平行四边形性质提高练习及答案汇编

合集下载

八年级数学下册《平行四边形的性质》练习题及答案(北师大版)

八年级数学下册《平行四边形的性质》练习题及答案(北师大版)

八年级数学下册《平行四边形的性质》练习题及答案(北师大版)一、选择题(共12小题)1. 如图,四边形中AC=a,BD=b,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点,得到四边形,如此进行下去,得到四边形.下列结论正确的是①四边形是菱形;②四边形是矩形;③四边形周长为;④四边形面积为.A. ①②③B. ②③④C. ①③④D. ①②③④2. 如图,点是平行四边形对角线的交点,过点分别交,于点,下列结论成立的是A. B.C. D.3. 平行四边形中,是两条对角线,如果添加一个条件,即可推出平行四边形是矩形,那么这个条件是A. B. C. D.4. 在平行四边形中,是对角线,的交点,若的面积是 8,则平行四边形的面积是A. B. C. D.5. 下列命题中正确的是A. 对角线相等的四边形是菱形B. 对角线互相垂直的四边形是菱形C. 对角线相等的平行四边形是菱形D. 对角线互相垂直的平行四边形是菱形6. 如图,在平行四边形中,的平分线交于点,则的长为A. B. C. D.7. 如图,在菱形中,则菱形的面积是A. B. C. D.8. 如图,在平行四边形中,于点,则的度数为A. B. C. D.9. 如图,在平行四边形中,则平行四边形的周长是A. B. C. D.10. 如图,在平行四边形中,与交于点,点是的中点,的周长比的周长多,则平行四边形的周长为A. B. C. D.11. 如图,在矩形中,对角线,相交于点,则的大小为A. B. C. D.12. 如图,在平行四边形中,平分交边于点,若平行四边形的周长是 24,EC=2,则的长为A. B. C. D.二、填空题(共6小题)13. 如图,一活动菱形衣架中,菱形的边长均为 16cm.若墙上钉子间的距离,则度.14. 如图,等腰梯形中,梯形的周长为 26,BE=4,则的周长为.15. 夏季荷花盛开,为了便于游客领略"人从桥上过,如在河中行"的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为,且桥宽忽略不计,则小桥总长为.16. 已知平行四边形的两条对角线与交于平面直角坐标系的原点.若,则点的坐标为.17. 如图,已知四边形为平行四边形,下列条件中,②AB=AD,③∠1=∠2,能说明平行四边形是矩形有(填写序号).18. 已知菱形的两条对角线长为和,那么这个菱形的面积为.三、解答题(共4小题)19. 如图,在中,是的两个外角,平分,平分.求证:四边形是菱形.20. 已知:如图,四边形是平行四边形,点是对角线的中点,过点且分别与边,相交于点,求证:.21. 如图,四边形是菱形,对角线与相交于 O,AB=5,AO=4,求的长.22. 已知,如图,在平行四边形中,延长到点,延长到点,使得,连接,分别交,于点 M,N,连接,(1)求证:(2)求证:四边形是平行四边形.参考答案1. 【答案】A2. 【答案】 A3. 【答案】B4. 【答案】C5. 【答案】D6. 【答案】 B7. 【答案】 B8. 【答案】 C9. 【答案】A10. 【答案】C11. 【答案】 B12. 【答案】 B13. 【答案】14. 【答案】 1815. 【答案】 14016. 【答案】17. 【答案】①④18. 【答案】 3619. 【答案】,是等边三角形.平分,平分.是等边三角形..四边形是菱形.20. 【答案】略.21. 【答案】四边形是菱形,对角线与相交于,,.22. 【答案】(1)四边形是平行四边形...(2)由(1)得四边形是平行四边形且且四边形是平行四边形.。

(完整版)平行四边形的性质习题(有答案)(最新整理)

(完整版)平行四边形的性质习题(有答案)(最新整理)

B
EC
6.
的两条对角线相交于点 O,已知 AB=8cm,BC=6cm,
△AOB 的周长是 18cm,那么△AOD 的周长是( )
A.14cm B.15cm C.16cm D.17cm
7.平行四边形的一边等于 14,它的对角线可能的取值是( )
A.8cm 和 16cm B.10cm 和 16cm C.12cm 和 16cm D.20cm 和 22cm
A 在 ABCD 中,AB∥CD,
∴∠BAO=∠DCO. ∴∠EAM=∠NCF. 23.(1)取 AE=CF,从而可得 BE=DF(或 BE∥DF),证明过程略; (2)取 AE=BF,可得结论四边形 ABFE(或 FCDE)是平行四边形,证明略.
7
A.3 对
B.4 对
C.5 对
D.6 对
A
D
O
4.如图所示,在
中,对角线 AC、BD 交于点 O,下列式子中一
B
C
定成立的是( )
A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD
5.如图所示,在
中,AD=5,AB=3,AE 平分∠BAD 交 BC
A
D
边于点 E,则线段 BE、EC 的长度分别为( ) A.2 和 3 B.3 和 2 C.4 和 1 D.1 和 4
又∵AD=CB(平行四边形的对边相等),
∴AE-AD=CF-CB,即 DE=BF.
A 21.解:(1)∵ ABCD,
∴AB=CD,DC∥AB,
∴∠ECD=∠EFA
∵DE=AE,∠DEC=∠AEF
∴△DEC≌△AEF
∴DC=AF
∴AB=AF
(2)∵BC=2AB,AB=AF

