齐纳二极管(稳压二极管)工作原理及主要参数

合集下载

齐纳二极管稳压二极管工作原理及主要全参数

齐纳二极管稳压二极管工作原理及主要全参数

齐纳二极管(稳压二极管)工作原理及主要参数齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。

齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。

若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。

一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。

一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。

dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数.齐纳二极管工作原理齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。

齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。

在通常情况下,反向偏置的PN结中只有一个很小的电流。

这个漏电流一直保持一个常数,直到反向电压超过某个特定的值,超过这个值之后PN结突然开始有大电流导通(图1.15)。

齐纳二极管工作原理

齐纳二极管工作原理

齐纳二极管工作原理齐纳二极管(Zener diode)是一种特殊的二极管,它在逆向电压下具有稳定的电压特性。

本文将详细介绍齐纳二极管的工作原理,包括其结构、特性以及应用。

一、结构齐纳二极管的结构与普通二极管相似,由P型和N型半导体材料组成。

它的结构中添加了掺杂浓度较高的杂质,使得在逆向电压下,齐纳二极管能够产生稳定的击穿电压。

二、工作原理当齐纳二极管处于正向电压下时,其行为与普通二极管相同,导通电流。

但当齐纳二极管处于逆向电压下时,其特殊的工作原理开始显现。

1. 正常工作区域当逆向电压小于齐纳二极管的击穿电压时,齐纳二极管处于正常工作区域。

此时,齐纳二极管的电流非常小,几乎可以忽稍不计。

因此,齐纳二极管在这个区域内可以作为一个普通的二极管使用。

2. 齐纳击穿区域当逆向电压大于齐纳二极管的击穿电压时,齐纳二极管进入齐纳击穿区域。

在这个区域内,齐纳二极管的电流迅速增加,但电压保持在击穿电压的范围内。

这种特性使得齐纳二极管能够稳定地提供一个固定的电压。

三、特性齐纳二极管具有以下特性:1. 齐纳电压(Zener voltage):齐纳二极管的击穿电压,也是其最重要的特性之一。

齐纳电压可以通过选择合适的杂质浓度来控制。

2. 齐纳电流(Zener current):当齐纳二极管处于击穿电压下时,齐纳电流开始流动。

齐纳电流的大小取决于外部电路的负载和齐纳二极管的特性。

3. 温度系数(Temperature coefficient):齐纳二极管的电压特性受温度影响较小。

正常情况下,齐纳二极管的电压在温度变化时变化较小。

四、应用齐纳二极管由于其稳定的电压特性,被广泛应用于各种电子电路中。

以下是一些常见的应用场景:1. 稳压器(Voltage regulator):齐纳二极管可以用作稳压器的关键元件。

通过将齐纳二极管连接在逆向电压下,可以实现对电路的稳定电压输出。

2. 过压保护(Overvoltage protection):齐纳二极管可以用于保护电路免受过高的电压损坏。

稳压二极管与TVS的主要参数

稳压二极管与TVS的主要参数

稳压二极管与TVS的主要参数
稳压二极管(Zener Diod 齐纳二极管)
A原理:它工作在电压反向击穿状态,当反向电压达到并超过稳定电压时,反向电流突然增大,而二极管两端电压恒定
B分类
从稳压高低分:低压稳压二极管(200V)
从材料分:N型;P型
C.主要参数
①稳定电压VZ:在规定的稳压管,反向工作电流IZ下,所对应的反向工作电压。

②稳定电流IE
③动态电阻rZ ;
④最大耗散功率PZM
⑤最大稳定工作电流IZmax 和最小稳定工作电流IZmin
⑥温度系数at,温度越高,稳压误差越大
D.用途
①对漏极和源极进行钳位保护
硅稳压二极管稳压电路
它是利用稳压二极管的反向击穿特性稳压的,由于反向特性陡直,较大的电流变化,只会引起较小的电压变化。

