高中不等式单元测试卷及答案
高中数学第一册不等式单元测试题(含答案)

不等式单元测试题一、单选题(共12题;共24分)1.(2020高二下·北京期中)若,,则()A. B. C. D.2.(2020高一下·邯郸期中)已知,且.下列不等式中成立的是()A. B. C. D.3.(2020高一下·成都期中)若,则一定有()A. B. C. D.4.(2020高一下·嘉兴期中)设、、,,则下列不等式一定成立的是()A. B. C. D.5.(2020高一下·吉林期中)下列命题中:① ,;② ,;③ ;④ ;正确命题的个数是()A. 1B. 2C. 3D. 46.(2020高一下·哈尔滨期末)已知,,则的最小值为()A. 8B. 6C.D.7.(2020高一下·太和期末)设正实数满足,则当取得最大值时,的最大值为()A. 1B. 4C.D.8.(2020高一下·丽水期末)已知实数满足,且,则的最小值为()A. B. C. D.9.(2020高一下·宜宾期末)若正数满足,则的最大值为()A. 5B. 6C. 7D. 910.(2020高一下·南昌期末)已知a,,且满足,则的最小值为()A. B. C. D.11.(2020高一下·丽水期末)不等式的解集是()A. 或B. 或C.D.12.(2020高一下·吉林期末)若a<0,则关于x的不等式x2-4ax-5a2>0的解是()A. x>5a或x<-aB. x>-a或x<5aC. 5a<x<-aD. -a<x<5a二、填空题(共4题;共4分)13.(2020高二下·西安期中)比较大小:________ .(用,或填空)14.(2020高一下·温州期末)已知正实数x,y满足,则的最小值是________.15.(2020高一下·宜宾期末)若正数满足,则的最小值为________.16.(2020高一下·哈尔滨期末)不等式的解集为________.三、解答题(共8题;共75分)17.(2020高一下·六安期末)已知函数.(1)当时,求函数的最小值;(2)若存在,使得成立,求实数a的取值范围.18.(2020高一下·大庆期末)已知关于x的不等式.(1)当时,解上述不等式.(2)当时,解上述关于x的不等式19.(2020高一下·太和期末)已知函数.(1)若对任意实数,恒成立,求实数a的取值范围;(2)解关于x的不等式.20.(2020高一下·宜宾期末)已知函数.(1)当时,解不等式;(2)当时,恒成立,求的取值范围.21.(2020高一下·萍乡期末)(1)解不等式;(2)解关于x的不等式:.22.(2020高一下·成都期末)已知定义在上的函数,其中为常数.(1)求解关于的不等式的解集;(2)若是与的等差中项,求a+b的取值范围.23.(2020高一下·南昌期末)已知汽车从踩刹车到停车所滑行的距离()与速度()的平方和汽车总质量积成正比关系,设某辆卡车不装货物以的速度行驶时,从刹车到停车走了.(Ⅰ)当汽车不装货物以的速度行驶,从刹车到停车所滑行的距离为多少米?.(Ⅱ)如果这辆卡车装着等于车重的货物行驶时,发现前面处有障碍物,这时为了能在离障碍物以外处停车,最大限制时速应是多少?(结果保留整数,设卡车司机发现障碍物到踩刹车需经过.参考数据:.)24.(2020高一下·重庆期末)已知函数.(1)当时,求不等式的解集;(2)若关于x的不等式的解集为R,求a的取值范围.答案解析部分一、单选题1.【答案】C【解析】【解答】,又,,所以,所以.故答案为:C【分析】采用作差法比较即可.2.【答案】B【解析】【解答】,且,,.故答案为:B.【分析】由和,得,根据不等式的性质可得选项.3.【答案】C【解析】【解答】由题可得,则,因为, 则, ,则有,所以,即故答案为:C【分析】由题,可得,且,即,整理后即可得到作出判断.4.【答案】C【解析】【解答】对于A,由,则,A不符合题意;对于B,若,则,B不符合题意;对于C,,因为,,所以,即,C符合题意;对于D,,因为,,所以,所以,即,D不符合题意;故答案为:C【分析】利用不等式的性质以及作差法比较大小逐一判断即可.5.【答案】C【解析】【解答】① ,由不等式的加法得,所以该命题正确;② ,是错误的,如:,满足已知,但是不满足,所以该命题错误;③ ,所以,所以该命题正确;④ 所以,所以该命题正确.故答案为:C【分析】①利用不等式的加法法则判断;②可以举反例判断;③利用不等式性质判断;④可以利用作差法判断.6.【答案】C【解析】【解答】∵,,∴,当且仅当即时,等号成立,所以的最小值为.故答案为:C【分析】结合题中的条件利用基本不等式求解的最小值即可.7.【答案】B【解析】【解答】因为,所以,且,则,即,取等号时有:,且;,当且仅当时取得最大值:,故答案为:B.【分析】先利用基本不等式分析取得最大值的条件,然后再去计算的最大值.8.【答案】B【解析】【解答】,当且仅当时取等号故答案为:B【分析】利用1的代换,结合基本不等式求最值.9.【答案】D【解析】【解答】依题意,当且仅当时等号成立,所以的最大值为9.故答案为:D【分析】利用基本不等式求得的最大值.10.【答案】C【解析】【解答】∵,∴.即.当且仅当时取等号.∴的最小值为故答案为:C【分析】利用a和b的关系进行代换,再利用基本不等式即可得出.11.【答案】C【解析】【解答】由得:,,,即不等式的解集为,故答案为:C【分析】由原不等式可化为,直接根据一元二次不等式的解法求解即可.12.【答案】B【解析】【解答】由有所以方程的两个实数根为,因为,所以所以由不等式得,或故答案为:B【分析】利用因式分解求出对应方程的实数根,再比较两个实数根的大小,从而得出不等式的解集.二、填空题13.【答案】<【解析】【解答】解:即故答案为:<【分析】利用作差法比较大小;14.【答案】【解析】【解答】将式子变形为,即,因为,,所以(当且仅当时,等号成立),所以有,即,故,所以,则的最小值是.故答案为:.【分析】由题易得,然后由基本不等式可得,最后可求得的最小值.15.【答案】16【解析】【解答】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:16【分析】利用基本不等式求得的最小值.16.【答案】{x|2<x<3}【解析】【解答】由,得,从而解得,所以,不等式的解集为,故答案为:.【分析】根据一元二次不等式的解法,即可求得原不等式的解集.三、解答题17.【答案】(1)解:因为,所以,因为,所以,所以当且仅当时,等号成立,所以当时,(2)解:存在,使得成立,等价于当时,由(1)知,所以,,所以.因为,所以,解得,所以实数a的取值范围为【解析】【分析】(1)变形为后,根据基本不等式可得结果;(2)转化为,等价于,等价于,等价于.18.