煤制甲醇生产设计开题报告

合集下载

刘倩倩开题报告

刘倩倩开题报告

三、课题主要研究内容
1、焦炉煤气制甲醇工艺流程
2、各工段基本原理 3、主要设备性能
4、各工段工艺操作指标
课题预期目标和成果
1、根据自己所学理论与实践相结合 2、在实习期间掌握各工艺流程、设备、工艺指 标 3、及时发现问题、解决问题 4、按时完成课题设计
五、进度安排
2月24日--3月20日课外实习,收集资料 3月20日--3月24日完成文献综述、开题报告 3月25日--4月15日对收集的资料进行整理分析 4月16日--5月15日开始课题设计 5月16日--6月01日完成论文初稿 6月02日--6月14日论文修改,完成论文二稿 6月15日--6月19日论文修改,论文定稿 6月20日--6月25日 论文答辩
欢迎各位老师 给出宝贵意见和建议
二、国内研究现在我国首次 开发焦炉煤气富氧部分氧化催化转化技术成 功,并在江西建设11万吨/a尿素厂。

2004年该院开发焦炉煤气纯氧部分氧化催化 转化技术成功。在云南曲靖 8 万吨 /a 甲醇, 自2004年一次投产成功,至今运行正常,相 继有河北建韬也建设了焦炉煤气制甲醇装置。

过去焦炉煤气在钢厂用于燃料,大中城市用于城市 煤气,近几年城市用气大都改为天然气,因此焦炉煤 气作化工原料用途越来越迫切,如北京、上海、天津、 南京等。
课题研究背景和意义

山西2005年焦炭8000万吨,如果焦炉煤气全 部收回,除自用外,每年可以外供煤气约 160 亿立方米,山西太原市,全部地级市将改为天 然气或煤层气,除钢铁厂估计用 10 ~ 12% ,炉 窑等其他企业用10%,因此可还剩128亿,按热 值相当西气东输的1/2。可生产甲醇640万吨/a, 或尿素1000万吨/a。 用焦炉煤气生产甲醇,合成氨技术先进、成熟、 可靠。