部编数学八年级下册平行四边形的性质与判定大题专练(分层培优30题,八下册人教)2023复习备考含答案

部编数学八年级下册平行四边形的性质与判定大题专练(分层培优30题,八下册人教)2023复习备考含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题2.5平行四边形的性质与判定大题专练(分层培优30题,八下人教)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.【分析】(1)根据平行四边形对角相等即可得答案;(2)根据平行四边形对角线互相平分可得AO+BO的长,进而可求出AB.【解析】(1)∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∴AO+BO=(AC+BD)=12,∴AO+BO+AB=20,∴AB=8.2.已知,如图,E,F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【分析】连接BD,与AC交于点O,由平行四边形的对角线互相平分得到OA=OC,OB=OD,进而得到OE=OF,利用对角线互相平分的四边形是平行四边形即可得证.【解答】证明:如图,连接BD,与AC交于点O,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,又OB=OD,∴四边形DEBF是平行四边形.3.如图,Rt△ABC,∠BAC=90°,D,E分别为AB,BC的中点,点F在CA的延长线上,∠FDA=∠B.(1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.【分析】(1)根据三角形中位线定理、直角三角形的性质证明四边形DEAF是平行四边形,根据平行四边形的性质证明;(2)由(1)的结论计算即可.【解答】(1)证明:∵D,E分别为AB,BC的中点,∴DE∥AC,DE=AC,∵∠BAC=90°,E为BC的中点,∴EA=EB,∴∠EAB=∠B,又∠FDA=∠B,∴∠FDA=∠EAB,∴EA∥DF,∴四边形DEAF是平行四边形,∴AF=DE;(2)解:∵∠BAC=90°,E为BC的中点,∴EA=BC=5,∵D,E分别为AB,BC的中点,∴DE=AC=3,∴四边形AEDF的周长=2×(3+5)=16.4.如图,AC,BD相交于点O,AB∥CD,AD∥BC,E,F分别是OB,OD的中点,求证:四边形AFCE 是平行四边形.【分析】由条件AB∥CD,AD∥BC可证到四边形ABCD是平行四边形,根据平行四边形的性质可得OA =OC,OB=OD,要证四边形AFCE是平行四边形,只需证OE=OF即可.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OB,OD的中点,∴OE=OB,OF=OD,∴OE=OF,∴四边形AFCE是平行四边形.5.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC =∠B,(1)CF=DE成立吗?试说明理由.(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再根据等边对等角可得∠B=∠DCE,然后求出∠FEC=∠DCE,根据等腰三角形三线合一的性质可得∠CED=90°,然后求出∠CED=∠ECF=90°,再利用“角边角”证明△CDE和△ECF全等,根据全等三角形对应边相等证明即可.(2)由三角形的中位线定理得到DE的长度,再由平行四边形的面积公式求得.【解析】(1)证明:∵∠ACB=90°,点D是AB的中点,∴CD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∵点E是BC的中点,∴∠CED=90°,∴∠CED=∠ECF=90°,在△CDE和△ECF中,∴△CDE≌△ECF(ASA),∴CF=DE;(2)在Rt△ABC中,∠ACB=90°,∴BC==8,∵点D、E分别是AB、BC的中点,∴DE=AC=3,CE=,=3×4=12.∴S四边形DCFE6.如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.【分析】利用已知结合全等三角形的判定与性质得出DE=BF进而得出答案.【解析】答案不唯一,例如:已知②EO=OF;③O为BD中点,结论:①AE=CF.理由:在△DOE和△BOF中,∴△DOE≌△BOF(SAS),∴DE=BF,∵四边形ABCD是平行四边形,∴AD=BC,∴AE=FC.7.如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.【分析】通过倍长中线可证△EDM≌△ECF,进而可得EM=EF,即可得△AMF是等腰三角形.【解答】证明:延长AD,FE交于M.在平行四边形ABCD中,AD∥BC,∴∠MDE=∠FCE,∠EMD=∠EFC,又E是CD的中点,∴DE=CE,∴△EDM≌△ECF(AAS),∴EM=EF,又∵EF⊥AE,∴AF=AM,即△AMF是等腰三角形,∴AE平分∠DAF.8.在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上, ② (填写序号).求证:BE=DF.【分析】由四边形ABCD是平行四边形得BO=DO,加上条件OE=OF,从而得出四边形BEDF为平行四边形,从而有BE=DF.【解析】选②,如图,连接BF,DE,∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∴四边形BEDF为平行四边形,∴BE=DF.故选择:②(答案不唯一).9.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=80°,∠DCE=30°,求∠CBE的度数.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=80°,∴∠BCD=80°,∵∠DCE=30°,∴∠BCE=80°﹣30°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.10.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB 上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)若AB=10,AC=4,求BF的长.【分析】(1)证明△AGE≌△ACE,根据全等三角形的性质可得到GE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;(2)先证明BF=DE=BG,再证明AG=AC,可得到BF=(AB﹣AG)=(AB﹣AC).【解答】(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,,∴△AGE≌△ACE(ASA).∴GE=EC.∵BD=CD,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC)=(10﹣4)=3.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若点E是BC的中点,∠C=108°,求∠DAE的度数.【分析】(1)由AD//BC可得∠ADE=∠DEC,再由∠ADE=∠EDC,从而可得∠DEC=∠EDC,继而可证得CD=CE;(2)由题意可得AD//BC,AB=CD,继而可求得∠BAD的度数,AB=BE,从而可求得∠BAE的度数,由此即可求得∠DAE的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠EDC,∴∠DEC=∠EDC,∴CD=CE;(2)解:∵四边形ABCD是平行四边形,∴AD//BC,AB=CD,∴∠B+∠BAD=180°,∵∠C=108°,∴∠B=180°﹣108°=72°,∵BE=CE,CE=CD,∴AB=BE,∴∠BAE=∠BEA=(180°﹣72°)÷2=54°,∴∠DAE=∠BAD﹣∠BAE=108°﹣54°=54°.12.如图,在▱ABCD中,AE平分∠BAD交对角线BD于点E,CF平分∠DCB交对角线BD于点F,连接AF,CE.(1)若∠BCF=50°,求∠ADC的度数;(2)求证:四边形AECF为平行四边形.【分析】(1)由四边形ABCD是平行四边形得出∠ADC+∠DCB=180°,再根据角平分线的定义得出∠DCB的度数即可求解;(2)由ASA证明△ABE≌△CDF得出AE=CF,∠AEB=∠DFC,再根据平行线的判定得出AE∥CF即可得出结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠ADC+∠DCB=180°,∵CF平分∠DCB,∴∠DCF=∠BCF=50°,∴∠ADC=180°﹣∠DCF﹣∠BCF=180°﹣50°﹣50°=80°;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE平分∠BAD,CF平分∠DCB,∴∠BAE=,,∴∠BAE=∠DCF,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠DFC,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.13.如图,以平行四边形ABCD的边AB、CD为边,作等边△ABE和等边△CDF,连接DE,BF.求证:四边形BFDE是平行四边形.【分析】由平行四边形的性质得出AB=CD,AD=BC,∠BAD=∠DCB,由等边三角形的性质得出BE=AE=AB=CD=CF=DF,∠BAE=∠DCF=60°,证明△ADE≌△CBF(SAS),得出DE=BF,则可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠DCB,∵△ABE和△CDF是等边三角形,∴BE=AE=AB=CD=CF=DF,∠BAE=∠DCF=60°,∴∠DCB﹣∠DCF=∠DAB﹣∠BAE,即∠DAE=∠FCB,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF,又∵BE=DF,∴四边形BFDE为平行四边形.14.如图,平行四边形ABCD中AB∥CD,AD∥BC,AB=CD,AD=BC,CB=2AB,∠DCB的平分线交BA的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【分析】(1)根据平行四边形的性质证明A为BF的中点,然后证明△DEC≌△AEF(AAS),进而得出结论;(2)由平行四边形的对边平行证出∠CBF=∠DAF=70°,∠BEA=∠EBC,由等腰三角形的性质得出∠CBE=∠ABE,即可得出答案.