【答案】(1)解:当时,代入可得,解不等式可得,所以不等式的解集为(2)解:关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【解析】【分析】(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对a分类讨论,即可由零点大小确定不等式的解集.19.【答案】(1)解:当时,恒成立;当时,要使对任意实数x,恒成立,需满足,解得,故实数a的取值范围为(2)解:由不等式得,即.方程的两根是,.①当时,,不等式的解为或;②当时,不等式的解为;③当时,不等式的解为;④当时,,不等式无解;⑤当时,,不等式的解为综上:①当时,不等式的解为或;②当时,不等式的解为;③当时,不等式的解为;④当时,,不等式解集为;⑤当时,不等式的解为【解析】【分析】(1)对a讨论,时不合题意;合题意;,利用判别式小于0解不等式,求交集即可得到所求范围;(2)先将不等式化为,再对参数a的取值范围进行讨论,利用一元二次不等式的解法分别解不等式即可.20.【答案】(1)解:当时,不等式为,即,该不等式解集为.(2)解:由已知得,若时,恒成立,,即,的取值范围为.【解析】【分析】(1)当是,解一元二次不等式求得不等式的解集.(2)利用判别式列不等式,解不等式求得的取值范围.21.【答案】(1)解:原不等式可化为且,由标根法(或穿针引线法)可得不等式的解集为(2)解:原不等式等价于.当时,;当时,,解集为空集;当时,.综上所述,当时,解集为;当时,解集为空集;当时,解集为【解析】【分析】(1)分式不等式用穿根法求解即可.(2)含参数的二次不等式求解,先求解对应方程的实数根,再结合二次函数图象对实数根的大小分类讨论解决即可.22.【答案】(1)解:,整理为,当时,不等式的解集是,当时,不等式的解集是,当时,不等式的解集是;(2)解:由条件可知,即,即,,,,即,解得:,所以a+b的范围是.【解析】【分析】(1)不等式转化为,然后分类讨论解不等式;(2)由条件转化为,再转化为关于a+b的一元二次不等式.23.【答案】解:(Ⅰ)滑行的距离为,汽车总质量为M,时速为,比例常数为k,根据题意可得,将,代入可得,所以,当时,代入上式,可得.(Ⅱ)卡车司机发现障碍物到踩刹车需经过.行驶的路程为,由,可得,解得,因为,所以.所以最大限制时速应是:【解析】【分析】(Ⅰ)设从刹车到停车滑行的距离为,时速为,卡车总质量为M,比例常数为k,然后根据条件求出k的值,得到函数的解析式.然后代入的速度行驶,汽车从刹车到停车所滑行的距离.(Ⅱ)再根据滑行距离到障碍物距离建立不等关系,解之即可求出所求最大限制时速.24.【答案】(1)解:当时,,,故解集为;(2)解:由题知,解得.【解析】【分析】(1)将代入,解二次不等式的解集即可;(2)令即可;。
《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。
一、单项选择题(本大题共5小题,每小题5分,共计25分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。
$ab<bc$B。
$ab<ac$XXX<bc$D。
$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。
6B。
12C。
24D。
363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。
$(12,20)$B。
$(12,18)$C。
$(18,20)$D。
$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。
2B。
$\frac{2}{3}$C。
$2+\frac{2}{3}$D。
$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。
$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。
$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。
$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。
$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。
不等式单元测试题及答案

第三章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若a <0,-1<b <0,则有( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a2.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值eC .有最小值eD .有最小值e 3.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M <N D .M ≤N4.不等式x 2-ax -12a 2<0(其中a <0)的解集为( ) A .(-3a,4a ) B .(4a ,-3a ) C .(-3,4) D .(2a,6a )5.已知a ,b ∈R ,且a >b ,则下列不等式中恒成立的是( ) A .a 2>b 2B .(12)a <(12)bC .lg(a -b )>0 >1 6.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]7.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0-x +2, x >0,则不等式f (x )≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]8.若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( )>12 +1b ≤1 ≥2 ≤189.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y +2≥0,则目标函数z =|x +3y |的最大值为( )A .4B .6C .8D .1010.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定11.设M =⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1,且a +b +c =1 (其中a ,b ,c 为正实数),则M 的取值范围是( )C .