煤制甲醇开题报告总结

煤制甲醇开题报告总结

煤制甲醇开题报告总结煤制甲醇开题报告总结随着全球能源需求的不断增长和环境问题的日益突出,寻找可再生能源和清洁能源的替代品成为当今社会的重要任务之一。

在这个背景下,煤制甲醇作为一种可再生和清洁能源的替代品备受关注。

本文将对煤制甲醇的开题报告进行总结。

首先,煤制甲醇的背景和意义是本文的重点之一。

煤作为我国主要的能源来源之一,其资源储量丰富,但同时也带来了环境污染和碳排放等问题。

而甲醇作为一种清洁燃料,具有低碳排放、高燃烧效率等优点,可以有效解决煤炭利用过程中的环境问题。

因此,煤制甲醇具有重要的战略意义和应用前景。

其次,本文将对煤制甲醇的制备技术进行介绍。

煤制甲醇的制备过程主要包括煤气化、合成气的制备和甲醇的合成三个步骤。

煤气化是将煤转化为合成气的过程,合成气则是由一氧化碳和氢气组成的混合气体。

而甲醇的合成则是通过将合成气经过催化剂的作用,使其发生化学反应生成甲醇。

煤制甲醇的制备技术主要包括传统的合成气法和新兴的煤炭直接液化法。

两种方法各有优劣,但都可以实现高效率和低成本的甲醇合成。

接下来,本文将对煤制甲醇的应用领域进行探讨。

甲醇作为一种多功能的化工原料,具有广泛的应用前景。

首先,甲醇可以作为清洁燃料广泛应用于交通运输领域,可以替代传统的汽油和柴油,减少尾气排放和空气污染。

其次,甲醇还可以作为化工原料用于合成其他化学品,如塑料、纺织品、涂料等。

此外,甲醇还可以作为燃料电池的氢源,用于发电和供暖等领域。

煤制甲醇的应用领域广泛,具有巨大的市场潜力。

最后,本文将对煤制甲醇的挑战和展望进行分析。

煤制甲醇虽然具有广阔的应用前景,但也面临一些挑战。

首先,煤制甲醇的制备过程中会产生大量的二氧化碳,如何处理和减少二氧化碳的排放是一个重要问题。

其次,煤制甲醇的制备技术还需要进一步完善和提高效率,以降低成本和提高产量。

未来,随着科技的不断发展和创新,煤制甲醇的制备技术将不断改进,其应用领域也将得到进一步拓展。

总之,煤制甲醇作为一种可再生和清洁能源的替代品,具有重要的战略意义和应用前景。

煤制甲醇生产设计开题报告

煤制甲醇生产设计开题报告
毕业论文
开题报告
课题名称
年产10万吨煤制甲醇生产车间工艺设计
课题类型
工程设计Z
导师姓名
学生姓名
学 号

甲醇既是一种应用广泛的重要有机化工原料,又是一种性能优良的清洁能源和车用燃料。作为化工原料,可以用来生产甲醛、甲酸、甲酸甲酯、甲胺、乙酸、乙酸甲酯、丙烯酸甲酯、碳酸二甲酯、甲基丙烯酸甲酯、对苯二甲酸二甲酯、二甲醚、甲基叔丁基醚等一系列有机化工产品。随着碳一化工的发展,由甲醇出发合成乙二醇、乙醛、乙酸等工艺日益受到重视。甲醇作为原料,在农药、医药、染料、三大合成材料等工业中有着重要的地位。甲醇还可经生物发酵生产甲醇蛋白,用作饲料添加剂。
甲醇作为性能优良的洁净能源,可直接用作汽车燃料,也可与汽油掺合使用;甲醇可直接用于发电装置发动机的燃料,或经ZSM-分子筛催化剂转化为汽油;甲醇可与异丁烯反应生成甲基叔丁基醚,用作汽油添加剂。
随着科学技术的发展和进步,甲醇的化学加工和工业应用的新领域不断被开发出来,甲醇后加工的深度和广度正在发生深刻的变化。
三、时间安排
第六学期第五周 资料调研和整理,准备开题报告,提交设计计划和方案
第六周至第十三周 设计工作,按确定的设计方案和工艺流程进行论证研究,完成基本设计基础工作
第十四周 中期检查,总结工作
第十五周至十七周 完成毕业设计的理论计算和图纸设计工作
第十八周至十九周 完成毕业设计的编写工作并提交论文,答辩。
4.王莉.合成甲醇催化剂的研究进展[J].化肥设计,2007年,(3):55-58.
5.杨绍斌,王继仁,王志宏,中国煤制甲醇的现状及发展[J],洁净煤技术,2001年,(4):36-40.
6.周晓谦,殷伯良.煤制甲醇工业发展现状分析[J].露天采矿技术,2006年,(2):4-6.

煤制甲醇开题

煤制甲醇开题
程:装置简单投资少,但能耗大、产品纯
度低
三塔精馏过程:既要控制塔顶产品纯度又要控制塔釜废水
指标增加了塔的操作难度。
四塔精馏过程:分为低压精馏塔和高压精馏塔,有效
的改善了上述情况。
3、建厂规模
建厂规模:年产40万吨甲醇
建厂地址:煤炭资源丰富的山西省大同市
年产40万吨煤基合成气制甲醇工艺设计
开题报告
年产40万吨煤基合成气制甲醇工艺设计
学生: 王 磊 学号: 090203023 指导教师: 郭 洁 2013.3.13
开题内容
一、项目背景及意义 二、设计内容 三、设计方案 四、进度安排
年产40万吨煤基合成气制甲醇工艺设计
一、项目背景及意义
二、设计内容 三、设计方案 四、进度安排
1、建设意义
(1)甲醇的广泛用途
基本有机原料
优质燃料
防冻液
生产甲醛、二甲醚、醋酸、 烯烃、MTBE等物质
(2)发展前景预测
近年来甲醇需求量日益增多,全球甲醇需求量如下图所示:
2、生产工艺
甲醇合成工艺
气相法: 高压合成(锌-铬催化剂) 低压合成(铜基催化剂Cu-Zn-Gr) 中压合成(铜基催化剂Cu-Zn-Al) 液相法: 浆态床、滴流床
一、项目背景及意义
二、设计内容
三、设计方案 四、进度安排
二、设计内容
1、项目可行性论证 2、工艺流程设计
工艺方案选择及论证;能量集成与节能技术;工艺流程计算机仿真 设计;绘制物料流程图和带控制点工艺流程图;编制物料及热量平 衡计算书
3、设备选型及典型设备设计
典型非标设备——精馏塔/吸收塔的工艺设计,编制计算说明书; 典型标准设备——换热器的选型设计,编制计算说明书; 其他重要设备的设计及选型说明;编制设备一览表

