微生物的突变和诱变育种

合集下载

食品微生物学---第五章_微生物的遗传变异

食品微生物学---第五章_微生物的遗传变异
烟草花叶病毒的拆开与重建实验 (部分病毒为RNA)
1.经典转化实验(肺炎双球菌)
S型菌株:有致病性,菌落表面光滑,有荚膜 R型菌株:无致病性,菌落表面粗糙,无荚膜
(1)动物实验 对小鼠注射活R菌或死S菌 ————小鼠存活 对小鼠注射活S菌————————小鼠死亡 对小鼠注射活R菌和热死S菌 ———小鼠死亡
(二)微生物的诱变育种
1.出发菌株选择:对诱变剂敏感、变异幅度广、产量高 的菌株。
2.同步培养:使菌悬液中细胞达到同步生长状态 3.单细胞悬液制备:先收集菌体并洗涤,然后用生理盐
水或缓冲液配制,振荡使分散度90%以上。 4.诱变处理:物理诱变、化学诱变 5.中间培养 :使细胞内原有酶量稀释,以得到纯的变
h
36
普遍性转导过程: 噬菌体侵染供体细胞 供体染色体断裂,
噬菌体蛋白质衣壳和DNA合成 衣壳包裹供体 DNA片段 侵染受体菌株
供体DNA片段整合到受体DNA上——完全转导
供体DNA片段不能整合到受体 DNA上,也不能复制,但能表达 ——流产转导
特异性转导过程: 噬菌体侵染供体细胞 供体细胞溶源化 噬菌体和供体菌染色体间发生交换 转导型 噬菌体(转导颗粒) 侵染受体菌
R菌+S菌 只有R菌
只有S型细菌的DNA才能将R型转化为S型。且 DNA纯度越高,转化效率也越高。说明S型菌株转 移给R型菌株的,是遗传因子。
2.噬菌体感染实验
h
8
85
3.植物病毒的拆开与重建实验
将TMV拆成蛋白质外壳与RNA,分别对 烟草进行感染试验,结果只有RNA能感染 烟草并使其患典型症状,而且在病斑中还 能分离出正常病毒粒子。
(2)细菌培养实验 热死S菌———不生长 活R 菌———长出R菌

