法拉第电磁感应定律应用

合集下载

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用电磁感应是一种重要的物理现象,它是基于法拉第电磁感应定律而产生的。

法拉第电磁感应定律表明,当导体中的磁通量变化时,导体两端会产生感应电动势,从而产生感应电流。

这一定律被广泛应用于各个领域,包括能源、工业和科学研究等。

在本文中,我们将探讨利用法拉第电磁感应定律解释电磁感应现象的现实应用。

1. 电力发电电力发电是法拉第电磁感应定律的一个典型应用。

发电机利用磁场与导体之间的相互作用来产生电动势。

当转子在磁场中旋转时,导线回路中的磁通量随之变化,从而产生感应电动势。

这个电动势可以被引导出来,用来驱动发电机产生电流。

电力发电是利用法拉第电磁感应定律进行实现的重要方法。

2. 变压器的工作原理变压器是电力系统中常见的设备,也是利用法拉第电磁感应定律的应用之一。

变压器通过改变电流的电压大小来实现能量的传输和转换。

它由两个线圈组成,一个是高压线圈,另一个是低压线圈。

当高压线圈中的电流变化时,会产生变化的磁场,从而在低压线圈中感应出电动势,实现电能的转换。

3. 感应加热感应加热是利用法拉第电磁感应定律来实现的一种加热方法。

通过在导体周围产生变化的磁场,可以感应出导体中的涡流,从而产生热量。

这种加热方法在工业生产中被广泛应用,特别是在金属加热和熔化的过程中。

4. 感应传感器和电磁测量利用法拉第电磁感应定律,我们可以设计出各种感应传感器和用于电磁测量的设备。

例如,感应传感器可以用于检测磁场、电流、位移和速度等物理量。

通过测量感应电动势或感应电流的大小,我们可以获取到所需的数据信息。

5. 磁悬浮列车技术磁悬浮列车技术是一项先进的交通运输技术,也是法拉第电磁感应定律的应用之一。

磁悬浮列车利用电磁感应产生的力来实现悬浮和推进。

当列车通过轨道时,轨道中的线圈会产生变化的磁场,从而引起列车上的磁体感应出电动势。

利用这种电动势产生的力,使列车浮在轨道上并推进。

总结:法拉第电磁感应定律作为一项重要的物理定律,具有广泛的应用领域。

法拉第电磁感应定律应用

法拉第电磁感应定律应用
A.恒为nStB2-2-t1B1
B.从 0 均匀变化到nStB2-2-t1B1 C.恒为-nStB2-2-t1B1 D.从 0 均匀变化到-nStB2-2-t1B1
【练习1】如图甲所示,面积S=1 m2的导体圆环内通有垂直于 圆平面向里的磁场,磁场的磁感应强度B随时间t变化的关系如 图乙所示(B取向里为正),以下说法正确的是( ) A.环中产生逆时针方向的感应电流 B.环中产生顺时针方向的感应电流 C.环中产生的感应电动势大小为1 V D.环中产生的感应电动势大小为2 V
2.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数 均为7匝,边长la=3lb,图示区域内有垂直纸面向里的匀强磁场 ,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响 ,则 A.两线圈内产生顺时针方向的感应电流 B.a、b线圈中感应电动势之比为9∶1 C.a、b线圈中感应电流之比为3∶4 D.a、b线圈中电功率之比为3∶1
【例2】 轻质细线吊着一质量为m=0.42 kg、边长为L=1 m、匝数 n=10的正方形线圈,其总电阻为r=1 Ω.在线圈的中间位置以下 区域分布着磁场,如图甲所示.磁场方向垂直纸面向里,磁感应 强度大小随时间变化关系如图乙所示.(g=10 m/s2) (1)判断线圈中产生的感应电流的方向是 顺时针还是逆时针; (2)求线圈中的电流; (3)求在t=4 s时轻质细线的拉力大小. (4)在t=6 s内通过导线横截面的电荷量?
【拓展提升1】矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,
磁感应强度B随时间变化的图象如图,t=0时刻,磁感应强度的方向垂直纸面向里.规 定电流逆时针方向为正,则在0~4 s时间内,线框中的感应电流I以及线框的ab边所受 安培力F随时间变化的图象为下图中的(安培力取向上为正方向)( )