【解答】(1)证明:∵CE是∠DCB的平分线,∴∠DCE=∠BCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠DCE=∠CFB,∴∠BCF=∠CFB,∴BC=BF,∵BC=2AB,∴BF=2AB,∴A为BF的中点,∴AB=AF,∴AB=DC=AF,在△DEC和△AEF中,,∴△DEC≌△AEF(AAS),∴DE=AE;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠BEA=∠EBC,∵△DEC≌△AEF,∴CE=EF,∵BC=BF,∴∠EBC=∠FBE=CBF=35°,∴∠BEA=35°.15.如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上一点,且CF=3BF,连接DB,EF.若∠ACB=90°,AC=12,DE=4.(1)求证:DE=BF;(2)求四边形DEFB的周长.【分析】(1)根据三角形中位线定理得到DE∥BC,DE=BC,根据题意得到BF=BC,等量代换证明结论;(2)根据勾股定理求出DB,证明四边形DBFE为平行四边形,根据平行四边形的周长公式计算即可.【解答】(1)证明:∵点D,E分别是AC,AB的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=3BF,∴BF=BC,∴DE=BF;(2)解:∵点D是AC的中点,AC=12,∴CD=6,∵DE=4,∴BC=8,由勾股定理得:DB===10,∵DE=BF,DE∥BC,∴四边形DBFE为平行四边形,∴四边形DEFB的周长=2×(4+10)=28.16.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC.(1)求证:①△AOE≌△COF;②四边形ABCD为平行四边形;(2)过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE,若∠BAD=100°,∠DBF=32°,求∠ABE的度数.【分析】(1)①由平行线的性质得出∠OAD=∠OCB,可证明△AOE≌△COF(ASA);②证得AD=CB,再由AD∥BC,即可得出结论;(2)由全等三角形的性质得出OE=OF,证出BE=BF,由等腰三角形的性质得出∠OBF=∠OBE=32°,求出∠ABC=116°,则可得出答案.【解答】(1)①证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOE和△COF中,,∴△AOE≌△COF(ASA);②同理可证△AOD≌△COB,∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:∵△AOE≌△COF,∴OE=OF,∵EF⊥BD,∴BE=BF,∴∠OBF=∠OBE=32°,∴∠EBF=64°,∵AD∥BC,∴∠ABC=180°﹣∠BAD=180°﹣100°=80°,∴∠ABE=∠ABC﹣∠EBF=80°﹣64°=16°.17.如图,在▱ABCD中,O是对角线AC、BD的交点,延长边CD到点F,使DF=DC,过点F作EF∥AC,连接OF、EC.(1)求证△ODC≌△EDF.(2)连接AF,已知 ② .(从以下两个条件中选择一个作为已知,填写序号),请判断四边形OCEF 的形状,并证明你的结论.条件①:AF=FC且AC=2DC;条件②:OD=DC且∠BEC=45°.【分析】(1)由DF=DC,EF∥AC,可以证明△ODC≌△EDF;(2)由△ODC≌△EDF推出四边形OCEF是平行四边形,再由OD=DC证明四边形OCEF是矩形,最后由∠BEC=45°即可证明四边形OCEF是正方形.【解答】(1)证明:∵EF∥AC,∴∠EFC=∠DCO,∠FED=∠DOC,∵DF=DC,∴△ODC≌△EDF(AAS);(2)选择②,四边形OCEF是正方形,证明:∵△ODC≌△EDF(AAS),∴OD=DE,CD=DF,∴四边形OCEF是平行四边形,∵OD=DC,∴OD=DE=CD=DF,∴四边形OCEF是矩形,∵∠BEC=45°,∴∠EOC=45°,∴∠OEC=∠EOC,∴OC=CE,∴四边形OCEF是正方形,18.如图所示,平行四边形ABCD的对角线AC与BD交于点O,若AB=,AC=2,BD=4.(1)猜想∠BAO= 90° ,并证明你的猜想.(2)求平行四边形ABCD的周长.(3)求点A到BC边的距离.【分析】(1)先根据平行四边形的性质可得,再利用勾股定理的逆定理即可得出结论;(2)先利用勾股定理可得,再根据平行四边形的周长公式即可得;=BC⋅AE=AB⋅AC即可得.(3)过点A作AE⊥BC于点E,根据S平行四边形ABCD【解析】(1)猜想∠BAO=90°,证明如下:∵四边形ABCD是平行四边形,且AC=2,BD=4,∴,∵,∴OA2+AB2=4=OB2,∴△AOB是直角三角形,且∠BAO=90°,故答案为:90°;(2)∵,∴,则平行四边形ABCD的周长为;(3)如图,过点A作AE⊥BC于点E,∵,=BC⋅AE=AB⋅AC,即,∴S平行四边形ABCD解得,即点A到BC边的距离为.19.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,∠ABC=90°.(1)求证:AC=BD;(2)若点E、F分别为线段AB、AO的中点,连接EF,,BC=6,求AB的长及四边形ABCD的面积.【分析】(1)证明四边形ABCD是矩形,即可解决问题;(2)利用矩形的性质,根据勾股定理可得AB=8,然后利用矩形的面积公式即可解决问题.【解答】(1)证明:∵平行四边形ABCD,∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD;(2)解:∵E,F分别为AB、AO的中点,∴OB=2EF=5;∵四边形ABCD是矩形,∴AC=BD=2OB=10,∵BC=6,∠ABC=90°,∴AB==8,所以矩形ABCD的面积=AB•BC=6×8=48.20.如图,在▱ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG =CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=FG,证出AD∥FH,AD∥FH,进而解答即可.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.在平行四边形ABCD中,点H,G分别在AD,BC上,且AH=BG,点P是线段GH上一点,过点P 作直线EF交AB于E,交CD于F,且∠BEP=∠BGH.(1)如图1,求证:四边形HPFD是平行四边形;(2)如图2,当点P在对角线BD上时,请直接写出图中所有面积相等的四边形.【分析】(1)由平行四边形的性质和已知条件得出EF∥BC∥AD,由平行线的性质得出∠HPF+∠PHD=180°,证出∠D+∠PHD=180°,得出PH∥FD,即可得出结论;(2)证出四边形BGPE是平行四边形,由平行四边形的性质得出△ABD的面积=△BCD的面积,△BEP 的面积=△BGP的面积,△BDH的面积=△PDF的面积,因此四边形AEPH的面积=四边形PGCF的面积,得出四边形ABGH的面积=四边形BCFE的面积,四边形AEFD的面积=四边形GHDC的面积即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥BC,∴EF∥BC∥AD,∴∠HPF+∠PHD=180°,∵∠HPF=∠D,∴∠D+∠PHD=180°,∴PH∥FD,∴四边形HPFD是平行四边形;(2)解:四边形AEPH的面积=四边形PGCF的面积,四边形ABGH的面积=四边形BCFE的面积,四边形AEFD的面积=四边形GHDC的面积;理由如下:∵AB∥CD,PH∥FD,∴AB∥GH∥CD,∴四边形BGPE是平行四边形,∵△ABD的面积=△BCD的面积,△BEP的面积=△BGP的面积,△BDH的面积=△PDF的面积,∴四边形AEPH的面积=四边形PGCF的面积,∴四边形ABGH的面积=四边形BCFE的面积,四边形AEFD的面积=四边形GHDC的面积.22.如图,▱ABCD的对角线AC、BD相交于点O,点F在CD上,连接FO并延长,交AB于点E,交CB 的延长线于点M.(1)求证:OE=OF;(2)若AD=3,AB=,BM=1,直接写出BE的长为 .【分析】(1)通过ASA证明△AOE≌△COF即可得出结论;(2)过点O作ON∥BC交AB于N,由△AON∽△ACB得出ON=,BN=,再由△ONE∽△MBE得出等式求出BE即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),(2)解:过点O作ON∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=,BN=,∵ON∥BC,∴△ONE∽△MBE,∴,即,∴BE=,故答案为:.23.如图1,平行四边形ABCD,E、F为AB、DC中点,连接DE、CE、AF、BF,交点分别为G、H.(1)如图1,求证:四边形EGFH是平行四边形;(2)如图2,若∠BAD=90°时,请直接写出图中所有直角三角形.【分析】(1)根据平行四边形的性质得出AB=DC,AB∥DC,求出AE=CF=BE=DF,根据平行四边形的判定得出四边形AFCE和四边形BFDE都是平行四边形,根据平行四边形的性质得出AF∥CE,DE(2)根据矩形的判定得出四边形ABCD是矩形,根据矩形的性质得出∠BAD=∠ADC=∠BCD=∠ABC =90°,根据全等三角形的判定得出△EAD≌△EBC,求出∠AED=∠BEC=45°,求出∠DEC=90°,得出四边形EGFH是矩形,再得出答案即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵E、F分别为AB、DC的中点,∴AE=BE=AB,DF=CF=DC,∴AE=CF=BE=DF,∴四边形AFCE和四边形BFDE都是平行四边形,∴AF∥CE,DE∥BF,即GF∥EH,EG∥HF,∴四边形EGFH是平行四边形;(2)解:直角三角形有△ADE,△BCE,△ADF,△CBE,△AGE,△AGD,△DGF,△CFH,△BHC,△BHE.24.如图,四边形ABCD是平行四边形,分别以AD,BC为边向外构造等边△ADE和等边△BCF,连接BE,DF,BD.(1)求证:四边形BFDE是平行四边形.(2)若AD与BE交于点G,且AD=BD,∠DFB=45°,,求△BDG的面积.