微生物诱变育种的基本过程

微生物诱变育种的基本过程

微生物诱变育种的基本过程
一、筛选目的菌株
在开始微生物诱变育种之前,首先要确定育种的目标,并从中筛选出具有潜在优良性状的目的菌株。

这一步通常需要利用各种生理生化实验和分子生物学技术,对大量菌株进行初步的筛选和鉴定。

二、诱变处理
在确定了目的菌株之后,接下来需要进行诱变处理。

诱变处理通常包括化学诱变和物理诱变两种方式。

化学诱变使用化学诱变剂处理菌株,而物理诱变则利用物理因素(如紫外线、X射线、中子等)处理菌株。

这些诱变因素可以引起菌株基因的突变,进而产生新的性状。

三、突变体的筛选
经过诱变处理后,大量菌株中会存在各种突变体。

为了获得具有优良性状的目标突变体,需要进行筛选。

这一步通常采用各种筛选方法,如单菌落挑取法、稀释涂布平板法等,将突变体从大量菌株中分离出来。

同时,需要通过各种生理生化实验和分子生物学技术,对突变体的性状进行鉴定和筛选。

四、遗传稳定性检测
在筛选出目标突变体后,需要对其遗传稳定性进行检测。

遗传稳定性是指突变体在繁殖过程中,是否能够保持其优良性状的稳定性。

这一步通常采用连续繁殖法和稳定性测定法等方法进行检测,以保证突变体的优良性状能够在后代中得到保留。

五、生产能力测定
最后一步是测定突变体的生产能力。

生产能力是指突变体在实际生产过程中,能否产生足够的产物并保持稳定的产量。

这一步通常采用发酵实验和产物分离纯化等方法进行测定,以保证突变体在实际生产中具有实用价值。

微生物的诱变育种

微生物的诱变育种
目的:克服表型延迟 表型延迟(phenotypic lag):表型的改变落后于基因型改变的 现象. 分离性延迟的原因: 对数生长期中,单核细胞常出现双核 分离性延迟: 突变的基因经DNA复制和细胞分裂后变成纯 现象,多核细胞的核也成倍增加,诱变对数期的细胞时,突 合状态,表型才能表现出来。 变通常发生在一个核上,故其变异或非变异的细胞必须经过 生理性延迟: 由杂合状态变为纯合状态,突变表型仍不能 生理性延迟的原因 : 当变异细胞由杂合状态变为纯合状态 生理性延迟: 一代或几代繁殖才能分离,这种纯种变异细胞出现的推迟现 时 ,由于杂合期所合成的非变异的蛋白或酶仍然发挥作用 ,必 象称为分离延迟现象。 表现出来。 须经过细胞多代分离后,才能将这些非变异的酶稀释掉,最终 达到变异后应该表现的形态,如营养缺陷型突变株的筛选过程 。
– (1) 抗终代谢物结构类似物突变株的筛选 – (2) 抗药性突变株筛选
• 2. 营养突变株 用途:筛选相应代谢物的高产菌株 (2)抗药性突变株 所谓结构类似物(又称代谢拮抗物)是指那些在结 用途:筛选相应药物(抗生素) 的高产菌株或遗传标记制作 构上和代谢终产物(氨基酸、嘌呤、维生素等)相 筛选的方法: 似的物质。 a. 高于临界浓度的平板进行分离; b. 梯度平板法
诱变育种的基本原则:
• 选择简便有效的诱变剂; • 挑选优良的出发菌株; • 处理单细胞或单孢子悬液; • 选用最适的诱变剂量; • 充分利用复合处理的协同效应; • 利用和创造形态、生理与产量间的相关指标; • 设计高效筛选方案; • 创造新型筛选方法。
二、几种重要突变株的筛选方法
• 1. 抗性突变株的筛选
筛选(定向)
(一) 出发菌株(original strain)
出发菌株指用于诱变育种的起始菌株。 出发菌株的选择标准: • 具有有利性状(如高产、生长速度快、营养要求粗放、 标记明显等); • 对诱变剂敏感 出发菌株的来源: •野生型菌株; •从生产中选育的自发突变菌株; •诱变获得的高产菌株

菌种鉴定的几方面特征

菌种鉴定的几方面特征

菌种鉴定的几方面特征1、个体形态:镜检细胞形状、大小、排列,革兰氏染色反应,运动性,鞭毛位置、数目,芽孢有无、形状和部位,荚膜,细胞内含物;放线菌和真菌的菌丝结构,孢子丝、孢子囊或孢子穗的形状和结构,孢子的形状、大小、颜色及表面特征等。

2、培养特征:①在固体培养基平板上的菌落和斜面上的菌苔性状(形状、光泽、透明度、颜色、质地等)。

②在半固体培养基中穿刺接种培养的生长情况。

③在液体培养基中混浊程度,液面有无菌膜、菌环,管底有无絮状沉淀,培养液颜色等。

3、生理生化特征:生理生化特征与微生物的酶和调节蛋白的本质和活性直接相关,酶及蛋白质都是基因产物,所以对微生物生理生化特征的比较也是对微生物基因组的间接比较,加上测定生理生化特征比直接分析基因组要容易得多,因此生理生化特征对于微生物的系统分类仍然是有意义的。