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。

该定律描述了磁场变化引起的感应电动势,并成为电磁学的基石之一。

本文将对法拉第电磁感应定律的原理进行简要介绍,并探讨其在实际应用中的作用。

法拉第电磁感应定律的表达式为:在闭合电路中,感应电动势的大小与磁场变化率成正比。

具体地说,当磁场通过一个线圈发生变化时,感应电动势会在线圈中产生。

这个电动势的大小取决于磁场变化的速率以及线圈的匝数。

根据法拉第电磁感应定律的原理,人们发明了许多基于磁感应原理的设备和技术。

下面,我们将介绍其中几个重要的应用。

1.发电机:发电机是一种利用法拉第电磁感应定律产生电能的装置。

它的基本原理是通过旋转磁场产生的感应电动势使电流产生,从而输出电能。

发电机广泛应用于电力、交通等领域,成为现代社会不可或缺的设备。

2.变压器:变压器也是利用法拉第电磁感应定律的重要应用之一。

它是将交流电压通过电磁感应原理转换为合适的电压,以便在输电和配电中使用。

变压器有助于提高电力传输的效率,同时也保证了电力系统的安全性。

3.感应炉:感应炉是利用法拉第电磁感应定律的热处理设备。

它利用高频交变磁场在导体中产生涡流,通过融化、加热和焊接等过程实现热处理的目标。

感应炉广泛应用于金属加工和冶炼等工艺中,为工业生产提供了高效、环保的解决方案。

4.电磁感应测量仪器:电磁感应定律的应用还包括各种测量技术。

例如,电磁感应测量仪器可以通过测量变化的磁场来确定物体的磁性、密度和位置等参数。

这些测量仪器在物理实验、地球物理勘探和医学设备中发挥着重要作用。

总之,法拉第电磁感应定律是电磁学研究的基础,其应用广泛涉及各个领域。

通过理解和应用这一定律,我们能够更好地利用磁场变化来产生电能、进行能量转换以及实现各种测量和热处理等过程。

在未来的发展中,法拉第电磁感应定律将继续发挥重要作用,并促进科学技术的进步。

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用引言:法拉第电磁感应定律是电磁学的基本定律之一,它描述了导体中的电流随时间变化而产生的感应电动势。