【分析】(1)根据平行四边形的性质和等边三角形的性质证得DE=BF,∠EDB=∠DBF即DE∥BF,进而利用平行四边形的判定即可得证;(2)先求得∠DBF=∠EDB=90°,进而求得∠ADB=∠DBC=30°,∠DEB=∠DBE=45°,过G 作GH⊥BD于H,利用等腰直角三角形的性质和含30°角的直角三角形的性质求得BH、GH、DH,进而求得BD即可得所求面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵等边△ADE和等边△BCF,∴DE=AD,BC=BF,∠EDA=∠CBF=60°,∴DE=BF,∠EDB=∠DBF,∴DE∥BF,∴四边形BFDE是平行四边形;(2)解:∵AD=BD,AD=DE=BF,∴DE=BD=BF,又∵∠DFB=45°,∴∠DBF=180°﹣2∠DFB=90°=∠EDB,∴∠DBC=∠DBF﹣∠CBF=30°,∠DEB=∠DBE=45°,∴∠ADB=∠DBC=30°,过G作GH⊥BD于H,在Rt△GHB中,,∠HBG=45°,BG2=GH2+HB2,∴,在Rt△GHD中,∠GDH=30°,GH=1,∴DG=2GH=2,∴,∴,∴△BDG的面积为=.25.如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=10,CD=24,∠ABD=30°,∠BDC=120°,求EF的长.(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【分析】(1)取BD的中点P,连接EP、FP,由三角形中位线定理得PE∥AB,且PE=5,PF∥CD,且PF=12,再证∠EPF=90°,然后由勾股定理即可得出结论;(2)由三角形中位线定理得PE∥AB,且,PF∥CD,且,再证∠EPF=90°,然后由勾股定理即可得出结论.【解答】(1)解:如图,取BD的中点P,连接EP、FP,∵E,F分别是AD、BC的中点,AB=10,CD=24,∴PE是△ABD的中位线,PF是△BCD的中位线,∴PE∥AB,且,且,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=180°﹣120°=60°,∴∠EPF=∠EPD+∠DPF=90°,在Rt△EPF中,由勾股定理得:,即EF的长为13;(2)证明:由(1)可知,PE是△ABD的中位线,PF是△BCD的中位线,∴PE∥AB,且,PF∥CD,且,∴∠EPD=∠ABD,∠DPF=180°﹣∠BDC.∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴,∴AB2+CD2=4EF2.26.如图,在平行四边形ABCD内有一点E,且∠CBE=∠CDE=90°.(1)请在下面三个结论中,选出一个正确的结论并证明:①∠BED=2CABE;②∠BED﹣∠ABE=90°;③∠BED﹣∠CBD=90°.(2)若BD平分∠CDE,求证:BC=BE.【分析】(1)根据平行四边形的性质可得正确的结论为②∠BED﹣∠ABE=90°,证明即可;(2)在DC上截取DF=DE,证明△BDE≌△BDF(SAS),可得BE=BF,∠BED=∠BFD,进而可以解决问题.【解答】(1)解:正确的结论为:②∠BED﹣∠ABE=90°,证明过程如下:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠C+∠ABC=180°,∵∠CBE=∠CDE=90°,∴∠BED+∠C=180°,∴∠BED=∠ABC,∴∠BED﹣∠ABE=∠ABC﹣∠ABE=∠CBE=90°;(2)证明:如图,在DC上截取DF=DE,∵BD平分∠CDE,∴∠BDE=∠BDF,在△BDE和△BDF中,,∴△BDE≌△BDF(SAS),∴BE=BF,∠BED=∠BFD,由(1)知:∠BED+∠C=180°,∠BFD+∠BFC=180°,∴∠BFC=∠C,∴BF=BC,∴BC=BE.27.在等边△ABC中,D,E,F分别是边AB,BC,CA上的动点,满足DE=EF,且∠DEF=60°.作点E 关于AC的对称点G,连接CG,DG.(1)当点D,E,F在如图1所示的位置时,请在图1中补全图形,并证明四边形DBCG是平行四边形;(2)当AD<BD,AB=DE时,求∠BDE的度数.【分析】(1)根据题意即可补全图形;然后证明△BDE≌△CEF可得CE=BD,进而可以解决问题;(2)根据题意证明△DEF是等边三角形,可得DE=DF,由点E,点G关于AC对称,可得EF=GF,∠FEC=∠FGC,所以DF=GF,进而可以解决问题.【解析】(1)如图1,即为补全的图形,证明:在等边△ABC中,∠A=∠B=∠ACB=60°,∵点E,点G关于AC对称,∴∠ACG=∠ACB=60°,CE=CG,∴∠A=∠ACG,∴AB∥CG,即BD∥CG,∵∠DEF=60°,∠BED+∠CEF+∠DEF=180°,∴∠BED+∠CEF=120°,在△BDE中,∠BDE+∠BED=180°﹣∠B=120°,∴∠BDE=∠CEF,在△BDE与△CEF中,,∴△BDE≌△CEF(AAS),∴CE=BD,∴CG=CE=BD,∵BD∥CG,∴四边形DBCG是平行四边形;(2)∵四边形DBCG是平行四边形,∴BC=DG,∠DGC=∠B=60°,∵BC=AB,AB=DE,∴DG=DE,∵DE=EF,∠DEF=60°,∴△DEF是等边三角形,∴DE=DF,∵点E,点G关于AC对称,∴EF=GF,∠FEC=∠FGC,∴DF=GF,∴DG=DF=GF,在△DFG中,DG2=DF2+GF2,∴∠DFG=90°,∵DF=GF,∴∠FDG=∠FGD=45°,∴∠CGF=∠CGD﹣∠FGD=15°,∴∠BDE=∠CEF=∠CGF=15°.28.如图1,在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)当∠ABC=90°时,G是EF的中点,联结DB,DG(如图2),请直接写出∠BDG的度数(2)当∠ABC=120°时,FG∥CE,且FG=CE,分别联结DB、DG(如图3),求∠BDG的度数.【分析】(1)根据∠ABC=90°,G是EF的中点可直接求得;(2)延长AB、FG交于H,连接HD.易证平行四边形AHFD为菱形,进而可得△ADH,△DHF为全等的等边三角形,再证明△BHD≌△GFD,所以可得∠BDH=∠GDF,然后即可求得答案.【解析】(1)连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°,在△BEG与△DCG中,,∴△BEG≌△DCG(SAS),∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°;(2)延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°.∵FG=CE,CE=CF,CF=BH,∴BH=GF.在△BHD与△GFD中,,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF,∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.29.在平行四边形ABCD中,∠C=45°,AD=BD,点P为边CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,求证:PA=PE;(2)如图②,当点P在线段CD上时,求证:DE﹣DA=DP.【分析】(1)连接PB,根据题意可得△BDC是等腰直角三角形,再证明△ADP≌△EBP,即可;(2)过点P作PF⊥CD交DE于点F,可得∠DPA=∠FPE,再结合平行四边形的性质可得△ADP≌△EFP,可得AD=EF,再由勾股定理可得,即可.【解答】证明:(1)如图,连接PB,∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∵AD=BD,∴BC=BD,∵∠C=45°,∴∠BDC=∠C=45°,∴△BDC是等腰直角三角形,∵点P为线段CD的中点,∴DP=BP,∠CPB=90°,∵AD∥BC,∴∠ADP=∠PBE=135°,∵EP⊥AP,∴∠APE=∠DPB=90°,∴∠APD=∠BPE,∴△ADP≌△EBP(ASA),∴PA=PE;(2)证明:如图,过点P作PF⊥CD交DE于点F,∵PF⊥CD,EP⊥AP,∴∠DPF=∠APE=90°,∴∠DPA=∠FPE,∵四边形ABCD是平行四边形,∴∠C=∠DAB=45°,AB∥CD,∵AD=BD,∴∠DAB=∠DBA=∠C=∠CDB=45°,∴∠ADB=∠DBC=90°,∴∠PFD=45°,∴∠PFD=∠PDF=45°,∴PD=PF,∴∠PDA=∠PFE=135°,∴△ADP≌△EFP(ASA),∴AD=EF,∵PD=PF,∠PFD=∠PDF=45°,∴△PDF是等腰直角三角形,∴,∵DE=DF+EF,∴DE=DF+DA,∴.30.如图,在▱ABCD中,已知AD=15cm,点P在AD上以1cm/s的速度从点A向点D运动,点Q在BC 上以4cm/s的速度从点C出发往返运动,两点同时出发,当点P到达点D时停止运动(同时点Q也停止),设运动时间为t(s)(t>0).(1)当点P运动t秒时,线段PD的长度为 (15﹣t) cm;当点P运动2秒时,线段BQ的长度为 7 cm;当点P运动5秒时,线段BQ的长度为 5 cm;(2)若经过t秒,以P、D、Q、B四点为顶点的四边形是平行四边形.请求出所有t的值.【分析】(1)由路程=速度×时间,可求解;(2)分四种情况讨论,由平行四边形的性质,列出等式可求解.【解析】(1)∵点P在AD上以1cm/s的速度从点A向点D运动,∴AP=tcm,∴PD=(15﹣t)cm,当点P运动2秒时,CQ=2×4=8cm,∴BQ=15﹣8=7cm,当点P运动5秒时,CQ=4×5=20cm,∴BQ=20﹣15=5cm,故答案为:(15﹣t);7;5;(2)∵P在AD上运动,∴t≤15÷1=15,即0<t≤15,∵以点P、D、Q、B为顶点的平行四边形,已有PD∥BQ,还需满足DP=BQ,①当点Q的运动路线是C﹣B时,BQ=15﹣4t,由题意得:15﹣t=15﹣4t,t=0 不合题意,②当点Q的运动路线是C﹣B﹣C时,BQ=4t﹣15,由题意得:15﹣t=4t﹣15,解得:t=6;③当点Q的运动路线是C﹣B﹣C﹣B时,BQ=45﹣4t,由题意得:15﹣t=45﹣4t,解得:t=10;④当点Q的运动路线是C﹣B﹣C﹣B–C时,BQ=4t﹣45,由题意得:15﹣t=4t﹣45,解得:t=12;综上所述,t的值为6或10或12.。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