4、血清学试验与噬菌体分型。

5、氨基酸顺序和蛋白质分析。

6、核酸的碱基组成【(G+C)%】7、核酸的分子杂交。

营养缺陷型的应用从自然界分离到的微生物在其发生突变前的原始菌株,称为野生型菌株。

野生型菌株经过人工诱变或自然突变失去合成某种营养(氨基酸、维生素、核酸等)的能力,只有在基本培养基中补充所缺乏的营养因子才能生长,称为营养缺陷型。

营养缺陷型菌株的筛选,在生产实践和基础理论中都有着重要的意义。

生产实践中,营养缺陷型可用于工业微生物育种,协助解除代谢反馈调控机制,从而达到大量积累终产物的目的;也可将营养缺陷型菌株作为生产菌种杂交、重组育种时的遗传标记。

在基础理论中,营养缺陷型不仅被广泛应用于阐明微生物代谢途径上,而且在遗传学上具有特殊的地位。

在遗传规律中的转化、转导、原生质体融合、质粒和转座因子等的研究中,营养缺陷型是最常用的标记菌种。

代谢调控的类型1、初级代谢的调节控制:虽然代谢调节方式很多,由于微生物细胞体内的所有生化反应都是在酶的催化下进行的,因此,对酶的调节控制是最主要、最有效的调控方式。

它包括两个方面,一是调节酶的合成量(反馈阻遏),二是调节现成酶分子的催化活力(反馈抑制)。

微生物的化学诱变技术

微生物的化学诱变技术

微生物的化学诱变化学诱变:利用化学物质对微生物进行诱变,引起基因突变或真核生物染色体的畸变称为化学诱变。

化学诱变的物质很多,但只有少数几种效果明显,如烷化剂、吖啶类化合物等。

复合处理及其协同效应:诱变剂的复合处理常有一定的协同效应,增强诱变效果,其突变率普遍比单独处理的高,这对育种很有意义。

复合处理有几类:同一种诱变剂的重复使用,两种或多种诱变剂先后使用,两种或多种诱变剂同时使用。

定向培育和驯化:定向培育是人为用某一特定环境条件长期处理某一微生物群体,同时不断将他们进行移种传代,以达到累积和选择合适的自发突变体的一种古老的育种方法。

由于自发突变的变异频率较低,变异程度较轻,故变异过程均比诱变育种和杂交育种慢得多。

微生物化学诱变的操作过程化学诱变剂的剂量主要决定于其浓度和处理时间。

化学诱变剂都具毒性,其中90%以上是致癌物质或极毒药品,使用时要格外小心,移取液体时绝对禁止直接用口吸,避免与皮肤直接接触,不仅要注意自身安全,也要防止污染环境,造成公害。

一、碱基类似物用于诱发突变的碱基类似物有5-BU、5-FU、BUdr、5-IU等他们是胸腺嘧啶的结构类似物,AP、6-MP是腺嘌呤的结构类似物。

最常用是5-BU和AP。

当将这类物质加入到培养基中,在繁殖过程中可以掺入到细菌DNA分子中,不影响DNA的复制。

它们的诱变作用是取代核酸分子中碱基的位置,再通过DNA的复制,引起突变,困此,也叫掺入诱变剂。

显然这一类诱变剂要求微生物细胞必顿处在代谢的旺盛期,才能获得最佳的诱变效果。

(一)碱基类似物的诱变机制正常的碱基存在着同分异构体,互变异构现象在嘧啶分子中以酮式和烯醇式的形式出现,而嘌呤分子中以氨基和亚氨基互为变构的形式出现、一般互变异构现象在碱基类似物中比正常DNA碱基中频率更高。

5-BU导致A:T碱基对转换为G:C碱基。

2-氨基嘌呤也可以诱发DNA分子中A:T-G:C或G:C-A:T的转换。

(二)碱基类似物的诱变处理方法(以5-BU为例)1.单独处理将微生物液体培养到对数期,离心除去培养液,加入生理盐水或缓冲液,饥饿培养8~10 h,消耗其体内的贮存物质、将5-BU加入到经饥饿培养的培养液中,处理浓度为25~40 μg/mL,温合均匀,取0.1~0.2 mL菌悬液加入到琼脂培养基上涂布培养。