本文将通过实验探索法拉第电磁感应定律,并阐述其在生活中的实际应用。

实验一:磁铁穿过线圈实验目的:验证法拉第电磁感应定律中的电磁感应现象。

实验原理:当磁铁穿过线圈时,由于磁感线的变化,线圈中的电流也发生了变化,从而产生了感应电动势。

实验步骤:1. 准备一根磁铁和一个线圈。

2. 将线圈接入一个示波器,调节示波器使其显示电压随时间的变化曲线。

3. 将磁铁快速穿过线圈的中心。

4. 观察示波器上电压随时间的变化曲线,并记录结果。

实验结果:在磁铁穿过线圈的瞬间,示波器上显示的电压出现了明显的变化,随后回归到零值。

实验分析:根据法拉第电磁感应定律,当磁场穿过线圈时,导体中的电流会随之产生。

因此,在磁铁穿过线圈的瞬间,线圈中会产生瞬时电流,进而产生感应电动势。

实验二:电磁感应的应用——发电机实验目的:探究法拉第电磁感应定律在发电机中的应用。

实验原理:发电机是利用导体在磁场中运动引起电磁感应的装置,通过转动磁铁和线圈的相对运动产生电能。

实验步骤:1. 准备一个磁铁和一个线圈。

2. 将线圈连接到一块电阻上,并将电阻接入电路中。

3. 保持磁铁静止,转动线圈。

4. 观察电路中电阻上的电压,并记录结果。

实验结果:当线圈转动时,电路中的电压明显升高,电阻上出现了电流。

实验分析:在发电机中,当磁铁通过线圈时,线圈会受到磁通量的变化,从而产生感应电动势。

将线圈连接到电路中,电流便会通过电阻产生功率,从而发电。

实际应用:1. 发电机:法拉第电磁感应定律的应用使得发电成为可能。

利用发电机,我们可以将机械能转化为电能,满足我们生活和工业上的用电需求。

2. 电磁感应传感器:电磁感应技术在温度计、压力传感器、位移传感器等多种传感器中广泛应用。

传感器中的线圈产生的感应电流和感应电压可以通过测量来得知温度、压力等物理量的变化。

法拉第电磁感应定律的应用

法拉第电磁感应定律的应用

法拉第电磁感应定律的应用法拉第电磁感应定律,简称法拉第定律,是描述电磁现象的重要定律之一。

它是由英国物理学家迈克尔·法拉第在1831年提出的,对于理解电磁感应现象和应用电磁感应具有重要意义。

本文将探讨法拉第电磁感应定律的应用,并介绍一些相关领域中的实际案例。

I. 电磁感应的基本原理法拉第电磁感应定律指出:当导体中的磁通量发生变化时,导体中会产生感应电动势。

这是由于磁场的变化引起了电场的涡旋,从而产生了感应电动势。

法拉第定律可以通过以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁通量变化的方向相反。

根据法拉第电磁感应定律,我们可以应用电磁感应的原理来设计和改进许多实际应用。

II. 发电机的工作原理发电机是应用法拉第电磁感应定律的典型实例。

发电机通过旋转导线圈在磁场中产生感应电动势,从而产生电能。

当发电机的转子(通常是电动机)旋转时,旋转导线圈切割磁力线,磁通量的变化导致了感应电动势的产生。

这个感应电动势经过整流和调整后,可以转化为直流电或交流电,供给各种不同的电子设备使用。

III. 电磁铁的应用电磁铁是另一个应用法拉第电磁感应定律的重要工具。

电磁铁是由可控电流通过线圈产生的磁场所形成的。

通过改变通过线圈的电流,可以改变电磁铁的磁力强度。

这种特性使得电磁铁在许多领域有广泛的应用。

例如,电磁铁可以用于磁悬浮列车中的悬浮和推动系统,通过改变电流大小来控制磁力,实现列车的悬浮和推动。

此外,电磁铁还可以用于工业自动化中的物体吸附和分拣,通过改变电流来控制物体的吸附和释放。

IV. 电磁感应的应用于传感器技术法拉第电磁感应定律也被广泛应用于传感器技术中。

传感器是一种能够将非电信号转换为电信号的设备,用于检测和测量各种物理量。

例如,电磁感应传感器可以用于测量速度、位置、姿态等参数。

通过将物理量与磁通量或磁场变化联系起来,传感器可以产生与之相关的感应电动势,并将其转换成电信号进行处理和测量。

高中物理精品课件:法拉第电磁感应定律及其应用

高中物理精品课件:法拉第电磁感应定律及其应用

H。
10-6
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这
种电流看起来像水的漩涡,所以叫涡流。
3.电磁阻尼
导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是
阻碍 导体的运动。
4.电磁驱动
如果磁场相对于导体转动,在导体中会产生
到安培力而运动起来。
感应电流
使导体受
第2节
法拉第电磁感应定律及其应用
一、法拉第电磁感应定律
1.法拉第电磁感应定律
(1)内容:感应电动势的大小跟穿过这一电路的 磁通量的变化率 成正比。
感应电动势与匝数有关
(2)公式:E=n

,其中n为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的
欧姆

定律,即I= + 。
2.导体切割磁感线的情形
场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确
的有(
) 答案 AD
A.杆OP产生的感应电动势恒定
B.杆OP受到的安培力不变
C.杆MN做匀加速直线运动
D.杆MN中的电流逐渐减小
6.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应
强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以
B.金属框中电流的电功率之比为4∶1
C.金属框中产生的焦耳热之比为4∶1
D.金属框ab边受到的安培力方向相同
答案 B
素养点拨1.应用法拉第电磁感应定律解题的一般步骤
(1)分析穿过闭合电路的磁场方向及磁通量的变化情况;
(2)利用楞次定律确定感应电流的方向;
(3)灵活选择法拉第电磁感应定律的不同表达形式列方程求解。