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

年产20万吨煤制甲醇合成工艺初步设计煤化工毕业设计

年产 20 万吨煤制甲醇合成工艺初步设计煤化工毕业设毕业设计题目年产20 万吨煤制甲醇生产工艺初步设计学号姓名年级09 煤化工学院系别煤化工系专业煤化工指导教师完成日期2012 年5月14日摘要甲醇是一种极重要的有机化工原料也是一种燃料是碳一化学的基础产品在国民经济中占有十分重要的地位近年来随着甲醇下属产品的开发特别是甲醇燃料的推广应用甲醇的需求大幅度上升为了满足经济发展对甲醇的需求开展了此20万ta的甲醇项目设计的主要内容是进行工艺论证物料衡算和热量衡算等本设计本着符合国情技术先进和易得经济环保的原则采用煤炭为原料利用GSP气化工艺造气NHD净化工艺净化合成气体低压下利用列管均温合成塔合成甲醇三塔精馏工艺精制甲醇此外严格控制三废的排放充分利用废热降低能耗保证人员安全与卫生关键词甲醇合成目录1总论411甲醇性质412甲醇用途413醇生产原料42甲醇的合成521甲醇合成的基本原理5211甲醇合成反应步骤5212合成甲醇的化学反应5213甲醇合成反应的化学平衡63甲醇合成的催化剂631工业用甲醇合成催化剂74甲醇合成的工艺条件941反应温度942压力1043空速1044气体组成115甲醇合成的工艺流程1251甲醇合成的方法1252甲醇合成塔的选择1553甲醇合成的工艺流程186主要设备的工艺计算及选型1961甲醇合成塔的设计1962水冷器的工艺设计2263循环压缩机的选型257设计结果评价268参考文献27致谢27附工程图纸1 甲醇合成塔简图2 甲醇合成工艺流程图1 总论11 甲醇性质甲醇俗称木醇木精英文名为methanol分子式CH3O是一种无色透明易燃有毒易挥发的液体略带酒精味分子量3204 化学性质较活泼能发生氧化酯化羰基化等化学反应是重要有机化工原料和优质燃料广泛应用于精细化工塑料医药林产品加工等领域主要用于生产甲醛消耗量要占到总产量的一半甲醛则是生产各种合成树脂不可少的原料用甲醇作甲基化试剂可生产丙烯酸甲酯对苯二甲酸二甲酯甲胺甲基苯胺甲烷氯化物等羰基化可生产醋酸醋酐甲酸甲酯等重要有机合成中间体它们是制造各种染料药品农药炸药香料喷漆的原料目前用甲醇合成乙二醇乙醛乙醇也日益受到重视甲醇是一种重要的有机溶剂其溶解性能优于乙醇可用于调制油漆作为一种良好的萃取剂甲醇在分析化学中可用于一些物质的分离甲醇是一种能源甲醇燃料以其安全廉价燃烧充分利用率高环保的众多优点替代汽油已经成为车用燃料的发展方向之一甲醇还可经生物发酵生成甲醇蛋白富含维生素和蛋白质具有营养价值高而成本低的优点用作饲料添加剂有着广阔的应用前景醇原料自1923 年开始工业化生产以来甲醇合成的原料路线经历了很大变化20 世纪50 年代以前多以煤和焦碳为原料50 年代以后以天然气为原料的甲醇生产流程被广泛应用进入60 年代以来以重油为原料的甲醇装置有所发展对于我国从资源背景看煤炭储量远大于石油天然气储量随着石油资源紧缺油价上涨因此在大力发展煤炭洁净利用技术的背景下在很长一段时间内煤是我国甲醇生产最重要的原料对甲醇合成而言无论是锌铬催化剂还是铜基催化剂其多相非匀相催化过程按下列过程进行a 扩散气体自气相扩散到催化剂的界面b吸附各种气体在催化剂的活性表面进行化学吸附其中CO在Cu2上吸附H2在Zn2 上吸附并异裂c 表面反应化学吸附的反应物在活性表面上进行反应生成产物d 解析反应产物脱附e 扩散反应产物气体自催化剂界面扩散到气相中去甲醇合成反应的速率是上述五个过程中每一个过程进行速率的总和但全过程的速率取决于最慢步骤的完成速率研究证实以上五个过程中ae 扩散进行得最快b 吸附d 解析进行的速度较快而过程c 表面反应分子在催化剂活性界面的反应速度最慢因此整个反应过程取决于表面反应的进行速率提高压力升高温度均可使甲醇合成反应速率加快但从热力学角度分析由于COCO却H2合成甲醇的反应是强放热的体积缩小反应提高压力降低温度有利于化学平衡向生成甲醇的方向移动同时也有利于抑制副反应的进行是甲醇合成反应是多项铜基催化剂上进行的复杂的可逆的化学反应1 主要的化学反应2甲醇合成的副反应213 甲醇合成反应的化学平衡一氧化碳和氢气合成甲醇是一个气相可逆反应压力对反应起着重要作用用气体分压来表示的平衡常数可用下面公式表示Kp 式中Kp ---- 甲醇的平衡常数P CH3OHPH2P CO ------ 分别表示甲醇氢气一氧化碳的平衡分压反应温度也是影响平衡常数的一个重要因素不同温度下的反应平衡常数见表1-1 其平衡常数随着温度的上升而很快减小因此甲醇合成不能在高温下进行但是低温反应速率太慢所以甲醇生产选用高活性的铜基催化剂使反应温度控制在220〜280C表1-1 不同温度下甲醇反应的平衡常数反应温度C平衡常数KpO 66730 100 1292 2001909X 10-2 300 242 X 10-4 400 1079X 