[1,8)D .[8,+∞) 12.函数f (x )=x 2-2x +1x 2-2x +1,x ∈(0,3),则( )A .f (x )有最大值74 B .f (x )有最小值-1C .f (x )有最大值1D .f (x )有最小值113.已知t >0,则函数y =t 2-4t +1t的最小值为________________________________________________________________________. 14.对任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是________.15.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.16.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.三、解答题(本大题共6小题,共70分)17.(10分)已知a >0,b >0,且a ≠b ,比较a 2b +b 2a与a +b 的大小.18.(12分)已知a ,b ,c ∈(0,+∞). 求证:(aa +b)·(bb +c)·(cc +a )≤18.19.(12分)若a<1,解关于x的不等式axx-2>1.20.(12分)求函数y=x+22x+5的最大值.21.(12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B 点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内(2)当DN的长为多少时,矩形花坛AMPN的面积最小并求出最小值.22.(12分)某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:第三章 不等式 章末检测答案(B)1.D [∵a <0,-1<b <0, ∴ab >0,ab 2<0. ∴ab >a ,ab >ab 2.∵a -ab 2=a (1-b 2)=a (1+b )(1-b )<0, ∴a <ab 2.∴a <ab 2<ab .] 2.C3.A [∵M -N =2a (a -2)-(a +1)(a -3) =(2a 2-4a )-(a 2-2a -3)=a 2-2a +3 =(a -1)2+2>0.∴M >N .] 4.B [∵x 2-ax -12a 2<0(a <0) ⇔(x -4a )(x +3a )<0 ⇔4a <x <-3a .]5.B [取a =0,b =-1,否定A 、C 、D 选项. 故选B.]6.D [∵x >1,∴x +1x -1=(x -1)+1x -1+1≥ 2x -1·1x -1+1=3.∴a ≤3.] 7.A [f (x )≥x 2⇔⎩⎪⎨⎪⎧x ≤0x +2≥x 2或⎩⎪⎨⎪⎧x >0-x +2≥x 2⇔⎩⎪⎨⎪⎧x ≤0x 2-x -2≤0或⎩⎪⎨⎪⎧x >0x 2+x -2≤0⇔⎩⎪⎨⎪⎧x ≤0-1≤x ≤2或⎩⎪⎨⎪⎧x >0-2≤x ≤1⇔-1≤x ≤0或0<x ≤1 ⇔-1≤x ≤1.]8.D [取a =1,b =3,可验证A 、B 、C 均不正确, 故选D.]9.C [可行域如阴影,当直线u =x +3y 过A (-2,-2)时,u 有最小值(-2)+(-2)×3=-8;过B (23,23)时u 有最大值23+3×23=83.∴u =x +3y ∈[-8,83].∴z =|u |=|x +3y |∈[0,8].故选C.]10.B [设甲用时间T ,乙用时间2t ,步行速度为a ,跑步速度为b ,距离为s ,则T=s 2a +s2b =s 2a +s 2b =s ×a +b 2ab ,ta +tb =s ⇒2t =2s a +b, ∴T -2t =s a +b 2ab -2s a +b =s ×a +b 2-4ab 2ab a +b =s a -b 22ab a +b>0,故选B.]11.D [M =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=⎝⎛⎭⎪⎫a +b +c a -1⎝ ⎛⎭⎪⎫a +b +c b -1⎝ ⎛⎭⎪⎫a +b +c c -1 =⎝⎛⎭⎪⎫b a +ca ·⎝⎛⎭⎪⎫a b +cb ·⎝⎛⎭⎪⎫a c +bc ≥2b a ·ca ·2ab ·c b ·2a c ·bc=8. ∴M ≥8,当a =b =c =13时取“=”.]12.D [∵x ∈(0,3),∴x -1∈(-1,2), ∴(x -1)2∈[0,4),∴f (x )=(x -1)2+1x -12-1≥2x -12·1x -12-1=2-1=1.当且仅当(x -1)2=1x -12,且x ∈(0,3),即x =2时取等号,∴当x =2时,函数f (x )有最小值1.] 13.-2 解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2.14.-2<a ≤2解析 当a =2时,-4<0恒成立,∴a =2符合. 当a -2≠0时,则a 应满足:⎩⎪⎨⎪⎧a -2<0Δ=4a -22+16a -2<0解得-2<a <2.综上所述,-2<a ≤2. 15.5≤a <7解析 先画出x -y +5≥0和0≤x ≤2表示的区域,再确定y ≥a 表示的区域.由图知:5≤a <7. 16.20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为(400x·4+4x )万元,400x ·4+4x ≥160,当1 600x=4x 即x =20吨时,一年的总运费与总存储费用之和最小.17.解 ∵(a 2b +b 2a )-(a +b )=a 2b -b +b 2a -a=a 2-b 2b +b 2-a 2a =(a 2-b 2)(1b -1a )=(a 2-b 2)a -b ab =a -b 2a +b ab又∵a >0,b >0,a ≠b , ∴(a -b )2>0,a -b >0,ab >0,∴(a 2b +b 2a )-(a +b )>0,∴a 2b +b 2a>a +b .18.证明 ∵a ,b ,c ∈(0,+∞), ∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ac >0,∴(a +b )(b +c )(c +a )≥8abc >0. ∴abca +b b +c c +a ≤18 即(a a +b)·(b b +c)·(cc +a )≤18. 当且仅当a =b =c 时,取到“=”. 19.解 不等式ax x -2>1可化为a -1x +2x -2>0. ∵a <1,∴a -1<0,故原不等式可化为x -21-ax -2<0.