从法拉第电磁感应定律看电磁感应的应用与发展

从法拉第电磁感应定律看电磁感应的应用与发展

从法拉第电磁感应定律看电磁感应的应用与发展电磁感应是电磁学的重要基础理论之一,也是现代科学技术的核心内容之一。

法拉第电磁感应定律是描述电磁感应现象的基本定律,通过应用和发展这一定律,人类创造了许多重要的科技产品和工艺,并推动了社会的发展进步。

本文将从法拉第电磁感应定律的应用和发展两个方面进行论述。

一、法拉第电磁感应定律的应用1. 发电机法拉第电磁感应定律的最重要应用就是发电机。

根据法拉第电磁感应定律,当磁通量的变化率通过一定的线圈时,会在线圈内感应出电动势。

利用这一原理,人们发明了发电机,将机械能转换为电能。

以水轮发电机为例,机械能通过水轮的转动转化为旋转磁场,这个旋转磁场会经过线圈,从而在线圈内产生电动势。

通过引入导线回路,电动势将驱动电子在回路中移动,最终产生电流。

通过这种方式,我们能够利用自然界的能量,如水能、风能等,将其转换成电能,为人们的生产和生活提供了巨大便利。

2. 变压器变压器也是法拉第电磁感应定律的重要应用之一。

变压器通过改变电流的大小,实现了电能的高效传输和分配。

变压器由两个线圈组成,分别为原线圈和副线圈。

根据法拉第电磁感应定律,当原线圈中的电流发生变化时,会在副线圈中感应出电动势。

利用这一原理,我们可以根据需要调整原线圈和副线圈的匝数比,从而使输入和输出的电压相应变化。

通过变压器,我们能够方便地调整电压大小,实现输电线路中的电压升降。

3. 感应加热感应加热是将电磁感应定律应用于工业制造领域的重要技术之一。

感应加热利用电磁感应现象,将交变磁场穿过导体,使导体内部产生涡流,从而达到加热的目的。

通过这种方式,我们可以实现对金属材料的精确加热,提高生产效率和产品质量。

感应加热广泛应用于钢铁、航空航天、汽车制造等领域,成为现代工业生产中不可或缺的一部分。

二、法拉第电磁感应定律的发展1. 远距离无线能量传输技术远距离无线能量传输技术是法拉第电磁感应定律在近年来的重要发展之一。

传统上,能量传输需要通过导线实现,这在某些场合限制了应用的灵活性和便利性。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法拉第电磁感应定律应用------图像问题【知识要点】电磁感应中常涉及磁感应强度B、磁通量、感应电动势和感应电流I等随时间变化的图线,即B—t图线、φ—t图线、E—t图线和I—t图线。

对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I等随位移x变化的图线,即E—x图线和I—x图线等。

这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。

1、定性或定量地表示出所研究问题的函数关系2、在图象中E、I、B等物理量的方向是通过正负值来反映3、画图象时要注意横、纵坐标的单位长度定义或表达一.热身训练1.如图所示,一宽40cm的匀强磁场区域,磁场方向垂直纸面向里。

一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。

取它刚进入磁场的时刻t=0,在下列图线中,正确反映感应电流强度随时间变化规律的是c2.穿过某线圈的磁通量随时间变化的Φ-t图象如图所示.下面几段时间内,产生感应电动势最大的时间是①0~5 s ②5 s~10 s ③10 s~15 s ④12 s~15 sA.只有①B.只有③C.③或④D.①③或④【命题意图】 通过Φ-t 图象的识别和分析,考查对法拉第电磁感应定律的理解. 【解题思路】二.讲练平台3.如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B ,一个围成四分之一圆形的导体环oab ,其圆心在原点o ,半径为R ,开始时在第一象限。