微生物 诱变育种

微生物  诱变育种
见光的能量而被激活。
紫外损伤的光复活作用
DNA损伤的修复
切补修复 切补修复是在内切核酸酶、
外切核酸酶、DNA聚合酶以及 连接酶的协同作用下将嘧啶 二聚体酶切除去,继而重新 合成一段正常的DNA链以填补 酶切所留下的缺口,使损伤 的DNA分子恢复正常的修复方 式。由于整个过程不依赖于 可见光,所以切补修复也称 暗修复。切补修复几乎存在 于所有的微生物中。
也可用长了菌落的平板直接照射。 一般照射剂量4~10万伦琴。
此外还能引起染色体畸变,即因 染色体断裂引起染色体的倒位、 缺损和重组等。但发生了染色体
断裂的细胞常常不稳定。
化学诱变因素
化学诱变剂用量很少,诱变时设
备简单,只要一般实验室的玻璃 器皿就行,所以其应用发展较快。
碱基类似物
碱基类似物是指与DNA结构中的四种碱基 A、T、G、C在化学结构上相似的一类物 质。如5-溴尿嘧啶(BU)和5-溴脱氧尿
紫外损伤的切补修复
紫外线照射的操作方法
在暗室中安装的15瓦紫外线灯管最 好装有稳压装置,以求剂量稳定。
处理时,可将5毫升菌悬液放在直径 5厘米的培养皿中,置磁力搅拌器上, 使培养皿底部离灯管30厘米左右, 培养皿底要放平,处理前应先开灯 20~30分钟预热稳定。照射时启动磁 力搅拌器,以求照射均匀。
诱变育种
第一节基因突变
突变泛指细胞内(或病毒颗粒 内)的遗传物质的分子结构或 数量突然发生的可遗传的变化。
突变往往导致产生新的等位基 因及新的表现型。狭义的突变 专指基因突变,也称点突变, 而广义的突变则包括基因突变 和染色体畸变。
突变的几率一般很低,约为106~10-9。
突变是工业微生物产生变种 的根源,是育种的基础,但 也是菌种发生退化的主要原 因。

微生物遗传育种第二章

微生物遗传育种第二章

1952年,J. 和E. Lederberg 夫妇发明了一种直接证明突变自发 性的方法 -----影印培养法,证明了 细菌的抗药性是发生在加入药物之 前的,而药物的作用仅是把突变型 筛选出来。
第二节 基因突变的规律
Lederberg等设计的平板影印培养法
第二节 基因突变的规律
二、自发性
各种性状的突变,可以在没有人 为的诱变因素下自发地发生。
第三节 诱变的机制
(5)NTG(NNG)的作用特点:
第三节 诱变的机制
三、嵌合剂的致突变作用
吖啶类染料和ICR类化合物是通过同 DNA分子结合而发生诱变作用的两类主要的 化学诱变剂。吖啶类化合物主要有原黄素, 5-氨基吖啶、吖啶橙等。ICR化合物是指由 美国癌症研究所应用化学方法合成的 (Institute for Cancer Research),是一些由 烷化剂和吖啶类相结合的化合物。
分子结构,引起生物体发生突变。
第三节 诱变的机制
A 直接诱发碱基错配:
鸟嘌呤N7位置上的烷化有利于发生
电离作用,而离子化的鸟嘌呤则应该具
有同T而不是同C配对的倾向,因此,便
能产生GC→AT的转换。
第三节 诱变的机制
B 错误修复: 鸟嘌呤N7烷化作用的另一种效应是使 鸟嘌呤碱基与糖-磷酸的键合削弱,从而导 致烷化的鸟嘌呤从DNA上逐渐地脱落下来, 这个过程就是所谓的“烷化脱嘌呤作用”。 脱嘌呤形成了分子裂缝,在随后的DNA复 制过程中便会产生转换或颠换。
1、突变(Mutation):指遗传物质发生了稳定 的可遗传的变化,所有的突变都是DNA结构中碱 基所发生的改变。 2、突变体(Mutant):携带突变的生物个体或 群体或株系,称为突变体。
3、突变基因(Mutant Gene)和野生型基因 (Wild Gene):发生了突变的基因称为突变基 因,没有发生突变的基因称为野生型基因。