故当0<a <1时,原不等式的解集为 {x |2<x <21-a},当a <0时,原不等式的解集为{x |21-a<x <2}. 当a =0时,原不等式的解集为∅.20.解 设t =x +2,从而x =t 2-2(t ≥0), 则y =t2t 2+1. 当t =0时,y =0; 当t >0时,y =12t +1t≤122t ·1t=24. 当且仅当2t =1t ,即t =22时等号成立.即当x =-32时,y max =24.21.解 (1)设DN 的长为x (x >0)米, 则AN =(x +2)米.∵DN AN =DC AM,∴AM =3x +2x , ∴S AMPN =AN ·AM =3x +22x,由S AMPN >32,得3x +22x>32.又x >0,得3x 2-20x +12>0, 解得:0<x <23或x >6,即DN 长的取值范围是(0,23)∪(6,+∞).(2)矩形花坛AMPN 的面积为 y =3x +22x=3x 2+12x +12x=3x +12x+12≥23x ·12x+12=24,当且仅当3x =12x,即x =2时,矩形花坛AMPN 的面积取得最小值24.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米.22.解 设此工厂每天应分别生产甲、乙两种产品x 吨、y 吨,获得利润z 万元.依题意可得约束条件:⎩⎪⎨⎪⎧ 9x +4y ≤3604x +5y ≤2003x +10y ≤300x ≥0y ≥0作出可行域如图.利润目标函数z =6x +12y , 由几何意义知,当直线l :z =6x +12y 经过可行域上的点M 时,z =6x +12y 取最大值.解方程组⎩⎪⎨⎪⎧ 3x +10y =3004x +5y =200,得x =20,y =24,即M (20,24).答 生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润.。
一元二次函数、方程和不等式单元测试卷及答案解析

高一上学期数学单元测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)86.不等式组的解集为【】(A)(B)(C)(D)7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B(C)(D)11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.18.(本题满分12分)已知,且(1)求的最小值;(2)是否存在,使得的值为?并说明理由.19.(本题满分12分)已知命题R ,,命题R ,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?高一上学期数学单元测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)答案 【 D 】解析本题考查一元二次不等式的解法,属于基础题.∵≥,∴0,∴≥0,解之得:≤0或≥2.∴原不等式的解集为.∴选择答案【 D 】.2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N答案 【 A 】解析本题考查作差法比较大小.利用作差法比较大小的一般步骤为:(1)作差;(2)变形: 对差进行变形.(3)判号: 判断差的符号(如果差中含有参数,则需要进行分类讨论).(4)定论: 根据差的符号作出大小判断.即: 作差变形判号定论.作差法的关键在于变形,常用的变形为:因式分解、配方、通分、分子或分母有理化等.∵,∴∵R,恒成立,∴.∴.∴选择答案【 A 】.3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)答案 【 C 】解析本题宜采用特殊值法比较大小.∵,取∴.∵∴.∴选择答案【 C 】.4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件答案 【 B 】解析本题考查充分必要条件的判断.方法总结 判断充分必要条件的基本思路(1)先确定条件是什么,结论是什么;(2)尝试用条件推结论,或由结论推条件;(必要时举出反例)(3)指出条件是结论的什么条件.若一元二次不等式恒成立,则有:.显然,由“”不能推出“一元二次不等式恒成立”,但是由“一元二次不等式恒成立”可以推出“”.∴“”是“一元二次不等式恒成立”的必要不充分条件.∴选择答案【 B 】.5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)8答案 【 A 】解析本题考查利用基本不等式求最值.注意利用基本不等式求最值时必须满足三个条件:一正、二定、三相等.∵,且∴.∴≥.当且仅当,即时,等号成立.∴的最小值为5.∴选择答案【 A 】.另解 ∵,∴.∴≥.当且仅当,即,等号成立.∴的最小值为5.∴选择答案【 A 】.6.不等式组的解集为【】(A)(B)(C)(D)答案 【 C 】解析本题考查一元二次不等式的解法.解不等式得:;解不等式得:.∴不等式组的解集为.∴选择答案【 C 】.7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)答案 【 D 】解析本题考查不等式的基本性质.对于(A),当时,∵,∴;当时,显然.∴≥,故(A)正确;对于(B),∵,∴,∴.故(B)正确;对于(C),∵,∴.∵,∴.∴,∴.根据倒数法则,有.故(C)正确;对于(D),由不能得到,∴不一定成立.故(D)错误.∴选择答案【 D 】.8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3答案 【 B 】解析本题考查基本不等式的应用.∵,∴.∵为正数∴≤.当且仅当,即时,等号成立.此时.∴∴当,即时,.∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)答案 【 BCD 】解析本题考查一元二次不等式与对应一元二次方程之间的关系.要明白一元二次不等式的解集的端点值就是对应一元二次方程的实数根.∵不等式的解集为∴,方程的两个实数根分别为.由根与系数的关系定理可得:,∴,∴异号,异号且互为相反数.∵,∴,.∴.故(A)错误,(B)、(C)、(D)正确.∴选择答案【 BCD 】.10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B)(C)(D)答案 【 CD 】解析本题考查不等式的基本性质.∵为非零实数,且,∴.