平行四边形的性质、课中强化(10分钟训练)1•如图3,在平行四边形 ABCD 中,下列各式不一定正确的是( )A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为( )3. 如图5,」ABCD 中,EF 过对角线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平行四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平行四边形 ABCD 中,点E 、F 在对角线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则厶DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32•如图4,二ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1•二ABCD中,/A比/ B大20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2•以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作(A.0个或3个B.2个C.3个D.4个3•如图9 所示,在—ABCD 中,对角线AC、BD交于点0,下列式子中一定成立的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4•如图10,平行四边形ABCD中,对角线AC、BD相交于点O ,将厶AOD平移至△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5•如图11,在平行四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平行四边形的个数共有()6•如图12,平行四边形ABCD中,AE丄BD , CF丄BD,垂足分别为E、F,求证:/ BAE= / DCF.7、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138•如图14,已知四边形ABCD是平行四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由•19.1.2平行四边形的判定二、课中强化(10分钟训练)1•如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平行四边形.4. 如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平行四边形有,理由分别是图4 图53.如图5,E、F是平行四边形ABCD对角线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1•以不在同一直线上的三个点为顶点作平行四边形最多能作( )是平行四边形的是()4•已知四边形 ABCD 的对角线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平行四边形的有(用序 号表示): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形 请选取一种情形举出反例说明平行四边形?6•如图,E 、F 是四边形ABCD 的对角线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平行四边形•A.4个B.3个C.2个D.1个2•下面给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33•九根火柴棒排成如右图形状,图中 ____ 个平行四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5•若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线 ABCD 是平行四边形的,,另17•如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形(直接写出结果,不要求证明): ___________________________8•如图,已知二ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平行四边形•二、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平行四边形,所以OA=OC. 又0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平行四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3•解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4•解析:由平行四边形的性质AB // DC,知/ ABE= / F,结合角平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等角对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD.•••/ ABE= / CDF.AB CD,在厶ABE和厶CDF中,ABE CDF ,BE DF .•△ ABE ◎△ CDF.• AE=CF.6. 解:•••/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .• AB=2BE=4(cm). • CD=4(cm). • CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同一直线上时,可作3 个. 答案:A3. 解析:平行四边形对角线互相平分,所以OA=OC. 答案:B4. 解析:由平行四边形的对角线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B5•解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,二ABCD.答案:C6•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD. /-Z ABE= / CDF •/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .•••△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:•••四边形ABCD是平行四边形,• AB=CD, Z B= Z D.在厶ABE和厶CDF中,AB CD,B D, •/△ ABE 也厶CDF.BE DF.8•答案:(1)证明:•••四边形ABCD是平行四边形,• AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/•/ ADG= Z AGD. • AD=AG •同理,BC=BF.又•••四边形ABCD 是平行四边形,• AD=BC,AG=BF. • AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2•/ AD // BC,/•/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .又v EF=EG ,•△ EFG为等腰直角三角形.二、课中强化(10分钟训练)1. 解析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平行四边形.当E、F满足Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.又AD=BC,可证出厶ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平行四边形.类似地可说明D也可以.答案:B2. 解析:因为AB^DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ;Z BAE= / CDF等.答案:BE=DF或Z BAE= Z CDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填①AD // BC,② AB=CD,③Z A+ Z B=180,④Z C+ Z D=180 等•答案:不唯一,以上几个均可•1 15•答案:证明:T ABCD, A A B£C D.T M、N 是中点,「. BM=—AB,DN= CD. /• B M£DN.2 2A四边形BMDN也是平行四边形•三、课后巩固(30分钟训练)1•解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种答案:B2•解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD是平行四边形需满足Z A= Z C,Z B= Z D,因此Z A与Z C,Z B与Z D所占的份数分别相等•答案:D3•答案:有3两组对边分别相等的四边形是平行四边形4•解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形•如图,AB=CD且AD // BC,而四边形ABCD不是平行四边形•5•解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可20,16或20,14为对角线,另一条为一边可画平行四边形6•答案:证明:(1)•/ DF // BE ,•••/ AFD= / CEB.又••• AF=CE , DF=BE AFD CEB.(2)由(1)△ AFD CEB 知AD=BC,/ DAF= / BCE ,• AD // BC. •四边形ABCD是平行四边形.1 17. 答案:证明:(1) •/ E 为AB 的中点,• AE=EB= —AB. •••DC= — AB , DC // AB ,2 2• AE DC , EB DC. •四边形AECD和四边形EBCD都是平行四边形.• AD=EC , ED=BC. 又v AE=BE , •△AED ◎△ EBC.(2) △ ACD , △ ACE , △ CDE(写出其中两个三角形即可)8. 答案:证明:在—ABCD 中,AD=BC,AD // BC, DAC= / BCA.又•••/ DEA= / BFC=90 , • Rt△ ADE 也Rt △ CBF.A DE=BF.同理,可证DF=BE. •四边形DEBF为平行四边形.9.答案:证明:(1)在L d ABCD 中,AD=CB,AB=CD, / D= / B. •/ E、F 分别是AB、CD 的中点,• DF=2CD,BE=2A B.• DF=BE. •△ AFD心CE B.⑵在二ABCD 中,AB=CD,AB // CD.由(1)得BE=DF, • AE=CF.•四边形AECF是平行四边形。

