二次函数的图象与性质第四课时

合集下载

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)一元复始,万象更新。

查字典数学网初中频道小编预备了九年级下册数学教学打算:第6章第2节二次函数的图象和性质(4课时)的相关内容,期望能够对大伙儿有关心。

教学目标【知识与技能】使学生明白得并把握函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.【过程与方法】让学生经历函数y=a(x-h)2+k性质的探究过程,明白得并把握函数y=a(x -h)2+k的性质,培养学生观看、分析、推测、归纳并解决问题的能力.【情感、态度与价值观】渗透数形结合的数学思想,培养学生良好的学习适应.重点难点【重点】确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,明白得函数y=a(x-h) 2+k的性质.【难点】正确明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质.教学过程一、问题引入1.函数y=x2+1的图象与函数y=x2的图象有什么关系?(函数y=x2+1的图象能够看成是将函数y=x2的图象向上平移一个单位得到的.)2.函数y=-(x+1)2的图象与函数y=-x2的图象有什么关系?(函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移一个单位得到的.)3.函数y=-(x+1)2-1的图象与函数y=-x2的图象有什么关系?函数y=-(x+ 1)2-1有哪些性质?(函数y=-(x+1)2-1的图象能够看作是将函数y=-x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=-1,顶点坐标是(-1,-1).)二、新课教授问题1:你能画出函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象吗?师生活动:教师引导学生作图,巡视,指导.学生在直角坐标系中画出图形.教师对学生的作图情形作出评判,指正其错误,出示正确图形.解:(1)列表:xy=-x2y=-(x+1)2y=-(x+1)2-1-3--2-3-2-2---1-0-100--1--2-32-2--3--8-9(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑曲线顺次连接各点,得到函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象.问题2:观看图象,回答下列问题.函数开口方向对称轴顶点坐标y=-x2向下x=0(0,0)y=-(x+1)2向下x=-1(-1,0)y=-(x+1)2-1向下x=-1(-1,-1)问题3:从上表中,你能分别找到函数y=-(x+1)2-1,y=-(x+1)2与函数y=-x 2的图象之间的关系吗?师生活动:教师引导学生认真观看上述图象.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.函数y=-(x+1)2-1的图象能够看成是将函数y=-(x+1)2的图象向下平移1个单位得到的.函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移1个单位得到的.故抛物线y=-(x+1)2-1是由抛物线y=-x2沿x轴向左平移1个单位长度得到抛物线y=-(x+1)2,再将抛物线y=-(x+1)2向下平移1个单位得到的.除了上述平移方法外,你还有其他的平移方法吗?师生活动:教师引导学生积极摸索,并适当提示.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.抛物线y=-(x+1)2-1是由抛物线y=-x2向下平移1个单位长度得到抛物线y=-x2-1,再将抛物线y=-x2-1向左平移1个单位得到的.问题4:你能发觉函数y=-(x+1)2-1有哪些性质吗?师生活动:教师组织学生讨论,互相交流.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.当x-1时,函数值y随x的增大而增大;当x-1时,函数值y随x的增大而减小;当x=-1时,函数取得最大值,最大值y=-1.三、典型例题【例】要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?师生活动:教师组织学生讨论、交流,如何将文字语言转化为数学语言.学生积极摸索、解答.指名板演,教师讲评.解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x-1)2+3(0≤x≤3).由这段抛物线通过点(3,0)可得0=a(3-1)2+3,解得a=-,因此y=-(x-1)2+3(0≤x≤3),当x=0时,y=2.25,也确实是说,水管的长应为2.25 m.四、巩固练习1.画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较.【答案】函数y=2(x-1)2的图象能够看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x-1)2的图象向下平移两个单位长度即得函数y =2(x-1)2-2的图象.2.说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出那个函数图象的开口方向、对称轴和顶点坐标.【答案】函数y=-(x-1)2+2的图象能够看成是将函数y=-x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2).五、课堂小结本节知识点如下:一样地,抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同,把抛物线y= ax2向上(或下)向左(或右)平移,能够得到抛物线y=a(x-h)2+k.平移的方向和距离要依照h、k的值来确定.抛物线y=a(x-h)2+k有如下特点:(1)当a0时,开口向上;当a0时,开口向下;(2)对称轴是x=h;(3)顶点坐标是(h,k).教学反思本节内容要紧研究二次函数y=a(x-h)2+k的图象及其性质.在前两节课的基础上我们清晰地认识到y=a(x-h)2+k与y=ax2有紧密的联系,我们只需对y=ax2的图象做适当的平移就能够得到y=a(x-h)2+k的图象.由y=ax2得到y =a(x-h)2+k有两种平移方法:方法一:y=ax2y=a(x-h)2y=a(x-h)2+k方法二:y=ax2y=ax2+k单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