瞬态抑制二极管简称TVS (Transient V oltage Suppressor)
1.特点:
在规定的反向应用条件下,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低的导通值,允许大电流通过,并将电压箝制到预定水平,从而有效地保护电子线路中的精密。

稳压二极管的主要参数

稳压二极管的主要参数

稳压二极管的主要参数
(1)稳定电压Vz:稳定电压就是稳压二极管在正常工作时,管子两端的电压值。

这个数值随工作电流和温度的不同略有改变,既是同一型号的稳压二极管,稳定电压值也有一定的分散性,例如2CW14硅稳压二极管的稳定电压为6~。

(2)耗散功率PM:反向电流通过稳压二极管的PN结时,要产生一定的功率损耗,PN结的温度也将升高。

根据允许的PN结工作温度决定出管子的耗散功率。

通常小功率管约为几百毫瓦至几瓦。

最大耗散功率PZM:是稳压管的最大功率损耗取决于PN结的面积和散热等条件。

反向工作时,PN结的功率损耗为:PZ=VZ*IZ,由PZM和VZ可以决定IZmax。

(3)稳定电流IZ、最小稳定电流IZmin、大稳定电流IZmax 稳定电流:工作电压等于稳定电压时的反向电流;最小稳定电流:稳压二极管工作于稳定电压时所需的最小反向电流;最大稳定电流:稳压二极管允许通过的最大反向电流。

(4)动态电阻rZ:其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。

rZ愈小,反映稳压管的击穿特性愈陡。

rz=△VZ/△IZ
(5)稳定电压温度系数:温度的变化将使VZ改变,在稳压管中,当|VZ| >7 V时,VZ具有正温度系数,反向击穿是雪崩击穿。

当|VZ|<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。

当4V<|VZ|<7V时,稳压管可以获得接近零的温度系数。

这样的稳压二极管可以作为标准稳压管使用。

4v的齐纳稳压二极管

4v的齐纳稳压二极管

4v的齐纳稳压二极管
4V 的齐纳稳压二极管是一种电子元件,也称为齐纳二极管,是一种利用 PN 结反向击穿特性所制作出的二极管。

这种二极管在电路中通常用于稳定电压,因此被称为齐纳稳压二极管。

齐纳稳压二极管的工作原理基于 PN 结的反向击穿特性。

当齐纳稳压二极管反向偏置时,PN 结会发生击穿,产生一个反向电流。

这个反向电流会随着反向电压的增加而增加,直到达到一个饱和点,此时电流不再增加,而电压保持相对稳定。

这个饱和点对应的电压称为齐纳电压(VZ)。

不同的齐纳稳压二极管具有不同的齐纳电压,通常在 2V 至 70V 之间。

齐纳稳压二极管在电路中通常与限流电阻一起使用,以限制反向电流并保护齐纳二极管。

限流电阻的值根据所需的稳定电压和电流来选择。

在实际应用中,齐纳稳压二极管常用于电源稳压器、电压基准、保护电路等方面。

选择齐纳稳压二极管时,需要考虑齐纳电压、反向电流、封装形式等因素。

常见的齐纳稳压二极管有 1N4728、1N4730、1N4733 等型号,它们分别具有不同的齐纳电压和反向电流特性,以满足不同的应用需求。

稳压二极管工作原理

稳压二极管工作原理

稳压二极管工作原理
稳压二极管工作原理
稳压二极管也称齐纳二极管或反向击穿二极管,在电路中起稳定电压作用。

它是利用二极管被反向击穿后,在一定反向电流范围内反向电压不随反向电流变化这一特点进行稳压的。

稳压二极管是一个特殊的面接触型的半导体硅二极管,通常由硅半导体材料采用合金法或扩散法制成。

其伏安特性曲线与普通二极管相似,但反向击穿曲线比较陡。

稳压二极管工作于反向击穿区,由于它在电路中与适当电阻配合后能起到稳定电压的作用,故称为稳压管。

稳压管反向电压在一定范围内变化时,反向电流很小,当反向电压增高到击穿电压时,反向电流突然猛增,稳压管从而反向击穿,此后,电流虽然在很大范围内变化,但稳压管两端的电压的变化却相当小,利于这一特性,稳压管访问就在电路到起到稳压的作用了。