平行四边形的判定及性质巩固练习(含参考答案)

平行四边形的判定及性质巩固练习(含参考答案)

平行四边形的判定及性质巩固练习题一.选择题(共6小题)1.下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC2.在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个3.依据所标数据,下列一定为平行四边形的是()A.B.C.D.4.在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO5.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④6.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的条件是()A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3二.填空题(共2小题)7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB是平行四边形,则点D的坐标是.8.如图,在平面直角坐标系中.已知点A(3,0),B(﹣1,0),C(0,2),则以A,B,C为顶点的平行四边形的第四个顶点D的坐标为.三.解答题(共10小题)9.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.11.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.12.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.13.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO,求证:四边形ABCD是平行四边形.14.如图,已知四边形ABCD为平行四边形,AE,CF分别平分∠BAD和∠BCD,交BD于点E,F,连接AF,CE.(1)若∠BCF=65°,求∠ABC的度数;(2)求证:四边形AECF是平行四边形.15.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.16.如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=12,求△OEF的周长.17.已知:如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别在AO,CO上,且AE=CF,求证:∠EBO=∠FDO.18.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连接BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.2023年03月03日124****5100的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.2.在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③正确.可证明等角的补角相等;④错误.不可证明全等.故选:B.3.依据所标数据,下列一定为平行四边形的是()A.B.C.D.【解答】解:A、只有一组对边平行不能确定是平行四边形,故A选项不符合题意;B、80°+110°≠180°,故B选项不符合条件;C、不能判断出任何一组对边是平行的,故C选项不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;故选:D.4.在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO【解答】解:判定四边形ABCD是平行四边形添加的条件是OA=OC,理由如下:∵AB∥CD,∴∠ABD=∠CDB,∠BAO=∠OCD,∵OA=OC,∴△AOB≌△COD(AAS),∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,故选:D.5.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:D.6.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的条件是()A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3【解答】解:根据平行四边形的两组对角分别相等,可知A正确.故选:A.二.填空题(共2小题)7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB是平行四边形,则点D的坐标是(+1,1).【解答】解:∵A(,0),∴OA=,∵四边形OADB是平行四边形,∴BD=OA=,BD∥OA,∵B(1,1),∴D(+1,1),故答案为:(+1,1).8.如图,在平面直角坐标系中.已知点A(3,0),B(﹣1,0),C(0,2),则以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(4,2)或(﹣4,2)或(2,﹣2).【解答】解:①如图1,以AB为边时,A(3,0)、B(﹣1,0)两点之间的距离为:3﹣(﹣1)=4,∴第四个顶点的纵坐标为2,横坐标为0+4=4,或0﹣4=﹣4,即D(4,2)或D′(﹣4,2);②如图2,以AB为对角线时,∵从C(0,2)到B(﹣1,0),是横坐标减1,纵坐标减2,∴第四个顶点D的横坐标为:3﹣1=2,纵坐标为0﹣2=﹣2,即D(2,﹣2)综上所述,第四个顶点D的坐标为(4,2)或(﹣4,2)或(2,﹣2).故答案为:(4,2)或(﹣4,2)或(2,﹣2).三.解答题(共10小题)9.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DF A=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.11.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.12.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.13.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO,求证:四边形ABCD是平行四边形.【解答】证明:∵AB∥CD,∴∠DCO=∠BAO,在△DCO和△BAO中,,∴△DCO≌△BAO(ASA),∴DO=BO,∵AO=CO,∴四边形ABCD是平行四边形.14.如图,已知四边形ABCD为平行四边形,AE,CF分别平分∠BAD和∠BCD,交BD于点E,F,连接AF,CE.(1)若∠BCF=65°,求∠ABC的度数;(2)求证:四边形AECF是平行四边形.【解答】(1)解:∵CF平分∠BCD,∴∠BCD=2∠BCF=65°×2=130°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC=180°﹣∠BCD=180°﹣130°=50°;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵∠BAE=∠BAD,∠DCF=∠DCB,∴∠BAE=∠DCF,∴△ABE≌△CDF(ASA).∴∠AEB=∠CFD,AE=CF,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF是平行四边形.15.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,∴BE=CD;(2)∵BE=AB,BF平分∠ABE,∴AF=EF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴DF=CF,又∵AF=EF,∴四边形ACED是平行四边形.16.如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=12,求△OEF的周长.【解答】证明:(1)∵四边形ABCD是平行四边形∴AO=CO,BO=DO,∵E、F、G、H分别是AO、BO、CO、DO的中点.∴EO=AO,GO=CO,FO=BO,HO=DO∴EO=GO,FO=HO∴四边形EFGH是平行四边形;(2)∵AC+BD=36,∴AO+BO=18,∴EO+FO=9∵E、F分别是AO、BO的中点,∴EF=AB,且AB=12∴EF=6,∴△OEF的周长=OE+OF+EF=9+6=1517.已知:如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别在AO,CO上,且AE=CF,求证:∠EBO=∠FDO.【解答】证明:连接DE、BF,如图所示:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE∥DF,∴∠EBO=∠FDO.18.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连接BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