10-53甲醇合成的催化剂甲醇合成是是典型的气固相催化反应过程没有催化剂的存在合成甲醇反应几乎不能进行合成甲醇工业的进展很大程度上取决于催化剂的研制成功以及质量的改进在合成甲醇的生产中很多工艺指标和操作条件都由所用催化剂的性质决定一氧化碳加氢合成甲醇工业化以来合成催化剂合成工艺不断研究改进虽然实验室研究出了多种甲醇合成催化剂但工业上使用的催化剂只有锌铬和铜基催化剂甲醇合成是是典型的气固相催化反应过程没有催化剂的存在合成甲醇应几乎不能进行合成甲醇工业的进展很大程度上取决于催化剂的研制成功以及质量的改进在合成甲醇的生产中很多工艺指标和操作条件都由所用催化剂的性质决定自一氧化碳加氢合成甲醇工业化以来合成催化剂合成工艺不断研究改进虽然实验室研究出了多种甲醇合成催化剂但工业上使用的催化剂只有锌铬和铜基催化剂CuOZnOAI2O3 压力MPa 温度C 英国ICI 51-3 60 30 10 78-118190〜270 德国LG104 51 32 4 49 210〜240 美国C79-2 ---15-117 220 〜330 丹麦LMK 40 10 - 98 220〜270中国C302系列51 32 4 50-100 210 〜280 中国XCN-98 52 208 50100 200〜290 从表的对比可以看出国产催化剂的铜含量已提50 以上制备工艺合理使该催化剂的活性选择性使用寿命和机械强度均达到国外同类催化剂的先进水平并且价格较低1锌铬催化剂ZnOC r2O3锌铬催化剂是最早用于工业合成甲醇的1966年以前的甲醇合成几乎都用锌铬催化剂锌铬催化剂一般采用共沉淀法制造将锌与铬的硝酸盐溶液用碱沉淀经洗涤干燥后成型制的催化剂也可以用氧化铬溶液加到氧化锌悬浮液中充分混合然后分离水分烘干掺进石墨成型还可以干法生产将氧化锌与氧化铬的细分混合均匀添加到少量氧化铬溶液和石墨压片然后烘干压片制的成品锌铬催化剂使用寿命长使用范围宽耐热性好抗毒能力好机械强度好但是锌铬催化剂活性温度高操作温度在320--400 °C之间为了获得较高的转化率必须在高压下操作操作压力可达25--35Mpa 目前逐步被淘汰2 铜基催化剂CuO ZnO C r2O3 或CuOZnOAI2O3铜基催化剂是20世纪60年代开发的产品它具有良好的低温活性较高的选择性通常用于低中压流程1 组成铜基催化剂的主要化学成分是CuOZnO AI2O3或CuO ZnO C r2O3其活性组分是Cu和ZnO同时还要添加一些助催化剂促进催化剂活性C r2O3 的添加可以提高铜在催化剂的分散度同时又能阻止分散的铜晶粒在受热时被烧结长大延长催化剂的使用寿命添加AI2O3 助催化剂使催化剂活性更高而且AI2O3 价廉无毒用AI2O3 代替C r2O3 的铜基催化剂更好2 还原氧化铜对甲醇合成无催化活性投入使用之前需将氧化铜还原成单质铜工业上采用氢气一氧化碳作为还原剂对铜基催化剂进行还原其反应如下CuO H2 —Cu H2OQCuO CO —Cu H2OQ氧化铜的还原反应是强烈的放热反应而且铜基催化剂对热比较敏感因此要严格控制氢及一氧化碳浓度和温度还原升温要缓慢出水均匀以防温度猛升和出水过快影响催化剂的活性寿命还原后的催化剂与空气接触时产生下列反应H2O 12O2—Cu O Q如果与大量的空气接触放出的反应的热将使催化剂超温结烧因此停车卸出之前应先通入少量氧气逐步进行氧化在催化剂的表面形成一层氧化铜保护膜这一过程称为催化剂的钝化铜基催化剂最大的特点是活性高反应温度低操作压力低其缺点是对合成原料气杂质要求严格特别是原料气中的SAs必须精脱除3其他类型的催化剂铜锌铝铜锌铬催化剂是当前甲醇合成工业的主要催化剂但近年来新型催化剂的研制一刻也没停歇过新型催化剂研制方向在于进一步提高催化剂的活性改善催化剂的热稳定性以及延长催化剂的使用寿命如钯系催化剂钼系催化剂和低温液相催化剂这些催化剂虽然在某些方面弥补了铜锌铝铜锌铬催化剂的不足但因其活性不理想或对甲醇的选择性差等自身缺点还只停留在研究阶段而没有实现工业化的应用3 铜基催化剂的中毒和寿命铜基催化剂对硫的中毒十分敏感一般认为其原因是H2S和Cu形成CuS也可能生成Cu2S反应如下CuH2&CuS H22CuH2S f Cu2S H2因此原料气中硫含量应小于Olppm与此类似的是氢卤酸对催化剂的毒性催化剂使用的寿命与合成甲醇的操作条件有关铜基催化剂比锌铬催化剂的耐热性差得多因此防止超温是延长寿命的重要措施甲醇合成反应为放热体积缩小的可逆反应温度压力及气体组成对反应进行的程度及速度有一定的影响下面围绕温度压力气体的组成及空间速度对甲醇合成反应的影响来讨论工艺条件的选择在甲醇合成反应过程中温度对于反应混合物的平衡和速率都有很大影响对于化学反应来说温度升高会使分子的运动加快分子间的有效碰撞增多并使分子克服化合时的阻力的能力增大从而增加了分子有效结合的机会使甲醇合成反应的速度加快但是由一氧化碳加氢生成甲醇的反应和由二氧化碳加氢生成甲醇的反应均为可逆的放热反应对于可逆的放热反应来讲温度升高固然使反应速率常数增大但平衡常数的数值将会降低因此选择合适的操作温度对甲醇合成至关重要所以必须兼顾上述两个方面温度过低达不到催化剂的活性温度则反应不能进行温度太高不仅增加了副反应消耗了原料气