对于(A),,当时,,即;当时, ,即.故不恒成立;对于(B),,∴的符号,即的大小关系取决于的符号,共有三种可能,特别地,当互为相反数时,,,此时,故不恒成立;对于(C),,故恒成立;对于(D),,故恒成立.(∵为非零实数,∴恒成立)∴选择答案【 CD 】.11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④答案 【 AD 】解析本题考查不等式的基本性质.对于(A),显然.∵,∴,∴.故是的充分条件;对于(B),当时,,∴.当时,,∴.故不是的充分条件;对于(C),,当,即时,.故不是的充分条件;对于(D),∵,∴,∴,∴.故是的充分条件.∴选择答案【 AD 】.12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1答案 【 AB 】解析本题考查基本不等式的应用.对于(A),∵,,∴≥,当且仅当时取等号,故(A)恒成立;(重要结论: ≤≤)对于(B),∵,,∴≤,当且仅当时取等号,∴≥.故(B)恒成立.对于(C),∵,,∴≤,故(C)不恒成立;对于(D),∵,,∴,≥,当且仅当,即时取等号.故(D)不恒成立.∴选择答案【 AB 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.答案 或解析本题考查分式不等式的解法.∵,∴,整理得:.它同解于不等式.∵,∴.∴,∴或.∴应满足的条件是或.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)答案 .解析本题考查一元二次不等式与相应一元二次方程的关系.∵不等式的解集为∴,一元二次方程的两个实数根分别为.由根与系数的关系定理可得:,解之得:.∴.15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.答案解析本题考查与一元二次函数、一元二次不等式有关的恒成立问题.本题即R恒成立.令,解之得:.当时,对R恒成立,符合题意;当时,,其解集不是R,不符合题意;当,时,则有:,解之得:.综上所述,实数的取值范围是.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.答案解析本题考查一元二次不等式恒成立问题、利用基本不等式求最值.∵不等式≥0对一切实数恒成立(显然,)∴,∴≥1.∵R,成立∴方程有实数根.∴≥0,∴≤1.∵≥1,≤1,∴.∵,∴.∴≥.当且仅当,即时,等号成立.∴的最小值为.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.解:(1)解不等式得:或;解不等式得:.∴原不等式组的解集为;(2)原不等式可化为.解不等式≥得:≥3或≤;解不等式18得:∴原不等式的解集为.18.(本题满分12分)已知,且.(1)求的最小值;(2)是否存在,使得的值为?并说明理由.解:(1)∵,∴≥,∴≤.当且仅当时,等号成立.∴≥≥.当且仅当,即时,等号成立.∴的最小值为;(2)∵∴≥当且仅当,即时,等号成立.∵≤∴≥.当且仅当时,等号成立.∴.∵∴不存在,使得的值为.19.(本题满分12分)已知命题R,,命题R,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.解:(1)∵命题为真命题∴R,恒成立.∴,解之得:.∴实数的取值范围为;(2)∵命题为真命题∴函数有部分图象位于轴下方,即函数图象与轴有两个不同的交点,也即一元二次方程有两个不相等的实数根.∴,解之得:或.∴实数的取值范围为;(3)∵命题至少有一个为真命题∴实数的取值范围为20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.解:(1)设米,则米.∵∴△NDC∽△NAM.∴∴米.∵矩形AMPN的面积大于32平方米,∴,整理得:.解之得:或.∴DN 的长的范围为;(2)设矩形花坛AMPN的面积为平方米,则有:≥.当且仅当,即时,等号成立,取得最小值.∴(平方米).答:当DN的长为2米时,矩形花坛AMPN的面积最小,为24平方米. 21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).解:(1)∵≥对一切实数恒成立,∴R,≥0恒成立.当时,≥0,不符合题意;当时,则有:,解之得:≥.综上所述,实数的取值范围是;(2)∵(R)∴∴.当时,,解之得:,∴原不等式的解集为;当时,原不等式可化为.当时,,原不等式同解于,∴原不等式的解集为;当时,原不等式同解于:若,则,∴原不等式的解集为;若,则,,∴原不等式的解集为;若,则,∴原不等式的解集为.综上所述,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?解:(1)由题意可得,每年产品的生产成本为万元,每万件的销售价为:万元,即万元.∴该企业的年销售收入为万元.∴(≥0)(万元);(2)∵(≥0)∴≤.当且仅当,即时,等号成立.∴(万元).答: 当年广告费投入7万元时,企业年利润最大,最大年利润为48万元.。
不等式测试题及答案

不等式单元测试题及答案(1)一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-38.若关于x 的函数y =x +m2x在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<m <2D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-1<f (x )<0 C .f (x )>1 D .0<f (x )<110.若x +23x -5<0,化简y =25-30x +9x 2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元; (3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边;②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.不等式单元测试题及答案(1)1.解析:原不等式化为x 2-2x ≥0,则x ≤0或x ≥2. 答案:D2.解析:A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0<b 2=1,所以B 不正确;D 中,当(-2)2>(-1)2时,-2<-1,所以D 不正确.很明显C 正确.