而且,稳压管与其它普能二极管不同之反向击穿是可逆性的,当去掉反向电压稳压管又恢复正常,但如果反向电流超过允许范围,稳压二极管则会被彻底击穿而损坏,所以,与其配合的电阻往往起到限流的作用。

稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。

1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基
本保持不变。

这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。

2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。

在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。

齐纳二极管工作原理

齐纳二极管工作原理

齐纳二极管工作原理齐纳二极管(Zener diode)是一种特殊的二极管,它在逆向电压下具有特殊的电压稳定特性。

本文将详细介绍齐纳二极管的工作原理,包括其结构、特性以及应用领域。

一、结构齐纳二极管的结构与普通二极管相似,由P型和N型半导体材料组成。

它有两个端子,即阳极(Anode)和阴极(Cathode)。

与普通二极管不同的是,齐纳二极管在P-N结附近有一个特殊的掺杂区域,称为齐纳击穿区或者Zener区。

这个区域的掺杂浓度较高,使得齐纳二极管在逆向电压下表现出特殊的电压稳定性。

二、特性齐纳二极管的特性主要体现在其逆向击穿电压和击穿电流上。

1. 逆向击穿电压(Zener Voltage):齐纳二极管在逆向电压下,当达到一定电压值时,会浮现逆向击穿现象。

这个电压值称为齐纳二极管的击穿电压。

齐纳二极管的击穿电压通常在几伏到几百伏之间,具体取决于其掺杂浓度和材料特性。

2. 击穿电流(Zener Current):齐纳二极管在逆向击穿状态下,电流会急剧增加,但保持在一个相对稳定的值。

这个电流称为齐纳二极管的击穿电流。

齐纳二极管的击穿电流通常在几毫安到几十毫安之间。

齐纳二极管的电压稳定性是由其特殊的击穿机制决定的。

在正常工作状态下,齐纳二极管处于正向偏置状态,正向电流很小。

当逆向电压增加到击穿电压时,齐纳击穿区的电场会变得非常强,电子会发生冲击电离现象,形成电子空穴对。

这些电子空穴对会导致电流的急剧增加,从而保持逆向电压稳定。

三、应用领域齐纳二极管由于其特殊的电压稳定性,在电子电路中有广泛的应用。

1. 电压稳定器:齐纳二极管可以用作电压稳定器,将其连接在电路中,使得电路的输出电压保持在一个稳定的值。

这在一些需要稳定电压的电子设备中非常重要,如电源、稳压器等。

2. 电压参考源:齐纳二极管的特性可以用于提供一个稳定的参考电压,用于校准其他电路或者传感器。

3. 过压保护:齐纳二极管可以用于电路的过压保护,当电路中的电压超过设定值时,齐纳二极管会击穿,将多余的电压引流,保护其他元件不受损坏。

齐纳二极管工作原理

齐纳二极管工作原理

齐纳二极管工作原理齐纳二极管(Zener Diode)是一种特殊的二极管,它在特定的反向电压下可以稳定地工作,并具有稳压功能。

本文将详细介绍齐纳二极管的工作原理及其应用。

一、齐纳二极管的结构齐纳二极管的结构与普通二极管相似,由P型半导体和N型半导体组成。

不同之处在于,齐纳二极管的P-N结区域被特殊掺杂,形成为了高浓度的杂质能带。

这种特殊的结构使得齐纳二极管能够在特定的反向电压下工作。

二、齐纳二极管的工作原理齐纳二极管的工作原理基于反向击穿效应。

当齐纳二极管处于正向偏置时,其工作方式与普通二极管相同,电流从P区域流向N区域,形成正向电流。

但当齐纳二极管处于反向偏置时,当反向电压低于齐纳二极管的击穿电压时,齐纳二极管处于截止状态,几乎不导电。

然而,当反向电压高于齐纳二极管的击穿电压时,齐纳二极管会发生反向击穿现象。

在这种情况下,齐纳二极管的电流迅速增加,但反向电压保持稳定。

这是因为齐纳二极管的结构使得其在反向击穿时,能够快速形成电子-空穴对,并形成电流通路。

三、齐纳二极管的应用1. 稳压器:由于齐纳二极管在特定的反向电压下具有稳定的击穿电压,因此常被用作稳压器。

稳压器可以将输入电压稳定在一个特定的值,避免负载电路受到不稳定电压的影响。

2. 电压参考源:齐纳二极管的稳压特性使其成为电压参考源的理想选择。

通过将齐纳二极管连接在电路中,可以提供稳定的参考电压,用于校准和比较其他电压。

3. 过压保护:齐纳二极管在反向击穿时能够限制电压上升,因此常被用作过压保护器。

当电路中的电压超过设定的阈值时,齐纳二极管会开始导通,将多余的电压引导到地。

4. 电压限制器:齐纳二极管还可以用作电压限制器,限制电路中的电压不超过设定的阈值。

这对于保护敏感的电子元件免受过高电压的伤害非常重要。

四、齐纳二极管的特性1. 反向击穿电压(Zener Voltage):齐纳二极管的最常见特性之一是其反向击穿电压。

不同型号的齐纳二极管具有不同的击穿电压,可以根据需要选择合适的型号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齐纳二极管(稳压二极管)工作原理及主要参数
齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。

齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。

若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。

一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。

一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。

dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数.
齐纳二极管工作原理
齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。

齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。

在通常情况下,反向偏置的PN结中只有一个很小的电流。

这个漏电流一直
保持一个常数,直到反向电压超过某个特定的值,超过这个值之后PN结突然开始有大电流导通(图1.15)。

这个突然的意义重大的反向导通就是反向击穿,如果没有一些外在的措施来限制电流的话,它可能导致器件的损坏。

反向击穿通常设置了固态器件的最大工作电压。

然而,如果采取适当的预防措施来限制电流的话,反向击穿的结能作为一个非常稳定的参考电压。

图1.15 PN结二极管的反向击穿。

导致反向击穿的一个机制是avalanche multiplication。

考虑一个反向偏置的PN结。

耗尽区随着偏置上升而加宽,但还不够快到阻止电场的加强。

强大的电场加速了一些载流子以非常高的速度穿过耗尽区。

当这些载流子碰撞到晶体中的原子时,他们撞击松的价电子且产生了额外的载流子。

因为一个载流子能通过撞击来产生额外的成千上外的载流子就好像一个雪球能产生一场雪崩一样,所以这个过程叫avalanche multiplication。

反向击穿的另一个机制是tunneling。

Tunneling是一种量子机制过程,它能使粒子在不管有任何障碍存在时都能移动一小段距离。

如果耗尽区足够薄,那么载流子就能靠tunneling跳跃过去。

Tunneling电流主要取决于耗尽区宽度和结上的电压差。

Tunneling引起的反向击穿称为齐纳击穿。

结的反向击穿电压取决于耗尽区的宽度。

耗尽区越宽需要越高的击穿电压。

就如先前讨论的一样,掺杂的越轻,耗尽区越宽,击穿电压越高。

当击穿电压低于5伏时,耗尽区太薄了,主要是齐纳击穿。

当击穿电压高于5伏时,主要是雪崩击穿。

设计出的主要工作于反向导通的状态的PN二极管根据占主导地位的工作机制分别称为齐纳二极管或雪崩二极管。

齐纳二极管的击穿电压低于5伏,而雪崩二极管的击穿电压高于5伏。

通常工程师们不管他们的工作原理都把他们称为齐纳管。

因此主要靠雪崩击穿工作的7V齐纳管可能会使人迷惑不解。

实际上,结的击穿电压不仅和它的掺杂特性有关还和它的几何形状有关。

以上讨论分析了一种由两种均匀掺杂的半导体区域在一个平面相交的平面结。

尽管有些真正的结近似这种理想情况,大多数结是弯曲的。

曲率加强了电场,降低了击穿电压。

曲率半径越小,击穿电压越低。

这个效应对薄结的击穿电压由很大的影响。

大多数肖特基二极管在金属-硅交界面边缘有一个很明显的断层。


场强化能极大的降低肖特基二极管的测量击穿电压,除非有特别的措施能削弱Schottky barrier边缘的电场。

图1.16是以上所讨论的所有的电路符号。

PN结用一根直线代表阴极,而肖特基二极管和齐纳二极管则对阴极端做了一些修饰。

在所有这些图例中,箭头的方向都表示了二极管正向偏置下的电流方向。

在齐纳二极管中,这个箭头可能有些误导,因为齐纳管通常工作在反向偏置状态下。

对于casual observer来说,这个符号出现时旁边应该再插入一句“方向反了”。

图1.16 PN结,肖特基,和齐纳二极管的电路图符号。

有些电路图符号中箭头是空心的或半个箭头。

稳压二极管是应用在反向击穿区的特殊的面接触型硅晶体二极管。

稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样。

稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。

稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的部分。

这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。