而且反应过快温度难以控制容易使催化剂衰老失活一般工业生产中反应温度取决于催化剂的活性温度不同催化剂其反应温度不同另外为了延长催化剂寿命反应初期宜采用较低温度使用一段时间后再升温至适宜温度压力甲醇合成反应为分子数减少的反应因此增加压力有利于反应向甲醇生成方向移动使反应速度提高增加装置生产能力对甲醇合成反应有利但压力的提高对设备的材质加工制造的要求也会提高原料气压缩功耗也要增加以及由于副产物的增加还会引起产品质量的变差pa操作温度350〜420°C至较高的压力和温度下一氧化碳和氢生成甲烷异丁醇等副产物这些副反应的反应热高于甲醇合成反应使床层温度提高副反应加速如果不及时控制回造成温度猛升而损坏催化剂近年来普遍使用的铜基甲醇合成催化剂其活性温度范围在200〜300 C有较高的活性对于规模小于30万吨a的工厂操作压力一般可降为5Mpa左右对于超大型的甲醇装置为了减少设备尺寸合成系统的操作压力可以升至10Mpa左右设采用的是低压法入塔压强为514MPa合成甲醇所以工厂对压力的选择要在技术经济等方面综合考虑空速空速的大小意味着气体与催化剂接触时间的长短在数值上空速与接触时间互为倒数一般来说催化剂活性愈高对同样的生产负荷所需的接触时间就愈短空速愈大甲醇合成所选用的空速的大小既涉及合成反应的醇净值合成塔的生产强度循环气量的大小和系统压力降的大小又涉及到反应热的综合利用当甲醇合成反应采用较低的空速时气体接触催化剂的时间长反应接近平衡反应物的单程转化率高由于单位时间通过的气量小总的产量仍然是低的由于反应物的转化率高单位甲醇合成所需要的循环量较少所以气体循环的动力消耗小当空速增大时将使出口气体中醇含量降低即醇净值降低催化剂床层中既定部位的醇含量与平衡醇浓度增大反应速度也相应增大由于醇净值降低的程度比空速增大的倍数要小从而合成塔的生产强度在增加空速的情况下有所提高因此可以增大空速以增加产量但实际生产中也不能太大否则会带来一系列的问题1提高空速意味着循环气量的增加整个系统阻力增加使得压缩机循环功耗增加2 甲醇合成是放热反应依靠反应热来维持床层温度那么若空速增大单位体积气体产生的反应热随醇净值的下降而减少空速过大催化剂温度就难以维持合成塔不能维持自热则可能在不启用加热炉的情况下使床层温度跨掉气体组成原料气组成对催化剂活性的影响是比较复杂的问题现就以下几种原料气成分对催化剂活性的影响作一下讨论1惰性气体CH4N2A的影响合成系统中惰性气体含量的高低影响到合成气中有效气体成分的高低惰性气体的存在引起COCO2H分压的下降合成系统中惰性气体含量取决于进入合成系统中新鲜气中惰性气体的多少和从合成系统排放的气量的多少排放量过多增加新鲜气的消耗量损失原料气的有效成分排放量过少则影响合成反应进行调节惰性气体的含量可以改变触媒床层的温度分布和系统总体压力当转化率过高而使合成塔出口温度过高时提高惰气含量可以解决温度过高的问题此外在给定系统压力操作下为了维持一定的产量必须确定适当的惰气含量从而选择驰放气合适的排放量2CO和H2比例的影响从化学反应方程式来看合成甲醇时CO与H2的分子比为12CO2和H2的分子比是13 这时可以得到甲醇最大的平衡浓度而且在其他条件一定的情况下可使甲醇合成的瞬间速度最大但由生产实践证明当CO含量高时温度不易控制且会导致羰基铁聚集在催化剂上引起催化剂失活同时由于CO在催化剂的活性中心的吸附速率比H2要快得多所以要求反应气体中的氢含量要大于理论量以提高反应速度氢气过量同时还能抑制高级醇高级烃和还原物质的生成减少H2S中毒提高粗甲醇的浓度和纯度同时又因氢的导热性好可有利于防止局部过热和降低整个催化层的温度但氢气过量会降低生产能力工业生产中用铜系催化剂进行生产时一般认为在合成塔入口的VH2VCO5较为合适实际生产中我们的氢碳比按照以下关系确定H2-CO2COCO2 2052153CO2勺影响CO2对催化剂活性时空产率的影响比较复杂而且存在极值完全没有CO2勺合成气催化剂活性处于不稳定区催化剂运转几十小时后很快失活所以CO2是活性中心的保护剂不能缺少在CO2浓度4以前CO2寸时空产率的影响成正效应促进CO合成甲醇自身也会合成甲醇但如果CO2含量过高就会因其强吸附性而占据催化剂的活性中心因此阻碍反应的进行会使时空产率下降同时也降低了CC和H2的浓度从而降低反应速度影响反应平衡而且由于存在大量的CO2使粗甲醇中的水含量增加在精馏过程中增加能耗一般认为CO2在35左右为宜pa是最初生产甲醇的方法采用锌铬催化剂反应温度360-400 C压力196-294Mpa高压法由于原料和动力消耗大反应温度高生成粗甲醇中有机杂质含量高而且投资大其发展长期以来处于停顿状态低压法50-80 Mpa 是20世纪60 年代后期发展起来的甲醇合成技术低压法基于高活性的铜基催化剂其活性明显高于锌铬催化剂反应温度低240-270 C在较低压力下可获得较高的甲醇收率且选择性好减少了副反应改善了甲醇质量降低了原料消耗此外由于压力低动力消耗降低很多工艺设备制造容易低压法甲醇合成工艺流程158 热交换器29分离器34压缩机器6甲醇合成塔7加热炉10中间储罐11闪蒸塔12轻馏分塔13精馏塔ICI 低压合成基本工艺过程①天然气脱硫②蒸汽转化③补碳及合成气压缩④甲醇合成⑤甲醇精制中压法98-120 Mpa 随着甲醇工业的大型化如采用低压法势必导致工艺管道和设备较大因此在低压法的基础上适当提高合成压力即发展成为中压法中压法仍采用高活性的铜基催化剂反应温度与低压法相同但由于提高了压力相应的动力消耗略有增加目前甲醇的生产方法还主要有①甲烷直接氧化法2CH4CQ2CH3O②由一氧化碳和氢气合成甲醇③液化石油气氧化法2.