答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A4.解析:x -1x +2>1⇔x -1x +2-1>0⇔-3x +2>0⇔x +2<0⇔x <-2.答案:A5.解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0, 所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC . 答案:A7.解析:画出可行域如下图中的阴影部分所示.解方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y =0.得A (2,1).由图知,当直线y =x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.答案:A8.解析:∵x +m 2x≥2|m |,∴2|m |>4.∴m >2或m <-2. 答案:B9.解析:令x =y =0得f (0)=f 2(0), 若f (0)=0,则f (x )=0·f (x )=0与题设矛盾. ∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),故f (x )=1f (-x ).∵x >0时,f (x )>1,∴x <0时,0<f (x )<1,故选D. 答案:D10.解析:∵x +23x -5<0,∴-2<x <53.而y =25-30x +9x 2-(x +2)2-3=|3x -5|-|x +2|-3=5-3x -x -2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是__________.解析:式子1kx 2+kx +1恒有意义,即kx 2+kx +1>0恒成立.当k ≠0时,k >0且Δ=k 2-4k <0,∴0<k <4;而k =0时,kx 2+kx +1=1>0恒成立,故0≤k <4,选C.答案:C12.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.解析:求原函数定义域等价于解不等式组⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x >0,解得2≤x <3或3<x <4.∴定义域为[2,3)∪(3,4). 答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 214.已知函数f (x )=x 2-2x ,则满足条件⎩⎪⎨⎪⎧f (x )+f (y )≤0,f (x )-f (y )≥0的点(x ,y )所形成区域的面积为__________.解析:化简原不等式组⎩⎪⎨⎪⎧(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0, 所表示的区域如右图所示,阴影部分面积为半圆面积. 答案:π 15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即⎝⎛⎭⎫t +115⎝⎛⎭⎫t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥0.2,∴x ≥20.故x 的最小值是20. 答案:20三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.解:e a -c -eb -d =e (b -d )-e (a -c )(a -c )(b -d )=(b -a )+(c -d )(a -c )(b -d )e .∵a >b >0,c <d <0,∴a -c >0,b -d >0,b -a <0,c -d <0.又e <0,∴e a -c -e b -d >0.∴e a -c >eb -d.17.(12分)解下列不等式:(1)-x 2+2x -23>0;(2)9x 2-6x +1≥0.解:(1)-x 2+2x -23>0⇔x 2-2x +23<0⇔3x 2-6x +2<0.Δ=12>0,且方程3x 2-6x +2=0的两根为x 1=1-33,x 2=1+33,∴原不等式解集为{x |1-33<x <1+33}.(2)9x 2-6x +1≥0⇔(3x -1)2≥0. ∴x ∈R .∴不等式解集为R .18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0. 解:当m =-3时,不等式变成3x -3>0,得x >1; 当-3<m <-2时,不等式变成(x -1)[(m +3)x-m ]>0,得x >1或x <mm +3;当m <-3时,得1<x <mm +3.综上,当m =-3时,原不等式的解集为(1,+∞);当-3<m <-2时,原不等式的解集为⎝⎛⎭⎫-∞,m m +3∪(1,+∞);当m <-3时,原不等式的解集为⎝⎛⎭⎫1,m m +3.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l :x +3y =0,将直线l 向上平移至l 1与y 轴的交点M 位置时,此时可行域内M 点与直线l 的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).∴z max =0+3×3=9.20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20. (2)当0≤t <10时,y 的取值范围是[1200,1225], 在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200], 在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边; ②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.解:方案①:修旧墙费用为ax4(元),拆旧墙造新墙费用为(14-x )a2(元),其余新墙费用为(2x +2×126x-14)a (元),则总费用为y =ax 4+(14-x )a 2+(2x +2×126x -14)a =7a (x 4+36x-1)(0<x <14),∵x 4+36x ≥2x 4·36x=6, ∴当且仅当x 4=36x即x =12时,y min =35a ,方案②:利用旧墙费用为14×a 4=7a2(元),建新墙费用为(2x +252x -14)a (元),则总费用为y =7a 2+(2x +252x -14)a =2a (x +126x )-212a (x ≥14),可以证明函数x +126x在[14,+∞)上为增函数,∴当x =14时,y min =35.5a . ∴采用方案①更好些.。
