC=6 cm,点P从A点以1 cm/s的速度向D点出发,同时点Q从C点以2 cm/s的速度向B点出发,设运动时间为t秒,问t为何值时,四边形ABQP是平行四边形?解:由题意知,AP=t,QC=2t,则BQ=6-2t,若四边形ABQP为平行四边形,因为AD∥BC,只需AP=BQ即可,即t=6-2t,解得t=2.答:当t为2秒时,四边形ABQP是平行四边形.。

相关文档
最新文档