本设计的合成工艺以投资成本生产成本产品收率为依据选择中压法为生产甲醇的工艺用CC和H2在加热压力下在催化剂作用下合成甲醇其主要反应式为f CH3CHCC H2经过净化的原料气经预热加压于5 Mpa220 °C下从上到下进入Lurgi反应器在铜基催化剂的作用下发生反应出口温度为250 C左右甲醇7左右因此原料气必须循环则合成工序配置原则为图2-2 甲醇的合成是可逆放热反应为使反应达到较高的转化率应迅速移走反应热本设计采用Lurgi管壳式反应器管程走反应气壳程走4MPa的沸腾水粗甲醇驰放气图1-1 合成合序配置原则甲醇合成的工艺流程图① 这个流程是德国Lurgi 公司开发的甲醇合成工艺流程采用管壳式反应器催化剂装在管内反应热由管间沸腾水放走并副产高压蒸汽甲醇合成原料在离心式透平压缩机内加压到52 MPa 以15的比例混合循环混合气体在进反应器前先与反应后气体换热升温到220 C左右然后进入管壳式反应器反应反应热传给壳程中的水产生的蒸汽进入汽包出塔气温度约为250 C含甲醇7左右经过换热冷却到40 C冷凝的粗甲醇经分离器分离分离粗甲醇后的气体适当放空控制系统中的惰性气体含量这部分空气作为燃料大部分气体进入透平压缩机加压返回合成塔合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50 C带动透平压缩机透平后的低压蒸汽作为甲醇精馏工段所需热源52 甲醇合成塔的选择甲醇合成反应器实际是甲醇合成系统中最重要的设备从操作结构材料及维修等方面考虑甲醇合成反应器应具有以下要求1催化剂床层温度易于控制调节灵活能有效移走反应热并能以较高位能回收反应热2反应器内部结构合理能保证气体均匀通过催化剂床层阻力小气体处理量大合成转化率高催化剂生产强度大3结构紧凑尽可能多填装催化剂提高高压空间利用率高压容器及内件间无渗漏催化剂装御方便制造安装及维修容易甲醇合成塔主要由外筒内件和电加热器三部分组成内件事由催化剂筐和换热器两部分组成根据内件的催化剂筐和换热器的结构形式不同甲醇内件份为若干类型按气体在催化剂床的流向可分为轴向式径向式和轴径复合型按催化剂筐内反应惹得移出方式可分为冷管型连续换热式和冷激型多段换热式两大类按换热器的形式分为列管式螺旋板式波纹板式等多种形式目前国内外的大型甲醇合成塔塔型较多归纳起来可分为五种1冷激式合成塔这是最早的低压甲醇合成塔是用进塔冷气冷激来带走反应热该塔结构简单也适于大型化但碳的转化率低出塔的甲醇浓度低循环量大能耗高又不能副产蒸汽现已经基本被淘汰2 冷管式合成塔这种合成塔源于氨合成塔在催化剂内设置足够换热面积的冷气管用进塔冷管来移走反应热冷管的结构有逆流式并流式和U 型管式由于逆流式与合成反应的放热不相适应即床层出口处温差最大但这时反应放热最小而在床层上部反应最快放热最多但温差却又最小为克服这种不足冷管改为并流或U 形冷管如1984 年ICI公司提出的逆流式冷管型及1993年提出的并流冷管TCC型合成塔和国内林达公司的U形冷管型这种塔型碳转化率较高但仅能在出塔气中副产0 4MPa的低压蒸汽日前大型装置很少使用3 水管式合成塔将床层内的传热管由管内走冷气改为走沸腾水这样可较大地提高传热系数更好地移走反应热缩小传热面积多装催化剂同时可副产25Mpa40MPa勺中压蒸汽是大型化较理想的塔型4固定管板列管合成塔这种合成塔就是一台列管换热器催化剂在管内管间壳程是沸腾水将反应热用于副产30MPa-40MPa勺中压蒸汽代表塔型有Lurgi公司的合成塔和三菱公司套管超级合成塔该塔是在列管内再增加一小管小管内走进塔勺冷气进一步强化传热即反应热通过列管传给壳程沸腾水而同时又通过列管中心的冷气管传给进塔的冷气这样就大大提高转化率降低循环量和能耗然而使合成塔的结构更复杂固定管板列管合成塔虽然可用于大型化但受管长设备直径管板制造所限在日产超过2000t 时往往需要并联两个这种塔型是造价最高的一种也是装卸催化剂较难的一种随着合成压力增高塔径加大管板的厚度也增加管板处的催化剂属于绝热段管板下面还有一段逆传热段也就是进塔气225 E管外的沸腾水却是248 C不是将反应热移走而是水给反应气加热这种合成塔由于列管需用特种不锈钢因而是造价非常高的一种5多床内换热式合成塔这种合成塔由大型氨合成塔发展而来日前各工程公司的氨合成塔均采用二床四床内换热式合成塔针对甲醇合成的特点采用四床或五床内换热式合成塔各床层是绝热反应在各床出口将热量移走这种塔型结构简单造价低不需特种合金钢转化率高适合于大型或超大型装置但反应热不能全部直接副产中压蒸汽典型塔型有Casale 的四床卧式内换热合成塔和中。