沪教版(2020)必修第一册《第二章 等式与不等式》2021年单元测试卷(1)(附答案详解)

沪教版(2020)必修第一册《第二章等式与不等式》2021年单元测试卷(1)一、单选题(本大题共4小题,共16.0分)1.已知α, b, c ∈ R,给出下列条件:①小> b2;②3< j (5)αc2 > be2,则使得Q > b成立的充分而不必要条件是()A.①B.②C.③D.①②③2.已知集合/ = {x∖x2 -2x-3<0},非空集合B = {x∣2 -α<x< l + α}, F ⊂λ,则实数Q的取值范围为()A. (-∞,2]B.弓,2]C. (-8,2)D. (1,2)3.若不等式/ + αx + 1 ≥ 0对于一切%∈ (0,三恒成立,则α的最小值是()A. 0B. -2C. 一:D. —324.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为y = :∕ - 300%+ 80000,为使每吨的平均处理成本最低,该厂每月处理量应为()A. 300吨B. 400吨C. 500吨D. 600吨二、填空题(本大题共11小题,共33.0分)5.设α =b+逐,b = √5 + V5,则α, b的大小关系为.6.己知a > 0, b > 0,则p =当—α与q = b —系的大小关系是 ________ .7.不等式/一5∣x∣-6< 0的解集是.8.若对任意实数χ∈[—1,1],不等式巾2一1>式巾+ 1)恒成立,则实数血的取值范围是_____ .9.己知关于欠的不等式巴色>0的解集为M,且2 0M,则α的取值范围是_________ .x+a10.关于x的不等式αx-b>O的解集为(l,+∞),则关于%的不等式三¥>0的解集为X—211.已知正实数α, b满足。
炉(。
+ 28)=4,则α + b的最小值为 .12.存在正实数%,使得不等式x ÷ - < m2 +∣m + 1成立,则实数τn的取值范围是_____X /1 ft13.已知x>0, y >0,且―+7=2,则2x+ y的最小值为.14.设a、b、c是三个正实数,且a + b + 2c =些,则翟•的最大值为_______ .a 3b+c15.若正数a, b, c满足空+唱=”+1,则竺与勺最小值是 _____________ .a b c c三、解答题(本大题共6小题,共5L0分)16.关于不等式组仆的整数解的集合为{一2},则实数k的取值{∆X+ (2∕c + 5)X + 5/c < U范围是 ____ .17. (1)比较/与/一χ + ι的大小;(2)证明:己知a > b > c,且a + b + c = O,求证:£ > £.18.对在直角坐标系的第一象限内的任意两点(a,b), (c,d)作如下定义:那么称点(a,b)是点(c,d)的“上位点”,同时点(c,d)是点(a,b)的“下位点”.(1)试写出点(3,5)的一个“上位点”坐标和一个“下位点”坐标;(2)设a、b、c、d均为正数,且点(a,b)是点(c,d)的上位点,请判断点P(Q+ c,b + d)是否既是点(a,b)的“下位点”又是点(c,d)的“上位点”,如果是请证明,如果不是请说明理由;(3)设正整数九满足以下条件:对任意实数m∈{t∣0 V t< 2020,t∈Z},总存在k∈N*,使得点(τι,k)既是点(2020,τn)的“下位点”,又是点(2021,τn + 1)的“上位点”,求正整数兀的最小值.19.已知/(%) = -3X2 + a(6 —a)x + 12.(1)若不等式f(x)>b的解集为(0,3),求实数a、b的值;(2)若a = 3时,对于任意的实数%∈都有f(x) ≥-3/+ (zn + 9)x + 10,求zn的取值范围.20.解关于%的不等式.(2)ax2 + ax + 1 < 0某公司有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a-a)万元Q > 0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则调整员工从事第三产业的人数应在什么范围?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,求α的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键. 根据不等式的关系结合充分条件和必要条件的定义进行判断即可.【解答】解:①由Q2 >炉,得α , b关系不确定,无法得a>b成立,②当αVθ, b>0时,满足-< ,但Q > b不成立;a b③若加2 > be?,得c ≠ 0 ,贝∣J α > b ,反之不成立,即③是α > b成立的充分不必要条件,故选:C .2.【答案】B'2 —Q< 1 + α【解析】解:A = {x∖x2 - 2x - 3 < 0] = (-1,3),B QA,当B ≠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.24不等式单元测试卷一、选择题(本大题共10小题,每小题5分,共50分) 1.已知c<d, a > b >0, 下列不等式中必成立的一个是( )A .a +c> b +dB .a -c> b -dC .a d< b cD . dbc a > 2.设a 、b ∈R ,且a b<0,则( )A .| a +b|>| a -b|B .| a +b|<| a -b|C .| a -b|<| a |-|b|D .| a -b|<| a |+|b|4.不等式| x -4|≤3 的整数解的个数是( )A .7B .6C .5D .45.设集合p={ x |-2< x <3},Q={ x | | x +1|>2,x ∈R},则集合P ∪Q=( )A .{ x |-2< x <1}B .{ x |1< x <3}C .{ x |-3< x <3|D .{ x | x <-3 或x >-2}7.不等式122+<+x x 的解集是( )A .(-3, -2)∪(0, +∞)B .(-∞, -3)∪(-2, 0)C .(-3, 0)D .(-∞, -3)∪(0, +∞)8.若a < b <0,则下列结论中正确的是( )A. 不等式||1||111b a b a >>和均不成立 B. 不等式||1||111b a a b a >>-和均不成立 C. 不等式22)1()1(11ab b a a b a +>+>-和均不成立 D. 