2021年人教版数学九年级上册第四课时 二次函数y=a(x-h)2的图象和性质课件

2021年人教版数学九年级上册第四课时 二次函数y=a(x-h)2的图象和性质课件
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第四课时 二次函数y=a(x-h)2的图象和性质
以练助学 名师点睛 基础过关 能力提升 思维训练
3
以练助学
名师点睛
• 知识点1 二次函数y=a(x-h)2的图象和性质
• 二次函数y=a(x-h)2(a≠0)的图象是一条抛物线,对称轴是直线x=h, 顶点坐标是(h,0).
• (2)当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小.
11
能力提升
• 8.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,
与其对应的函数值y的最大值为-1,则h的值为( )
• A.3或6 B.1或6
B
• C.1或3 D.4或6
• 9.若抛物线y=2(x-m)m2-4m-3的顶点在x轴正半轴上,则m的值为
4
【典例】在平面直角坐标系中,二次函数 y=a(x-h)2(a≠0)的图象可能是( )
A
B
C
D
5
• 分析:二次函数y=a(x-h)2(a≠0)的顶点坐标为(h,0),则顶点在x轴上, 只有D符合题意.
• 答案:D • 点评:二次函数y=a(x-h)2(a≠0)的顶点在x轴上. • 知识点2 抛物线y=a(x-h)2与y=ax2的关系 • 抛物线y=a(x-h)2可以看成是由抛物线y=ax2(a≠0)向左(h<0)或向右(h
• (1)当a>0时,抛物线y=a(x-h)2(a≠0)开口向上,当x<h时,函数值y随 x的增大而减小;当x>h时,函数值y随x的增大而增大;当x=h时,函 数y=a(x-h)2取得最小值y=0;

二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
(0,1),当x≥0时,y随x的增大而增大,
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)

九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件

九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件
2
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2

y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2

27.2 二次函数的图象与性质(3)(第4课时)

27.2  二次函数的图象与性质(3)(第4课时)

27.2 二次函数的图象与性质(3)(第4课时)一、知识回顾:请填写下表:函数开口方向 对称轴 顶点坐标 y 的最值增减性在对称轴左侧 在对称轴右侧y=ax 2a >0 a <0 y=ax 2+ca >0 a <0我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象 平移 所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?二、实践与探索1. 函数y=(x+3)2的图象与y=x 2的图象有什么关系?(1)在同一直角坐标系中,画出函数y=x 2和y=(x+3)2的图象; 列表: x … -6 -5 -4 -3 -2 -1 0 1 2 3 … y=x 2 … 9 4 1 0 1 4 9 … y=(x+3)2… …思考:(2)函数y=(x+3)2的图象与y=x 2的图象的形状相同吗?(3)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x 2的函数值相等时,它们所对应的自变量的值有什么关系?(4)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?结论:函数y=(x+3)2的图象可以由函数y=x 2的图像沿x 轴向 平移 个单位长度得到,所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.2、在直角坐标系中作出函数y=-3(x+1)2和y=-3(x-1)2的图象,利用上面的方法观察函数,y=-3(x+1)2 ,y=-3(x-1)2与函数y=x 2的图像的关系,与同学交流你的看法. x … -3 -2 -1 0 1 2 3 4 5 6 … y=x 2 … 9 4 1 0 1 4 9 … y=(x-3)2 … …观察下图,思考并回答下列问题: ①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗? ③抛物线y=-3(x-1)2的顶点是 ;对称轴是 ; 抛物线y=-3(x+1)2的顶点是 ;对称轴是 . ④抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y 随着x 的增大而 ;在对称轴(x=1)右侧,即当x 时, y 随着x 的增大而 .当x= 时,函数y 有最 值是;抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,即当x< 时, y 随着x 的增大而 ;在对称轴(x=-1)右侧,即当x 时, y 随着x 的增大而 .当x= 时,函数y 有最 值是 . 三、整理知识点 1.y =ax 2 y =ax 2+k y =a (x-h)2 开口方向顶点对称轴最值增减性(对称轴左侧)2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同. 四、课堂训练1.填表图象(草图) 开口 方向 顶点 对称轴最值 对称轴 右侧的增减性y =12x 2y =-5 (x +3)2y =3 (x -3)22.抛物线y =4 (x -2)2与y 轴的交点坐标是___________,与x 轴的交点坐标为________. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y =-13 (x -1)x 2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y =-2x 2都相同的二次函数解析式 ___________________________.(1)二次函数y=2(x+5)2的图像是 ,开口 ,对称轴是 ,当x= 时,y 有最 值,是 .(2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x 2向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y 有最 值,是 . (3)将二次函数y=2x 2的图像向右平移3个单位后得到函数 的图像,其对称轴是 ,顶点是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. ⑷将二次函数y= -3(x-2)2的图像向左平移3个单位后得到函数 的图像,其顶点坐标是 ,对称轴是 ,当x= 时,y 有最 值,是 .(5)将函数y=3(x -4)2的图象沿x 轴对折后得到的函数解析式是 ;将函数y=3(x -4)2的图象沿y 轴对折后得到的函数解析式是 ;(6)把抛物线y=a (x-4)2向左平移6个单位后得到抛物线y=- 3(x-h )2的图象,则 a= ,h= .若抛物线y= a (x-4)2的顶点A ,且与y 轴交于点B ,抛物线y= - 3(x-h )2的顶点是M ,则SΔMAB= .(7)将抛物线y=2x 2-3先向上平移3单位,就得到函数 的图象,在向 平移 个单位得到函数y= 2(x-3)2的图象.(8)函数y=3(x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x= 时,y 有最 值是 .五、课内小结 六、课外作业:A1.抛物线y =2 (x +3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x >-3时,y______________;当x =-3时,y 有_______值是_________.2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.5.抛物线y=2(x-3)2的开口方向是 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线y= 向 平移 个单位得到的.6.函数y= -2x 2,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .5.函数y= -5(x -4)2的图象。