甲醇开题报告

甲醇开题报告

甲醇开题报告CATALOGUE 目录•引言•甲醇概述•甲醇的生产工艺•甲醇的应用研究•甲醇的未来发展前景•研究方法与实验设计•研究计划与预期成果01引言随着环保意识的提高,甲醇作为一种清洁能源,逐渐受到人们的关注。

甲醇的合成方法多样,但主要通过煤炭、天然气等化石燃料进行制备,对环境产生一定的压力。

甲醇作为重要的化工原料,在许多领域都有广泛的应用,如医药、农药、染料等。

01研究甲醇的合成方法及其应用,有助于推动化工、能源等领域的可持续发展。

02探索环保、高效的甲醇合成技术,对于减少环境污染、降低碳排放具有重要意义。

03甲醇作为清洁能源,对于改善能源结构、保障能源安全具有积极作用。

1 2 3探索甲醇的合成新方法,提高合成效率和环保性。

研究甲醇在化工、能源等领域的应用,拓展其应用范围。

分析甲醇市场现状及发展趋势,为企业决策提供参考。

02甲醇概述02030401甲醇是一种有机化合物,其分子式为CH3OH,属于醇类物质。

甲醇具有可燃性,可以在空气中燃烧生成二氧化碳和水。

甲醇具有弱碱性,可以与酸发生中和反应。

甲醇可以发生氧化、还原、酯化等化学反应。

甲醇是一种无色透明的液体,具有特殊的气味和刺激性。

甲醇的相对密度为0.791,比水轻。

甲醇的沸点为64.5℃,熔点为-97.8℃。

甲醇的折射率较高,为1.3288。

甲醇的工业应用甲醇可以作为溶剂和燃料添加剂,也可用于合成燃料甲醇汽油和柴油。

甲醇还可用于农药、医药、染料等精细化工领域。

甲醇是重要的化工原料,可用于生产甲醛、乙酸、丙酮等有机化学品。

甲醇可以用于制造塑料、合成纤维、合成橡胶等高分子材料。

03甲醇的生产工艺总结词原料多样、技术成熟、高产量详细描述甲醇的传统生产工艺主要利用煤炭、天然气等化石原料,通过高温高压的化学反应合成甲醇。

该工艺技术成熟,可处理大量原料,生产出高纯度的甲醇。

甲醇的传统生产工艺甲醇的生物发酵生产工艺总结词环保、可再生、低能耗详细描述生物发酵生产工艺利用含有淀粉、纤维素的生物质原料,通过微生物发酵的方式生产甲醇。

甲醇合成 开题报告

甲醇合成 开题报告

甲醇合成开题报告甲醇合成开题报告一、研究背景甲醇是一种重要的有机化工原料,广泛应用于化工、能源等领域。

甲醇合成是通过一系列化学反应将一氧化碳和氢气转化为甲醇的过程。

该过程对于提高化工产业的可持续发展、减少对传统能源的依赖具有重要意义。

本研究将探索甲醇合成的催化机理,以期提高甲醇合成的效率和选择性。

二、研究目的本研究旨在深入了解甲醇合成的催化机理,通过实验和模拟计算相结合的方法,寻找催化剂的优化设计方案,提高甲醇合成的效率和选择性。

同时,通过对不同反应条件下甲醇合成的研究,探索其对环境的影响,为环保生产提供理论依据。

三、研究方法1. 实验方法本研究将采用高温高压反应器进行甲醇合成实验。

通过控制反应温度、压力和催化剂的种类和比例,研究不同条件下甲醇合成的催化效果。

利用质谱仪、红外光谱仪等仪器对反应过程进行监测和分析,获取相关数据。

2. 模拟计算方法本研究将利用分子动力学模拟方法,通过计算机模拟甲醇合成过程中的分子间相互作用和反应动力学,探索催化剂的优化设计方案。

通过调整催化剂的结构和表面性质,提高催化剂对反应物的吸附能力和转化效率。

四、预期结果1. 实验结果通过实验研究,预计可以获得不同反应条件下甲醇合成的产物分布和催化效果。

通过对实验数据的分析,可以评估不同催化剂对甲醇合成的影响,找出最优催化剂的设计方案。

2. 模拟计算结果通过模拟计算,预计可以获得甲醇合成过程中关键反应步骤的能垒和速率常数等信息。

通过对催化剂结构的调整,预计可以提高甲醇合成的效率和选择性。

五、研究意义本研究对于优化甲醇合成过程,提高产率和选择性具有重要意义。

通过深入了解甲醇合成的催化机理,可以为催化剂的设计和优化提供理论依据。

同时,通过对甲醇合成过程中的环境影响的研究,可以为环保生产提供指导。

六、研究计划1. 第一年:收集相关文献,了解甲醇合成的催化机理和研究进展;搭建实验平台,进行甲醇合成实验;利用模拟计算方法,初步探索甲醇合成的催化机理。

煤制甲醇合成工段实验报告

煤制甲醇合成工段实验报告

煤制甲醇合成工段实验报告摘要:本实验旨在研究煤制甲醇的合成工段过程,并对不同条件下的反应效果进行比较。

实验结果表明,合成甲醇的最佳条件为反应温度300℃、压力30MPa、氢气流量300mL/min,甲醇的产率为XX%。

通过对不同实验条件下的甲醇产率和甲醇选择性的分析,得出了优化合成工段条件的结论。

Abstract:1.引言甲醇是一种重要的有机化工原料和清洁能源,其合成工艺对于提高能源利用效率和减少环境污染具有重要意义。

煤制甲醇是一种常用的合成工艺,通过煤炭气化产生一氧化碳和氢气,再经过催化反应合成甲醇。

本实验旨在研究煤制甲醇合成工段过程,并寻找最佳的反应条件。

2.实验方法2.1实验装置本实验采用固定床反应器进行反应,反应装置包括气源系统、加热系统、冷却系统、分离系统等。

2.2反应条件本实验设置不同反应温度、压力和氢气流量等条件进行实验,以比较不同条件下的反应效果。

反应温度范围为250~350℃,压力范围为20~40 MPa,氢气流量范围为200~400 mL/min。

3.实验结果3.1反应温度对甲醇产率的影响通过在不同温度下进行反应,计算出不同条件下甲醇的产率。

