圆锥曲线离心率的几种求法

合集下载

圆锥曲线离心率范围的求解途径

圆锥曲线离心率范围的求解途径
值范围.
则 l I +x,矾 I -x. P = e0I = e0 a a
△ 中 , CS FP 2 = O IF= 1 ’
(+x) (-x)- 2 a eo2 aeoZ4 + -c
2 ax)a x) (+0(-0
由此解得: = 三 .
因为 一 ≤ o ,目 O Ⅱ ≤Ⅱ Ⅱ ≤ a, 2 解 得 ≤e , 1 ≤1 注意 到 O e l << ,
故 椭 圆离 心率 的取值 范 围是
[ 1 ). 1

距离 和 : ) + 之 1 二 上
Xa / %b 一
Va %b

点 ,且 l I P到 z P 是 的距 离 d与 I I 比例 中项 , 双曲线离 心 眠 的 求
率 e的取 值 范 围 .
途径 3 :利 用 数 形 结 合 寻 找 不
掘 不 等 关 系
解: 设椭圆方程为等+ : 导 1
( 60 , >) P的坐标为 ( y) ‰,o.
例 1 线 一 =( l> 双曲 鲁 1 >, a 6
0 的焦距 为 2 , ) c 直线 l 点(,) 过 a 和 O (,) 点 A( ,) 直 线 l 距 离 O 且 b 1 到 0 的 与点 曰 一 ,) ( 1 到直线 f 0 的距 离之 和 s c ≥ ,求双曲线 的离心率 e的取
je . =d
1 I e啊 1 又 1 I = l . — , I l =
e一 1
所 以 5 、 c ≥2 n / 一 c.
即 5 eZ 12 2  ̄ 1> e.
化为 442e+ 5 , e- 5 2 ≤0
解 得 ≤e≤5 t 4 .

圆锥 曲线 离心率范 围的求解 途径

圆锥曲线离心率的求法

圆锥曲线离心率的求法

离心率是圆锥曲线的一个几何性质.与圆锥曲线离心率有关的问题主要考查圆锥曲线的定义、性质以及离心率的公式,属于一类基础性的问题.求圆锥曲线离心率的关键是求得圆锥曲线方程中a、b、c的值或关系式.本文重点介绍求圆锥曲线离心率的三种方法,以供大家参考.一、公式法公式法是指运用公式e=c a求出离心率的方法.在解题时,我们可以根据已知条件以及圆锥曲线的标准方程、性质建立与a、c相关的关系式,结合圆锥曲线中a、b、c之间的关系求出a、c的值,然后利用公式e=ca求得离心率的大小.例1.过双曲线C:x2-y2b2=1()b>0的左顶点A作斜率为1的直线l,若直线l与双曲线的两条渐近线分别交于B,C,且||AB=||BC,则双曲线的离心率为____.解:由双曲线的方程可知a=1,∴点A()-1,0,∴直线l方程为y=x+1,∵双曲线C:x2-y2b2=1()b>0知两条渐近线分别为y=bx,y=-bx,∴Bæèöø-1b+1,b b+1,Cæèöø1b-1,b b-1,∵||AB=||BC,∴b2=9,c=b2+1=10,∴e=c a=10.我们首先根据双曲线的方程求出a的值,然后由B、C两点的坐标以及已知条件||AB=||BC建立关于b的式子,求得b、c的值,便可利用离心率公式求得问题的答案.二、齐次式法齐次式法是求圆锥曲线离心率的重要方法之一.齐次式法是指通过构建齐次式来解答问题的方法.有些问题中a、c的值不易直接求出,我们可以结合已知条件构造关于a、c的齐次式,通过解方程得到e=ca的值.例2.已知F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若MF1的中点在双曲线上,则双曲线的离心率为____.解:结合题意绘制如图的图形,设||OF1=c,MF1的中点为P,∴点P的横坐标为-c2,∵||PF1=12||F1F2=c,由焦半径公式可得||PF1=-2x p-a,∴c=-c a׿èöø-c2-a,化简得c2-2a2-2ac=0,∴e2-2e-2=0,解方程得e1=1+3,e2=1-3()舍去,∴双曲线的离心率为1+3.在解答上题的过程中,需建立关于a、c的齐次式,再将其左右同除以a2,通过整理和化简得到关于e的一元二次方程,解方程便可求得e的值.三、定义法定义法是指利用圆锥曲线的定义求出离心率的方法.一般地,圆锥曲线的定义中都蕴含着a(动点到圆锥曲线上两焦点的距离之和或差)与c(焦点之间的距离)之间的关系.因此在求圆锥曲线的离心率时,我们可以根据圆锥曲线的定义绘制相应的图形,找出a、c对应的线段,建立关系式,便可求得圆锥曲线的离心率.例3.设F1,F2分别是椭圆x2a2+y2b2=1(a>0,b>0)的左,右焦点,点P在椭圆C,线段PF1的中点在y轴上,若∠PF1F2=30∘,则椭圆的离心率为_____.解:∵线段PF1的中点在y轴上,F1F2的中点为点O,∴PF2//y轴,∴PF2⊥F1F2,∵∠PF1F2=30∘,∴在Rt△PF1F2中,||PF1:||PF2:||F1F2=2:1:3,∵2a=||PF1+||PF2,2c=|F1F2∴e=c a=2c2a=||F1F2||PF1+||PF2=.解答本题,需结合题意绘制出图形,通过解直角三角形PF1F2得到||PF1、||PF2、||F 1F2的关系式,结合椭圆的定义求得a与c的值以及e的值.公式法、齐次式法、定义法都是解答圆锥曲线离心率问题的有效方法.其中公式法和定义法是比较常用的方法,齐次式法虽然较为复杂,但能有效地简化运算.(作者单位:广东省惠州市博罗县石湾中学)解题宝典翟勇超38Copyright©博看网 . All Rights Reserved.。