第三章 自然选育和诱变育种

第三章  自然选育和诱变育种

一般从菌落大小也可 以判断,新长出的菌 落较小,即是营养缺 陷型
•四.鉴定营养缺陷型 生长谱法
方法一:把纯化好的缺陷型菌株与基本培养基 倒混 合平板或涂布平板,再在平板上点接各 种营养物质(最好稀释成一定浓度,用滤纸片 法接入),适温培养,观察生长圈。此法可以 在一个平板上对一株菌进行多种营养因子进行 测定 方法二:在基本培养基中加入某种营养物 质,倒混合平板,再点接菌株,观察生长圈。 此法可同时对多个菌株进行测定
基因突变
二、微生物突变的类型
1、 形态突变型 2、致死突变型 3、抗性突变型 4、营养缺陷型突变型
青霉
三、微生物突变的特点 1、 不对应性 2、 自发性 3、 稀有性 4、 独立性 5、 诱变性 6、 稳定性 7、 可逆性
• (四)、自然选育的程序 • • • • 1. 2. 3. 4. 采样 增殖培养 纯种分离 生产性能的测定
一、 产环己酰亚胺新菌株YIM41004 的复合诱变选育
前言:环己酰亚胺(cycloheximide),又名放线酮 (Actidione),是于1948年德国化学家B.E.Leach 等分离并鉴定出来的一种戊二酰类化合物.它对多 种真菌具有拮抗作用,其制剂具有水溶解性良好、 作用剂量低的优点,在植物保护方面得到广泛应用。
通过诱变处理,获得高丝氨酸缺陷型突变菌株, 该突变型不能产生苏氨酸。
在限量高丝氨酸的培养基中缺陷型菌株能够正常生长, 并且因为消除了反馈抑制
突变型能过量生产L-赖氨酸
第四节 温度敏感突变株的筛选
一、温度敏感突变株(temperaturesensitive mutant, TS突变体): 突变株在一定温度范围内(许可温度) 正常生长,其表型和野生型没有区别, 但超出这一温度范围(非许可温度), 则不能生长或生长微弱甚至死亡(条件 致死)或某些代谢停止或减弱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 突变体的选择和检出
一、基因的突变延迟 原因:
突变前所产生的物质仍然在细胞中存在活性 诱变剂作用在DNA的一条链上 多核细胞,所有的核都变为变异的核时细胞才会表现 出来
(六)紫外线对DNA的损伤及其修 复
嘧啶碱基受紫外辐射后产生的衍生物
(六)紫外线DNA的损伤及其修复
1、光复活作用(photoreactivation)
把经UV照射后的微生物立即暴露于可见光下时, 就可
出现明显降低其死亡率的现象,此即光复活作用。
2、切除修复(excision repair)
是活细胞内一种用于对被UV等诱变剂损伤后DNA 的修复
通过基因突变而产生的在代谢产物产量上明显有别于原始 菌株的突变株,称产量突变型。有两种类型:正变株(plusmutant)、负变株(minus-mutant)
(二)突变率(mutation rate)
某一细胞(或病毒粒)在每一世代中发生某一性 状突变的几率,称突变率。 (三)基因突变的特点
1.自 发 性:各种突变都可在无人为诱变因素处理下自发发生; 2.不对应性:突变的性状与引起的原因间无直接对应关系; 3.稀 有 性:自发突变的几率极低,一般10-6-10-9,但稳定; 4.独 立 性:某一突变既不提高也不降低其他任何基因的突变率; 5.可 诱变性:诱变剂可提高突变的几率,两种变异株无本质差别; 6.稳 定 性:是遗传物质结构上发生了稳定的变化,稳定,可遗传; 7.可 逆 性:任何性状都可发生正向突变,也都可发生回复突变。
其跳跃过程往往导致DNA链的断裂或重接,产生重组交换、基因 启动或关闭,使突变发生。
转座(因)子主要有三类:IS、Tn、Mu。
2、自发突变
自发突变(spontaneous mutation) 是指生物体在无人工干预下自然发生的低频率
突变。 自发突变的原因: 1)背景辐射和环境因素的诱变; 2)微生物自身有害代谢产物的诱变效应; 3)互变异构效应;(配对错误) 4)环出效应。(发生缺失)
4、形态突变型(morphological mutant)