结果显示,在250℃和350℃之间,随着反应温度的升高,甲醇产率逐渐增加,并在300℃时达到最大值。

3.2压力对甲醇产率的影响通过在不同压力下进行反应,计算出不同条件下甲醇的产率。

结果显示,在20MPa和40MPa之间,随着压力的增加,甲醇产率呈现上升趋势,并在30MPa时达到最大值。

3.3氢气流量对甲醇产率的影响通过在不同氢气流量下进行反应,计算出不同条件下甲醇的产率。

结果显示,在200 mL/min和400 mL/min之间,随着氢气流量的增加,甲醇产率呈现上升趋势,并在300 mL/min时达到最大值。

4.讨论与结论通过对实验结果的分析,得出了优化合成工段条件的结论。

最佳条件为反应温度300℃、压力30 MPa、氢气流量300 mL/min,甲醇的产率为XX%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.工艺设计:
A.煤气化技术路线的选择:采用GSP工艺技术。
B.净化工艺方案的选择:
变换工序:采用的是部分气变换。
脱硫脱碳工序:采用了NHD脱硫脱碳净化工艺。
硫回收
C.合成甲醇工艺的选择:设计采用的是固定管板列管合成塔低压合成工艺。
3.本设计的特色
本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;利用GSP气化工艺造气;NHD净化工艺净化合成气体;低压下利用列管均温合成塔合成甲醇;三塔精馏工艺精制甲醇;此外严格控制三废的排放,充分利用废热,降低能耗,保证人员安全与卫生。
甲醇作为性能优良的洁净能源,可直接用作汽车燃料,也可与汽油掺合使用;甲醇可直接用于发电装置发动机的燃料,或经ZSM-分子筛催化剂转化为汽油;甲醇可与异丁烯反应生成甲基叔丁基醚,用作汽油添加剂。?
随着科学技术的发展和进步,甲醇的化学加工和工业应用的新领域不断被开发出来,甲醇后加工的深度和广度正在发生深刻的变化。
2、拟研究的主要内容和思路
1.研究内容:
本文讨论的是以煤为原料生产甲醇的工艺设计,主要采用气化工艺将原料煤气化为合成气;然后通过变换和脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;利用原料气合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。通过研究选出最优的煤气化工艺,合成气净化工艺,甲醇合成工艺以及粗甲醇精馏工艺来进行工业生产。
三、时间安排
第六学期第五周 资料调研和整理,准备开题报告,提交设计计划和方案
第六周至第十三周 设计工作,按确定的设计方案和工艺流程进行论证研究,完成基本设计基础工作
第十四周 中期检查,总结工作
第十五周至十七周 完成毕业设计的理论计算和图纸设计工作
第十八周至十九周 完成毕业设计的编写工作并提交论文,答辩。
毕业论文
开题报告
课题名称
年产10万吨煤制甲醇生产车间工艺设计
课题类型
工程设计Z
导师姓名
学生姓名
学 号
专业班级
一、选题依据
1.选题的目的和意义:
甲醇既是一种应用广泛的重要有机化工原料,又是一种性能优良的清洁能源和车用燃料。作为化工原料,可以用来生产甲醛、甲酸、甲酸甲酯、甲胺、乙酸、乙酸甲酯、丙烯酸甲酯、碳酸二甲酯、甲基丙烯酸甲酯、对苯二甲酸二甲酯、二甲醚、甲基叔丁基醚等一系列有机化工产品。随着碳一化工的发展,由甲醇出发合成乙二醇、乙醛、乙酸等工艺日益受到重视。甲醇作为原料,在农药、医药、染料、三大合成材料等工业中有着重要的地位。甲醇还可经生物发酵生产甲醇蛋白,用作饲料添加剂。?
8.房鼎业, 姚佩芳, 朱炳晨. 甲醇生产技术及进展. 第1版. 华东化工学院出版社,1990.
五、五、预期成果
1、熟练掌握煤制甲醇的方法、工艺流程和相关计算,学会分析和解决问题。
2、对煤制甲醇的工艺设备有全面的了解,运用CAD绘图。
3、完成论文。
2014年4月28日
指导教师意见:
指导老师: 年 月 日
2、发展状况
随着社会经济的快速发展和化工产业的不断崛起,对当前国内甲醇消费起到了非常有效的拉动作用。同时,随着煤制甲醇衍生产品的不断开发、甲醇燃料的广泛应用与推广,甲醇市场也在不断的扩张。自2009年国家发布《车用燃料甲醇》、《车用甲醇汽油》标准开始,就标志着以煤制甲醇为基础的调配大比例M85甲醇汽油应用时代已经到来。一般而言,高比例的煤制甲醇汽油需汽车在改装发动机以后方可使用,但当前已经存在着一种不需要改装的发动机就可应用甲醇汽油的新技术,即大比例甲醇催化变得更加的稳定,而且比较适合于日常的汽车发动机,同时还能有效地改进煤制甲醇汽油在启动、动力等方面存在的缺陷,因此发展前景非常的广阔。
4、主要参考文献
1.谷小虎 ,曹敏, 王兰甫 ,马嫚.中国煤制甲醇产业现状[J].洁净煤技术,2008年 ,(6) :5-7.
2.曾纪龙.大型煤制甲醇的气化和合成工艺选择[J]. 煤化工,2005年 ,(5):1-5.
李大尚.GSP技术是煤制合成气(或H2)工艺的最佳选择[J].煤化工.2005年 .(3):1-6.
4.王莉.合成甲醇催化剂的研究进展[J].化肥设计,2007年,(3):55-58.
5.杨绍斌,王继仁,王志宏,中国煤制甲醇的现状及发展[J],洁净煤技术,2001年,(4):36-40.
6.周晓谦,殷伯良.煤制甲醇工业发展现状分析[J].露天采矿技术,2006年,(2):4-6.
7.宋维端,房鼎业.甲醇工学.第1版.化学工业出版社,1991.
相关文档
最新文档