稳压二极管的主要参数
(1)稳定电压Vz:稳定电压就是稳压二极管在正常工作时,管子两端的电压值。

这个数值随工作电流和温度的不同略有改变,既是同一型号的稳压二极管,稳定电压值也有一定的分散性,例如2CW14硅稳压二极管的稳定电压为6~7.5V。

(2)耗散功率PM:反向电流通过稳压二极管的PN结时,要产生一定的功率损耗,PN结的温度也将升高。

根据允许的PN结工作温度决定出管子的耗散功率。

通常小功率管约为几百毫瓦至几瓦。

最大耗散功率PZM:是稳压管的最大功率损耗取决于PN结的面积和散热等条件。

反向工作时,PN结的功率损耗为:PZ=VZ*IZ,由PZM和VZ可以决定IZmax。

(3)稳定电流IZ、最小稳定电流IZmin、大稳定电流IZmax 稳定电流:工作电压等于稳定电压时的反向电流;最小稳定电流:稳压二极管工作于稳定电压时所需的最小反向电流;最大稳定电流:稳压二极管允许通过的最大反向电流。

(4)动态电阻rZ:其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。

rZ愈小,反映稳压管的击穿特性愈陡。

rz=△VZ/△IZ
(5)稳定电压温度系数:温度的变化将使VZ改变,在稳压管中,当|VZ| >7 V时,VZ具有正温度系数,反向击穿是雪崩击穿。

当|VZ|<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。

当4V<|VZ|<7V时,稳压管可以获得接近零的温度系数。

这样的稳压二极管可以作为标准稳压管使用。

稳压二极管的检测
(1)正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。

塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。

对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。

在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。

若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已
击穿或开路损坏。

(2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。

若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。

也可用低于1000V的兆欧表为稳压二极管提供测试电源。

其方法是:将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的稳定电压值。

若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。

稳压二极管的应用
稳压管常用在整流滤波电路之后,用于稳定直流输出电压的小功率电源设备中。

稳压二极管的选用
稳压二极管一般用在稳压电源中作为基准电压源或用在过电压保护电路中作为保护二极管。

选用的稳压二极管,应满足应用电路中主要参数的要求。

稳压二极管的稳定电压值应与应用电路的基准电压值相同,稳压二极管的最大稳定电流应高于应用电路的最大负载电流50%左右。

稳压二极管的代换
稳压二极管损坏后,应采用同型号稳压二极管或电参数相同的稳压二极管来
更换。

可以用具有相同稳定电压值的高耗散功率稳压二极管来代换耗散功率低的稳压二极管,但不能用耗散功率低的稳压二极管来代换耗散功率高的稳压二极管。

例如,0.5W、6.2V的稳压二极管可以用1W、6.2V稳压二极管代换。

相关文档
最新文档