平行四边形的性质二、课中强化(10分钟训练)1.如图3,在平行四边形ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图3 图4 图52.如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE 的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm3.如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________.4.如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm.图6 图75.如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF 的长.图8三、课后巩固(30分钟训练)1.ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°2.以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( )A.0个或3个B.2个C.3个D.4个3.如图9所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是( )A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD图9 图10 图114.如图10,平行四边形ABCD中,对角线AC、BD相交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( )A.1条B.2条C.3条D.4条5.如图11,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )A.7个B.8个C.9个D.11个6.如图12,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图127、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ABE≌△CDF.图138.如图14,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由.图1419.1.2 平行四边形的判定二、课中强化(10分钟训练)1.如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB2.如图4,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.图4 图5 图63.如图5,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.4.如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.5.如图,在ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.三、课后巩固(30分钟训练)1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个2.下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶33.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.4.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?6.如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点. (1)求证:△AED ≌△EBC ; (2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.8.如图,已知ABCD 中DE ⊥AC,BF ⊥AC,证明四边形DEBF 为平行四边形.9.如图,已知ABCD 中,E 、F 分别是AB 、CD 的中点.求证:(1)△AFD ≌△CEB;(2)四边形AECF 是平行四边形.二、课中强化(10分钟训练)1答案:D2.解析:因为四边形ABCD 是平行四边形,所以OA=OC.又OE ⊥AC ,所以EA=EC.则△DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD.在平行四边形ABCD 中,AB=CD ,AD=BC , 且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3.解析:OE=OF=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4.解析:由平行四边形的性质AB ∥DC,知∠ABE=∠F ,结合角平分线的性质∠ABE=∠EBC ,得∠EBC=∠F ,再根据等角对等边得到BC=CF=7,再由AB=CD=4,AD=BC=7得到DF=DE=AD-AE=3.答案:35.答案:证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD.∴∠ABE=∠CDF.在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE CDF ABE CD AB∴△ABE ≌△CDF.∴AE=CF.6.解:∵∠EAF=60°,AE ⊥BC,AF ⊥CD,∴∠C=120°.∴∠B=60°.∴∠BAE=30°.∴AB=2BE=4(cm).∴CD=4(cm).∴CF=1(cm).三、课后巩固(30分钟训练)1答案:C2.解析:分两种情况,A 、B 、C 三点共线时,可作0个,当点A 、B 、C 不在同一直线上时,可作3个.答案:A3.解析:平行四边形对角线互相平分,所以OA=OC.答案:B4.解析:由平行四边形的对角线互相平分知OA=OC ;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B5.解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH ,HOFC ,DEFC ,EAGO ,OGBF ,EABF ,DAGH ,HGBC ,ABCD.答案:C6.答案:证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD.∴∠ABE=∠CDF ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°. ∴△ABE ≌△CDF.∴∠BAE=∠DCF.7、答案:证明:∵四边形ABCD 是平行四边形,∴AB=CD,∠B=∠D.在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE D B CD AB ∴△ABE ≌△CDF.8.答案:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD.∴∠AGD=∠CDG.∵∠ADG=∠CDG ,∴∠ADG=∠AGD.∴AD=AG .同理,BC=BF.又∵四边形ABCD 是平行四边形,∴AD=BC,AG=BF.∴AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:由(1)证明易知∠AGD=∠ADG=21∠ADC ,∠BFC=∠BCF=21∠BCD. ∵AD ∥BC ,∴∠ADC+∠BCD=180°.∴∠AGD+∠BFC=90°.∴∠GEF=90°.又∵EF=EG ,∴△EFG 为等腰直角三角形.二、课中强化(10分钟训练)1.解析:当E 、F 满足AE=CF 时,由平行四边形的对角线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF 是平行四边形.当E 、F 满足∠ADE=∠CBF 时,因为AD ∥BC ,所以∠DAE=∠BCF.又AD=BC ,可证出△ADE ≌△CBF ,所以DE=BF ,∠DEA=∠BFC.故∠DEF=∠BFE.因此DE ∥BF ,可知四边形DEBF 是平行四边形.类似地可说明D 也可以.答案:B2.解析:因为AB DC ,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD 是平行四边形;DC=EF ,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF 是平行四边形.答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形3.解析:根据平行四边形的定义和判定方法可填BE=DF ;∠BAE=∠CDF 等.答案:BE=DF 或∠BAE=∠CDF 等任何一个均可4.解析:根据平行四边形的判定定理,知可填①AD ∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等.答案:不唯一,以上几个均可.5.答案:证明:∵ABCD,∴AB CD.∵M 、N 是中点,∴BM=21AB,DN=21CD.∴BM DN. ∴四边形BMDN 也是平行四边形.三、课后巩固(30分钟训练)1.解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种.答案:B2.解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD 是平行四边形需满足∠A=∠C ,∠B=∠D ,因此∠A 与∠C ,∠B 与∠D 所占的份数分别相等.答案:D3.答案:有3 两组对边分别相等的四边形是平行四边形4.解析:本题是条件开放性试题,要使四边形ABCD 是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以 评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD 是平行四边形.如图,AB=CD 且AD ∥BC ,而四边形ABCD 不是平行四边形.5.解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16或20,14为对角线,另一条为一边可画平行四边形.6.答案:证明:(1)∵DF ∥BE ,∴∠AFD=∠CEB.又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB.(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF=∠BCE ,∴AD ∥BC.∴四边形ABCD 是平行四边形.7.答案:证明:(1)∵E 为AB 的中点,∴AE=EB=21AB.∵DC=21AB ,DC ∥AB , ∴AE DC ,EB DC.∴四边形AECD 和四边形EBCD 都是平行四边形. ∴AD=EC ,ED=BC.又∵AE=BE ,∴△AED ≌△EBC.(2)△ACD ,△ACE ,△CDE(写出其中两个三角形即可)8.答案:证明:在ABCD 中,AD=BC,AD ∥BC,∴∠DAC=∠BCA.又∵∠DEA=∠BFC=90°,∴Rt △ADE ≌Rt △CBF.∴DE=BF.同理,可证DF=BE.∴四边形DEBF 为平行四边形.9.答案:证明:(1)在ABCD 中,AD=CB,AB=CD,∠D=∠B.∵E 、F 分别是AB 、CD 的中点, ∴DF=21CD,BE=21AB.∴DF=BE.∴△AFD ≌△CEB. (2)在ABCD 中,AB=CD,AB ∥CD.由(1)得BE=DF,∴AE=CF.∴四边形AECF 是平行四边形.。