离心率的五种求法

离心率的五种求法
A. B. C. D.
7.设 分别是双曲线 的左、右焦点,若双曲线上存在点 , 且 ,则双曲线的离心率为( B )
A. B. C. D.

8.如图, 和 分别是双曲线 ( )的两个焦点, 和 是以 为圆心,以 为半径的圆与该双曲线左支的两个交点,且 是等边三角形,则双曲线的离心率为()
A B C D
离心率的五种求法
离心率的五种求法
离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现.
椭圆的离心率 ,双曲线的离心率 ,抛物线的离心率 .
一、直接求出 ,求解
已知标准方程或 易求时,可利用离心率公式 来求解。
例1.过双曲线C: 的左顶点A作斜率为1的直线 ,若 与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是( )
A. B. C. D.
解:由已知,直线 的方程为 ,由点到直线的距离公式,得 ,
又 ,∴ ,两边平方,得 ,整理得 ,
得 或 ,又 ,∴ ,∴ ,∴ ,故选A
11.知 、 是双曲线 ( )的两焦点,以线段 为边作正三角形 ,若边 的中点在双曲线上,则双曲线的离心率是()
A. B. C. D.
解:如图,设 的中点为 ,
A. B. CБайду номын сангаас D.
解析:满足 的点 总在椭圆内部,所以c<b.
4.设 ,则双曲线 的离心率 的取值范围是(B)
,又 ,
在 中,由余弦定理,得 ,
即 ,∴ ,
∵ ,∴ ,∴ ,∴ ,∴ ,故选B
3.设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为( B )
A. B. C. D.
4.设双曲线的一个焦点为 ,虚轴的一个端点为 ,如果直线 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )

剖析圆锥曲线离心率的求法

剖析圆锥曲线离心率的求法

对 称 性 就 可 求 得 点 c f \ 旦 2 , 6 。 1 / , 将 其 代 入 椭 圆 方 程 后
四、 通 过 数 形 结 合— — 找 不 等 关 系 求 解 离
有e : — 2 X /  ̄-

心 率
从数形 结合 的角度人 手 , 列 出不等关 系 , 往往 可 以 起到 事半 功倍 的效果. 但 该类题 目涉 及 面广 , 鉴于题 目
解析 : 由题 意可设I 1 = 4 k , I F  ̄ F z I = 3 k , l 1 = 2 k , k > O . 若助 椭圆, 由定义I 魁 l + 恻 - 2 后 得 3 , 而I l _
应 满足 曲线 的方程 ,因此用a , b , c N画点P 的坐标 后 , 将 其 代人 曲线方程也是解决离心率 问题 的有效途径之一.

若助 其上一点 , 且啊 = 2 , 则双 曲线离心率 的取值
解析 : 设点P 的坐标 为 ( 。 , ) , 则点P 到左 焦 点 的距
1 ( 。 > 6 > 0 ) 中得

: 1 , 即e 2 + l O e 一 3 : 0 ,
范 围为一
解 得e = 2 、 / 了一 5 .
图1
综 上, , 的 离 心 率 为 ÷或 ÷.
二 二
点 除为线段 D 的 中点 , 则该椭 圆的离心率为—
0 ) .
—一
解析 : 由题 意得A - a , 0 ) , B ( O , 一 b ) , B ( 0 , b ) , F ( c ,
点评 : 本题 中. 在 不 能确 定 圆锥 曲线厂的具体 情形


例4  ̄ t l l N2 , 椭 网E: 2 + :