指由突变引起的个体或菌落形态的变异,一般属非选择性 突变。
5、抗原突变型(antigenic mutant)
指由于基因突变引起的细胞抗原结构发生的变异类型,包 括细胞壁缺陷变异、荚膜或鞭毛成分变异等。
6、产量突变型(metabolic quantitative mutant)
(四)基因突变自发性和不对应性的实验证明
1、Luria 等的变量试验(fluctuation test)
2、Newcombe的涂布试验
3、Lederberg等的影印平板培养法 (replica plating)
(五)基因突变及机制
1、诱发突变(induced mutation )
诱发突变简称诱变,是指通过人为的方法, 利用物理、化学或生物因素显著提高基因自发 突变频率的手段。凡具有诱变效应的任何因素, 都称诱变剂(mutagen)。 1)碱基的置换(substitution )
方式之一,又称暗修复(dark repair),这是一种 不依赖
可见光,只通过酶切作用去除嘧啶二聚体,随后重新 合成
一段正常DNA链的核酸修复方式。
第二节 诱发突变及诱变剂
一、化学诱变剂
碱基类似物 二、物理诱变剂
非电离辐射类因子和电离辐射类因子两种 三、生物诱变剂
(一)转座诱发突变 (二)转化诱发突变 (三)转导诱发突变 (四)定点诱导
原黄素,吖啶黄,吖啶橙等。 诱变机理:至今不清。 结果:加3、减3;加(减)1,短距离减(加)1;影响小。
增(减)1、2、4、5引起后面全变。
常见的致变剂及其致变作用
(a)亚硝基的脱氨作用;(b) 烷化剂和被甲基化的碱基; (c) 5-溴脱氧嘧啶与鸟嘌呤配对(A=T变G三C)。
3) 染色体畸变(chromosomal aberration)
(一)突变类型
凡能用选择性培养基(或其他选择性培养条件) 快速选择出来的突变株称选择性突变株 (selectable mutant),反之则称为非选择性突 变株。
1、营养缺陷型(auxotroph)
某一野生菌株因发生基因突变而丧失合成一种或几种生长 因子、碱基或氨基酸的能力,因而无法再在基本培养基上正常 生长繁殖的变异类型。
第一节 微生物的突变
一、基因突变(gene mutation) 基因突变简称突变,是变异的一类,泛指细胞内(或病
毒粒内)遗传物质的分子结构或数量突然发生的可遗传的变 化,可自发或诱导产生。突变的几率一般很低(10-6 ~ 10-9)
从自然界分离到的菌株一般称野生型菌株(wild type strain),简称野生型。野生型经突变后形成的带有新性状 的菌株,称突变株(mutant,或突变体、突变型)。
转换(嘌呤间或嘧啶间) 颠换(嘌呤和嘧啶间)
亚硝酸引起的使A︰T转换成G┇C 过程的简式见下图
HNO2
A:T
He:T
Hk+T
第一次复制 A┇T
Hk┇C 第二次复制
G┇C Hk┇C
①直接引起置换的诱变剂
②间接引起置换的诱变剂
2)移码突变(frame-shift mutation)
指诱变剂会使DNA序列中的一个或少数几个核苷酸发生增 添(插入)或缺失,从而使该处后面的全部遗传密码的阅读 框架发生改变,并进一步引起转录和转译错误的一类突变。 诱变剂:ICR(美国一癌症研究所名称)类化合物:
2、抗性突变型(resistant mutant)
指野生型菌株因发生基因突变,而产生的对某化学药物或 致死物理因子的抗性突变类型。
3、条件致死突变型(conditional lethal mutant)
某菌株或病毒经基因突变后,在某种条件下可正常地生长、 繁殖并呈现其固有的表型,而在另一种条件下却无法生长、繁 殖的突变类型。
某些强烈理化因子会引起DNA分子的大损伤(macrolesion)
染色体畸变。
既包括染色体结构上的缺失(deletion)、重复 (duplication)、插入(insertion)、易位(translocation)和倒位 (inversion),也包括染色体数目的变化。
转座(因)子:在染色体组中或染色体组间能改变自身位置的一段 DNA顺序。
相关文档
最新文档