北师大版八年级数学下册 《平行四边形及其性质》巩固练习(提高) 含答案解析

北师大版八年级数学下册 《平行四边形及其性质》巩固练习(提高)  含答案解析

【巩固练习】一.选择题1.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).A.8cm和16cmB.10cm和16cmC.8cm和14cmD.8cm和12cm2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数3.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).A.5B.6C.8D.124. 国家级历史文化名城--金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等5.(2015•应城市二模)如图,口ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm6.(2016春·无锡期末)如图,在平行四边形ABCD中,点E,F分别在AD和BC上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4B.5C.6D.7二.填空题7.(2015春•监利县期末)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.8. 如图,在Y ABCD中,E是BA延长线上一点,AB=AE,连结EC交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.9. 在Y ABCD中, ∠A的平分线分BC成4cm和3cm的两条线段, 则Y ABCD的周长为_______________.10.(2016·甘肃模拟)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为_________.11. 如图,在周长为20cm的Y ABCD中,AB≠AD,AC、BD 相交于点O,OE⊥BD交AD于E,则△ABE的周长为________.12.如图,在Y ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.4三.解答题13.(2015•老河口市模拟)如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于E,F.(1)作∠BCD的角平分线CF(尺规作图,保留痕迹,不写作法);(2)求证:AE=CF.14. 如图,过平行四边形ABCD 内任一点P 作各边的平行线分别交AB 、BC 、CD 、DA 于E 、F 、G 、H .求证:S 平行四边形ABCD -S 平行四边形AEPH =2S △AFG .15. 如图,四边形ABCD 是平行四边形,△A′BD 与△ABD 关于BD 所在的直线对称,A′B 与DC 相交于点E ,连接AA′.(1)请直接写出图中所有的等腰三角形(不另加字母);(2)求证:A′E=CE .【答案与解析】一.选择题1.【答案】B ;【解析】设对角线长为22a b ,,需满足12a b +>,只有B 选项符合题意.2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形.3.【答案】D ;【解析】过C 点作CF 垂直于BD 的延长线,CF 就是两短边间的距离,如图所示,∠C =30°,CF =11241222CD =⨯=.4.【答案】C ;【解析】∵AB ∥EF ∥DC ,BC ∥GH ∥AD∴GH 、BD 、EF 把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四变形的面积一分为二,据此可从图中获得S 黄=S 蓝,S 绿=S 红,S (紫+黄+绿)=S (橙+红+蓝),根据等量相减原理知S 紫=S 橙,∴A 、B 、D 说法正确,再考查S 红与S 蓝显然不相等.故选C ..5.【答案】C ;【解析】解:∵四边形ABCD 是平行四边形,∴AB=DC ,AD=BC ,OA=OC ,∵口ABCD 的周长为20cm ,∴AD+DC=10cm ,又∵OE ⊥AC ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm ;故选:C . 6.【答案】D ;【解析】设平行四边形ABCD 的面积是S ,则S △CBE =S △CDF =12S 由图可知,△CDF 面积+△CBE 面积+(S 1+S 4+S 3)-S 2=平行四边形ABCD 的面积,∴S= S △CBE +S △CDF +2+ S 4+3-12,即S=12S+12S+2+ S 4+3-12, 解得S 4=7. 二.填空题7.【答案】2cm 或8cm ;【解析】解:当M 在b 下方时,距离为5﹣3=2cm ;当M 在a 、b 之间时,距离为5+3=8cm .故答案为:2cm 或8cm.8.【答案】6;【解析】易证△AEF ≌△DCF ,所以AF =DF ,由CF 平分∠BCD ,AD ∥BC 可证AB =DC =DF=3,所以BC =AD =6.9.【答案】20cm 或22cm ;【解析】由题意,AB 可能是4,也可能是3,故周长为20cm 或22cm .10.【答案】3;【解析】12PAB PCD ABCD ACD S S S S ∆+==Y △△,ACD PCD PAB S S S ∆-=△△, 则PAC ACD PCD PAD PAB PAD S S S S S S ∆∆∆∆∆=--=-△=5-2=3.11.【答案】10cm ;【解析】因为BO =DO ,OE⊥BD,所以BE =DE ,△ABE 的周长为AB +AE +DE =120102⨯=. 12.【答案】7;【解析】可证△ABE 与△CEF 均为等腰三角形,AB =BE =6,CE =CF =9-6=3,由勾股定理算得AG =EG =2,所以EF =AF -AE =5-4=1,△CEF 的周长为7.二.解答题13.【解析】解:(1)如图;①以B 为圆心,以任意长为半径化弧,分别与AB ,BC 的交于点M ,N ,②分别以M ,N 为圆心,大于MN 为半径画弧,两弧交于点P ,③作射线BP ,交CD 于点F ,则BF 即为所求.(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∠D=∠B ,∠DAB=∠DCB ,又∵AE 平分∠BAD ,CF 平分∠BCD , ∴,,∴∠DAE=∠BCF ,在△DAE 和△BCF 中,,∴△DAE ≌△BCF (ASA ),∴AE=CF .14.【解析】 证明:S △AFG =S 平行四边形-(S △AGD +S △GFC +S △ABF ),=S 平行四边形-12(S 平行四边形AEPH +S 平行四边形HPGD +S 平行四边形FPGC +S 平行四边形BEPF +S 平行四边形AEPH ), =S 平行四边形A B C D −12(2S 平行四边形A E P H +S 平行四边形H P G D +S 平行四边形F P G C +S 平行四边形B E P F ),=S 平行四边形A B C D −12(S 平行四边形A E P H +S 平行四边形A B C D ), =12(S 平行四边形ABCD -S 平行四边形AEPH ),∴S 平行四边形ABCD -S 平行四边形AEPH =2S △AFG .15.【解析】(1)解:等腰三角形有△DA′A,△A′BA,△EDB .(2)证明:∵平行四边形ABCD ,∴∠C=∠DAB ,AD=BC ,∵A′BD 与△ABD 关于BD 所在的直线对称, ∴△A′DB≌△ADB ,∴AD=A′D,∠DA′B=∠DAB ,∴A′D=BC,∠C=∠DA′B,在△A′DE 和△CEB 中===C DA ECEB A ED A D BC∠∠'∠∠''⎧⎪⎨⎪⎩,∴△A′DE≌△CEB ,∴A′E=CE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形性质提高练习及答案1如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC .(1)求证:OE=OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求□ABCD 的周长.2.在面积为15的□ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,求CE+CF 的值3如图,□ABCD 中,点E 、F 分别在AD 、AB 上,依次连接EB 、EC 、FC 、FD ,图中阴影部分的面积分别为S 1、S 2、S 3、S 4,已知S 1=2、S 2=12、S 3=3,求S 4的值4如图,□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,求ABCD 的面积.5.如图,在?ABCD 中,E 、F 分别为边AD 、BC 的中点,对角线AC 分别交BE ,DF 于点G 、H .求证:AG=CH .6如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,求阴影部分的面积.7如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.8在□ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针(直旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.接写出结论不必证明)答案1如图,□ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求□ABCD的周长.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出?ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBO OD=OB ∠FOD=∠EOB ,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴?ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.2在面积为15的□ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,求CE+CF 的值2平行四边形的性质和面积,勾股定理。

依题意,有如图的两种情况。

设BE=x,DF=y。

如图1,由AB=5,BE=x,得。

由平行四边形ABCD的面积为15,BC=6,得,解得(负数舍去)。

由BC=6,DF=y,得。

由平行四边形ABCD的面积为15,AB=5,得,解得(负数舍去)。

∴CE+CF=(6-)+(5-)=11-。

如图2,同理可得BE= ,DF=。

∴CE+CF=(6+)+(5+)=11+。

故选C。

3如图,□ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S 3、S4,已知S1=2、S2=12、S3=3,求S4的值【考点】平行四边形的性质.【分析】影阴部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)-S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S ,则S △CBE=S △CDF=12S , 由图形可知,△CDF 面积+△CBE 面积+(S1+S4+S3)-S2=平行四边形ABCD 的面积∴S=S △CBE+S △CDF+2+S 4+3-12,即S=12S+12S+2+S 4+3-12, 解得S 4=7,故选(D ).【点评】本题主要考查了平行四边形的性质,解决问题的关键是明确各部分图形面积的和差关系:平行四边形ABCD 的面积=△CDF 面积+△CBE 面积+(S1+S4+S3)-S2.4如图,□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,求ABCD 的面积.【考点】平行四边形的性质;三角形的面积;勾股定理的逆定理.【专题】压轴题;转化思想.【分析】求?ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积.【解答】解:作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE 中,∵BD2+DE2=144+81=225=BE2,∴△BDE 是直角三角形,且∠BDE=90°,过D 作DF ⊥BE 于F ,则DF=BD?DEBE=365,∴S?ABCD=BC?FD=10×365=72.故选D.【点评】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.(2012?淄博模拟)则在?ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,则可证得△BEG≌△DCG,然后即可求得答案.【解答】解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD和△GFD中,BH=GF∠BHD=∠GFDDH=DF,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF,∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.故选C.【点评】此题主要考查平行四边形的性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.6.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,求阴影部分的面积.【考点】平行四边形的性质.【专题】压轴题.【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【解答】解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为:40.【点评】本题综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.7如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.【分析】(1)根据三角形中位线定理得MN=12AD,根据直角三角形斜边中线定理得BM=1AD,根据直角三角形斜边中线定理得BM=12AC,由此即可证明.首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在RT△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=2【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8.(2013?沈阳模拟)在?ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)【考点】平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.【专题】压轴题.【分析】(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.【解答】(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,AF=BC∠F=∠CBG=45°BG=FG,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°-∠FBG-∠ABC=180°-60°-60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,FG=BG∠AFG=∠CBGAF=BC,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°-60°=120°,∴∠AGC=180°-(∠GAC+∠ACG)=180°-120°=60°,∴△AGC是等边三角形.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.。

相关文档
最新文档