离心率的五种求法

离心率的五种求法

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。

例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

高中数学圆锥曲线中离心率的14种求解方法

高中数学圆锥曲线中离心率的14种求解方法

圆锥曲线是高中数学的一个重要内容,其中离心率的求解是常考知识点之一。

本文将介绍圆锥曲线中离心率的14种求解方法,包括定义法、两点法、点差法、判别式法、参数方程法、切线法、弦长公式法、基本不等式法等。

每种方法都有其适用条件和优缺点,同学们可以根据具体情况选择合适的方法进行解题。

方法一:定义法定义法是通过利用圆锥曲线的定义来求解离心率的。

对于椭圆和双曲线,可以利用椭圆和双曲线的中心和对称性,以及长度的不减性来求解离心率的范围。

这种方法适用于简单的情况,但在复杂的情况下需要结合其他方法进行求解。

方法二:两点法两点法适用于求解椭圆的离心率。

当焦点在x 轴上时,设左、右两个顶点分别为A1、A2,焦距为F1、F2,通过求出丨FA1丨-丨FA2丨来求出离心率e 的范围。

当焦点在y 轴上时,同样利用左右顶点及中心来解题。

这种方法简单直观,但需要学生掌握椭圆的性质。

方法三:点差法点差法适用于求解圆锥曲线的离心率的范围。

通过将圆锥曲线上两个点的坐标进行差分,得到关于离心率的方程,从而求解离心率的值或范围。

这种方法需要学生具有一定的技巧和经验,但对于一些较为复杂的问题,能够得到事半功倍的效果。

方法四:判别式法对于双曲线和抛物线,判别式法是一种常用的求解离心率的简便方法。

通过将圆锥曲线的方程化简为二次方程或一元二次方程,利用判别式小于零得到离心率的范围。

这种方法简单易行,但需要学生具有一定的数学基础和解题技巧。

方法五:参数方程法对于一些较为复杂的圆锥曲线,可以使用参数方程来求解离心率的值或范围。

通过将圆锥曲线转化为参数方程的形式,利用参数的几何意义或结合不等式进行求解。

这种方法能够解决一些较为困难的问题,但需要学生掌握参数方程的相关知识和技巧。

方法六:利用切线法求椭圆离心率根据椭圆的性质,椭圆的左、右焦点到相应准线的距离称为离心率;若过椭圆上某点作坐标轴的垂线,与以该点为起点的直角三角形相似,则此直角三角形的另一顶点在焦点上,此定点即为椭圆的上下顶点;而椭圆上的点到左右顶点的距离之和为定值(2a)。