不等式22)1()1(||1||1ab b a b a +>+>和均不成立 9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=( )A .10B .-10C .14D .-1410.已知集合A={ x | | x -1|≤a , a >0}, B={ x | | x -3|>4},且A ∩B=φ,则a 的取值范围是 ( )A .(0, 2]B .(-∞, 2]C .(7, +∞)D .(- ∞, -1)二、填空题(本大题共4小题,每小题6分,共24分)11.已知sin 2α+sin 2β+sin 2r=1(α、β、r 均为锐角),则cos αcos βcosr 的最大值等于 . 13.不等式x x x <-24的解集是 .14.某工厂建造一间地面面积为12m 2的背面靠墙的矩形小房,房屋正面的造价为1200元/ m 2,房屋侧面的造价为800元/ m 2,屋顶的造价为5800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是 元. 三、解答题(本大题共6题,共76分) 16.解不等式2931831>⋅+-+x x .(12分)17.锐角三角形△ABC 中,已知边a =1,b=2,求边c 的取值范围.(12分)18.求证:bb aa ba b a +++≤+++111(12分)19.已知21)(x x f += 当a ≠b 时 求证:|||)()(|b a b f a f -<-.(14分)参考答案一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案BBAADBABDA二.填空题(本大题共4小题,每小题6分,共24分) 11.69212.S 13.]4,2( 14.34600三、解答题(本大题共6题,共76分) 15.(12分)[解法一]:[][])1(log )1(log )1(log )1(log |)1(log | |)1(log |22x x x x x x a a a a a a +---+-=+--xxx a a +--=11log )1(log 2 ∵0 < 1 - x 2 < 1,1110<+-<x x∴011log )1(log 2>+--xx x a a ∴|)1(log | |)1(log |x x a a +>- [解法二]:2111111log 11log )1(log )1(log )1(log )1(log x x x x x x x xx x x a a -+=-=--=-=+-++++)1(log 121x x --=+∵0 < 1 - x 2 < 1, 1 + x > 1, ∴0)1(log 21>--+x x∴1)1(log 121>--+xx ∴|)1(log | |)1(log |x x a a +>-[解法三]:∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2, ∴0)1(log ,0)1(log <+>-x x a a∴左 - 右 =)1(log )1(log )1(log 2x x x a a a -=++-∵0 < 1 - x 2 < 1, 且0 < a < 1 ∴0)1(log 2>-x a∴|)1(log | |)1(log |x x a a +>-16.(12分)[解析]:原不等式可化为:018329332>+⋅-⋅x x即:0)233)(93(>-⋅-x x解之得:93>x 或323<x ∴x >2或32log 3<x∴不等式的解集为{x |x >2或32log 3<x} 17.(12分)[解析]:因为△ABC 是锐角三角形,且a =1,b=2,c>0, 所以,0cos 0cos 0cos ⎪⎩⎪⎨⎧>>>C BA即,⎪⎪⎪⎩⎪⎪⎪⎨⎧>⇒>⇒>-+=-+<<⇒<⇒>-+=-+>+⇒>-+=-+3302412505041420304142222222222222222c c c c ac b c a c c c ba c a b c c c bc a c b 因此,所求c 的取值范围是(5,3)18.(12分)[证法一]: 当0=+b a 时,不等式显然成立,当0≠+b a 时,由b a b a +≤+<0ba b a +≥+⇒11所以,ba b a ba ba ba b a +++=++≤++=+++11111111bb aa +++≤11[证法二]:要证明原不等式成立,则只需证明:|a +b|(1+|a |)(1+|b|)≤|a |(1+|a +b|)(1+|b|)+|b|(1+|a +b|)(1+|a |), 展开,合并同类项,得:|a +b|≤|a |+2|a b|+|a 2b+a b 2|+|b|, ∵|a +b|≤|a |+|b|, ∴|a +b|≤|a |+2|a b|+|a 2b+a b 2|+|b|成立, 故原不等式成立.19.(14分)[证法一]:1111|11||)()(|222222+++--+=+-+=-b a b a b a b f a f|||||)(||||))((|11||222222b a b a b a b a b a b a b a b a +-+=+-+<+++-=|||||||||)||(|b a b a b a b a -=+-+≤[证法二]:(构造法) 如图:21)(a a f OA +== 21)(b b f OB +==OA Bab1||||b a AB -=由三角形两边之差小于第三边得:|||)()(|b a b f a f -<-20.(14分)[解析]:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,......,第n 年投入为800×1)511(--n 万元.所以,n 年内的总投入为1)511(800)511(800800--⨯+⋅⋅⋅+-⨯+=n n a ])54(1[4000n -⨯=第1年旅游业收入为400万元,第2年旅游业收入为400×)411(+万元.......,第n 年旅游业收入为400×1)411(-+n 万元.所以,n 年内的旅游业总收入为1)411(400)411(400400-+⨯+⋅⋅⋅++⨯+=n n b ]1)45[(1600-⨯=n(Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此0>-n n a b即]1)45[(1600-⨯n -])54(1[4000n -⨯>0 化简得n )54(5⨯+n)45(2⨯-7>0设n x )54(=,得5 x 2-7 x +2>0,解之得152><x x 或(不合题意,舍去)即 52)54(<n由此得 5≥n答:至少经过5年旅游业的总收入才能超过总投入.。