上街区七中九年级数学上册第21章二次函数与反比例函数21.2二次函数的图象和性质2第4课时二次函数y

上街区七中九年级数学上册第21章二次函数与反比例函数21.2二次函数的图象和性质2第4课时二次函数y

2 二次函数y =ax 2+bx +c 的图象和性质第4课时 二次函数y =ax 2+bx +c 的图象和性质教学目标:1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。

重点难点:重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。

难点:理解二次函数y =ax 2+bx +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a ,4ac -b24a)是教学的难点。

教学过程: 一、提出问题1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗?2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系?(函数y =-4(x -2)2+1的图象可以看成是将函数y =-4x 2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y =-4(x -2)2+1具有哪些性质?(当x <2时,函数值y 随x 的增大而增大,当x >2时,函数值y 随x 的增大而减小;当x =2时,函数取得最大值,最大值y =1)4.不画出图象,你能直接说出函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标吗?5.你能画出函数y =-12x 2+x -52的图象,并说明这个函数具有哪些性质吗?二、解决问题由以上第4个问题的解决,我们已经知道函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标。

根据这些特点,可以采用描点法作图的方法作出函数y =-12x 2+x -52的图象,进而观察得到这个函数的性质。

解:(1)列表:在x 的取值范围内列出函数对应值表;x … -2 -1 0 1 2 3 4 … y … -612 -4 -212 -2 -212 -4 -612…(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

2.2 二次函数的图象与性质 第4课时湘教版九年级下册

2.2  二次函数的图象与性质  第4课时湘教版九年级下册

3. 心理学家发现,学生对概念的接受能力y与提出概念所 用的时间x(单位:min)之间满足函数关系y=-0.1x2+2.6x +43(0≤x≤30),y值越大,表示接受能力越强.
(1)ห้องสมุดไป่ตู้在什么范围内,学生的接受能力逐步增强?x在什
么范围内,学生的接受能力逐步降低? (2)第10min时,学生的接受能力是多少? (3)多长时间时,学生的接受能力最强?
解析:(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的 图象由y=3x2向左平移1个单位得y=3(x+1)2.它是轴对称图 形.它的对称轴和顶点坐标分别是直线x=-1和(-1,0)
(2)二次函数y=-3(x-2)2+4的图象由二次函数y=-3x2的图
象向右平移2个单位再向上平移4个单位而得. 对于二次函数y=3(x+1)2,当x≥-1时,y的值随x值的增大 而增大.当x≤-1时,y的值随x值的增大而减小.二次函数 y=3(x+1)2+4的增减性与y=3(x+1)2相同.
4ac b 2 个单位 (当 4ac b 2 >0时向上平 体上(下)平移 | | 4a 4a
4ac b 2 <0时,向下平移)得到的. 移;当 4a
2a
1.二次函数y=a(x-h)2+k的图象和性质
y=a(x-h)2+k
a>0 a<0
开口方向
向上 向下
对称轴
x=h x=h
顶点坐标
(h,k) (h,k)
2.2
二次函数的图象与性质
第4课时
1.经历把函数y=ax2的图象沿x轴、y轴平移得到函数y= a(x+h)2+k的图象的探究过程,图象变换的实质