求圆锥曲线的离心率的常用方法

求圆锥曲线的离心率的常用方法

求圆锥曲线的离心率的常用方法一、根据条件先求出a ,c ,利用e=c a 求解 例1 若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为( ) A .34 B .23 C .12 D .14解析:由F 1、F 2的坐标知 2c=3﹣1,∴c=1,又∵椭圆过原点,∴a ﹣c=1,a+c=3,∴a=2,c=1,所以离心率e=c a =12.故选C . 例2 如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A. 32B. 62C. 32 D2 解析:由题设a =2,2c =6,则c =3,e =c a =32,因此选C 二、构建关于a ,c 的齐次等式求解例3 设双曲线x 2a 2﹣y 2b2=1(0<a<b)的半焦距为c ,直线L 过(a,0),(0,b)两点.已知原点到直线的距离为34c ,则双曲线的离心率为( ) A.2 B. 3 C. 2 D.233解析:由已知,直线L 的方程为bx+ay -ab=0.由点到直线的距离公式,得 aba 2+b 2=34c ,又c 2=a 2+b 2, ∴4ab=3c 2, 两边平方,得16a 2(c 2﹣a 2)=3c 4.两边同除以a 4,并整理,得 3e 4-16e 2+16=0.解得 e 2=4或e 2=43.又0<a<b ,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2>2,∴e 2=4,∴e =2.故选A.例4 双曲线虚轴的一个端点为M ,两个焦点为F 1,F 2,∠F 1MF 2=120︒,则双曲线的离心率为( )(A )3 (B )62 (C )63 (D )33解析:如图2所示,不妨设M(0,b),F 1(-c,0), F 2(c,0),则|MF 1|=|MF 2|=c 2+b 2.又|F 1F 2|=2c ,在△F 1MF 2中, 由余弦定理,得cos ∠F 1MF 2=|MF 1|2+|MF 2|2﹣|F 1F 2|22|MF 1|·|MF 2|,即(c 2+b 2)+(c 2+b 2)﹣4c 22c 2+b 2·c 2+b 2)=cos 120︒=﹣12,∴b 2﹣c 2b 2+c 2=﹣12, 图2∵b 2=c 2﹣a 2,∴﹣a 22c 2﹣a 2=﹣12,∴3a 2=2c 2,∴e 2=32,∴e =62.故选B. 例5 双曲线x 2a 2﹣y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( ) A.2 B. 3 C. 2 D.32解析:由条件易知,双曲线为等轴双曲线,∴a=b ,∴c=2a ,∴e =c a= 2.故选C. 三、根据曲线方程列出含参数的关系式,求e 的取值范围例6 设θ∈(0,π4),则二次曲线x 2cot θ﹣y 2tan θ=1的离心率的取值范围为( ) A.(0,12) B.(12,22) C.(22,2) D.(2,+∞) 解析:由x 2cot θ﹣y 2tan θ=1,θ∈(0,π4),得a 2=tan θ,b 2= cot θ,∴c 2=a 2+b 2=tan θ+ cot θ,∴e 2=c 2a 2=tan θ+ cot θtan θ=1+ cot 2θ,∵θ∈(0,π4),∴cot 2θ>1,∴e 2>2,∴e >2.故选D. 四、构建关于e 的不等式,求e 的取值范围例7 如图,已知梯形ABCD 中,|AB |=2|CD |,点E 分有向线段AC →所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当23≤λ≤34时,求双曲线离心率e 的取值范围. 解析:以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立如图3所示的直角坐标系x Oy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D关于y 轴对称.依题意,记A(﹣c ,0),C(c 2,h),E(x 0,y 0),其中c =12|AB |为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得 x 0=-c+λ·c 21+λ=(λ-2)c 2(1+λ),y 0=λh 1+λ. 设双曲线的方程为x 2a 2﹣y 2b 2=1,则离心率e =c a. 由点C 、E 在双曲线上,所以,将点C 的坐标代入双曲线方程得 c 24a 2﹣h 2b2=1 ①, 将点E 的坐标代入双曲线方程得c 24a 2(λ﹣21+λ)2-(λ1+λ)2h 2b 2=1 ②. 再将e =c a ①、②得 e 24﹣h 2b 2=1,∴h 2b 2=e 24﹣1 ③,e 24(λ﹣21+λ)2-(11+λ)2h 2b 2=1 ④. 将③式代入④式,整理得 e 24(4-4λ)=1+2λ,∴λ=1-3e 2+2. 图3由题设23≤λ≤34得,23≤1-3e 2+2≤34.解得7≤e ≤10. 所以双曲线的离心率的取值范围为[7,10].。

求圆锥曲线离心率的几种方法

求圆锥曲线离心率的几种方法

你今天的日积月累,终会变成别人的望尘莫及。

关于椭圆离心率设椭圆x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。

解法1:利用曲线范围设P (x ,y ),又知F c F c 1200(,),(,)-,则F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 1212121222229000→→→→→→=+=-∠=︒⊥⋅=+-+=+=()()()(),,,由,知,则,即得将这个方程与椭圆方程联立,消去y ,可解得x a c a b a b F PF x aa c ab a ba 2222222122222222229000=--∠=︒≤<≤--<但由椭圆范围及知即可得,即,且从而得,且所以,)c b c a c c a e c a e c a e 2222222221221≥≥-<=≥=<∈[解法2:利用二次方程有实根由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=你今天的日积月累,终会变成别人的望尘莫及。

又由,知则可得这样,与是方程的两个实根,因此∠=︒+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()||||()∆=--≥⇒=≥⇒≥4801222222222a a c e c a e ()因此,e ∈[)221 解法3:利用三角函数有界性记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin ||sin ||sin ||||sin sin ||||||||sin sin sin cos cosPF PF F F PF PF F F PF PF a F F c e c a 121212121212902211222122βααβαβαβαβαβ==︒⇒++=+====+=+-=-又,,则有而知从而可得09002452221221≤-<︒≤-<︒<-≤≤<||||cos αβαβαβe你今天的日积月累,终会变成别人的望尘莫及。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-4-28
诚·敬
一、例题讲解:Байду номын сангаас
1、利用圆锥曲线的定义:
例 1(1)以正方形 ABCD 的两个顶点 A, B 为焦
点,且过 C, D 两点的椭圆的离心率为___
一、例题讲解:
1、利用圆锥曲线的定义:
一、例题讲解:
1、利用圆锥曲线的定义:
一、例题讲解:
2、利用向量的简单性质
一、例题讲解:
2、利用向量的简单性质
一、例题讲解:
3、利用圆锥曲线的几何定义:
一、例题讲解:
3、利用圆锥曲线的几何定义:
一、例题讲解:
4、利用函数值域
一、例题讲解:
5、利用圆锥曲线中一些几何量的有界性
一、例题讲解:
5、利用圆锥曲线中一些几何量的有界性
相关文档
最新文档