2.2.4二次函数的图像和性质(优质课件)

2.2.4二次函数的图像和性质(优质课件)

y=a(x-h)2 +k(a≠0) 开口方向 顶点坐标 对称轴 增 减 性
极值
a>0
向上 (h ,k)
a<0
向下 (h ,k)
x=h
x=h
当x<h时,
当x<h时,
y随着x的增大而减小。 y随着x的增大而增大。
当x>h时,
当x>h时,
y随着x的增大而增大。 y随着x的增大而减小。
x=h时,y最小值=k
x=h时,y最大值=k
抛物线y=a(x-h)2+k(a≠0)的图象可由y=ax2的图象通 过上下和左右平移得到.(左加右减,上加下减)
我们已经认识了形如y=a(x-h)2+k的二 次函数的图象和性质,你能研究二次函数 y=2x2-4x+5的图像和性质吗?
化 成 y=a(x-h)2+k 的形式呗!
例1 求二次函数y=2x²-8x+7图像的对称 轴和顶点坐标。
解: y=2x²-8x+7
提取二次项系数
=2(x²-4x)+7
配方
=2(x²-4x+4)-8+7
整理
=2(x-2)²-1
因此,二次函数图像的对称轴是直 线x=2,顶点坐标是(2,-1)。
确定下列二次函数图像的对称轴和顶点坐标:
(1)y=3x²-6x+7
(2)y=2x²-12x+8
解: =3(x²-2x)+7 解: =2(x²-6x)+8
=3(x²-2x+1)-3+7
=2(x²-6x+9)-18+8
=3(x-1)²+4
=2(x-3)²-10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图象与性质(4)
学习目标:
1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;
2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质. 学习重难点:
探究形如2)(h x a y -=这类函数的图象特点及相对应的函数性质。

学习过程:
由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;
函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢? [实践与探索]
例1.在同一直角坐标系中,画出下列函数的图象.
221x y =
,2)1(21-=x y ,2)1(2
1
2--=x y ,并指出它们的开口方向、对称轴和顶点坐标.
描点、连线,画出这三个函数的图象,如图26.2.6所示.
它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系.
回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.
探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称
例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.
分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.
解 c bx x y ++=2
c b b bx x +-++=44222
4
)2(2
2b c b x -++=. 向上平移2个单位,得到24)2(2
2+-
++=b c b x y , 再向左平移4个单位,得到24
)42(22
+-
+++=b c b x y , 其顶点坐标是)24
,42(2
+-
--b c b ,而抛物线2x y =的顶点为(0,0),则 ⎪⎪⎩
⎪⎪⎨⎧=+-=--024042
2
b c b
解得 ⎩

⎧=-=148
c b
探索 把抛物线c bx x y ++=2
向上平移2个单位,再向左平移4个单位,得到抛物线
2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物
线c bx x y ++=2
.那么,本题还可以用更简洁的方法来解,请你试一试.
[当堂课内练习]
1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位 2.把抛物线2
2
3x y -
=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 3.抛物线22121x x y -
+=可由抛物线22
1
x y -=向 平移 个单位,再向 平移 个单位而得到.
[本课课外作业]
A 组
1.在同一直角坐标系中,画出下列函数的图象.
23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点
坐标.
2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式. 3.将抛物线23212++-
=x x y 如何平移,可得到抛物线322
1
2++-=x x y ? B 组
4.把抛物线c bx x y ++=2
向右平移3个单位,再向下平移2个单位,得到抛物线
532+-=x x y ,则有 ( )
A .b =3,c=7
B .b= -9,c= -15
C .b=3,c=3
D .b= -9,c=21
5.抛物线c bx x y ++-=2
3是由抛物线132
+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.
6.将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式.
课后反思:。

相关文档
最新文档