从t =0起绕o 点以角速度ω逆时针匀速转动。

试画出环内感应电动势E 随时间t 而变的函数图象(以顺时针电动势为正)。

4.如图所示,在边长为2L 的正方形范围内,有磁感应强度为B 的匀强磁场.一电阻为R ,边长为L 的正方形导线框abcd ,沿垂直于磁感线方向以速度v 匀速通过磁场.从ab 边进入磁场计时.(1)画出穿过线框磁通量随时间变化的图象. (2)画出线框中感应电流随时间变化的图象. (取逆时针方向的电流为正方向)d v a变式题 .如图甲所示,abcd 为一边长为L ,具有质量的刚性导线框,位于水平面内,bc 边串联有电阻R ,导线的电阻不计,虚线表示匀强磁场区域的边界,它与线框的ab 边平行,磁场区域的宽度为2L ,磁感应强度为B ,方向竖直向下.线框在一垂直于ab 边的水平恒定拉力F 作用下,沿光滑水平面运动,直到通过磁场区域.已知ab 边刚进入磁场时,线框变为匀速运动,此时通过电阻R 的电流大小为i 0,试在乙图中的i ―x 坐标系内定性画出:从导线框刚进入磁场到完全离开磁场的过程中,通过电阻R 的电流i 的大小随ab 边位置坐标x 变化的曲线.5.如图所示,截面积为0.2 m 2的100匝圆形线圈A 处在变化磁场中,磁场方向垂直线圈截面,其磁感应强度B 随时间t 的变化规律如图所示.设向外为B 的正方向,线圈A 上的箭头为感应电流I 的正方向,R 1=4 Ω,R 2=6 Ω,C =30 μF ,线圈内阻不计.求电容器充电时的电压和2 s 后电容器放电的电量.图甲ba图乙 i 0【命题意图】识别和理解物理图象的意义,根据图象信息和题目条件,将电磁感应电路转化为直流电路进行分析和计算的能力.【解题思路】三、拓展提升6.匀强磁场磁感应强度B=0.2 T,磁场的宽度L=1 m,一正方形金属框边长ad=l=1 m,其电阻r=0.2 Ω,金属框以v=10 m/s的速度匀速穿过磁场区域,其平面始终保持与磁感线方向垂直,如图所示.(1)画出金属框穿过磁场区域的过程中,金属框内感应电流的I—t图线.(2)画出ad两端电压的U—t图线.7.一匀强磁场,磁场方向垂直纸面,规定向里的方向为正,在磁场中有一细金属圆环,线圈位于纸面内,如图甲所示.现令磁感应强度值B 随时间t 变化,先按图乙所示的0a 图线变化,后来又按bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1、 I 2、I 3分别表示对应的感应电流(BD )A.E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向B.E 1<E 2,I 1沿逆时针方向,I 2沿顺时针方向C.E 1<E 2,I 2沿顺时针方向,I 3沿逆时针方向D.E 2=E 3,I 2沿顺时针方向,I 3沿顺时针方向四.益智演练1.一闭合线圈固定在垂直于纸面的匀强磁场中,设向里为磁感应强度B 的正方向,线圈中的箭头为电流i流i B 随时间而变化的图象可能是下图中的t(s)-B 甲2.如图所示,一个边长为a 、电阻为R 的等边三角形线框在外力作用下以速度v 匀速地穿过宽度均为a 的两个匀强磁场。

这两个磁场的磁感强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直。

取逆时针方向的电流为正,试通过计算,画出从图示位置开始,经框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象。

3.如图所示的电路中,S 闭合时流过电感线圈的电流是2 A ,流过灯泡的电流是1 A ,将S 突然断开,则S 断开前后,能正确反映流过灯泡的电流I 随时间t 变化关系的是图中的4.MN 、PQ 是水平方向的匀强磁场的上下边界,磁场宽度为L .一个边长为a 的正方形导线框(L>2a )从磁场上方下落,运动过程中上下两边始终与磁场边界平行.线框进入磁场过程中感应电流i 随时间t 变化的图象如右图所示,则线框从磁场中穿出过程⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯·· · · · · · · a a中线框中感应电流i 随时间t 变化的图象可能是以下的哪一个( )5.如图所示,闭合矩形导体线框abcd 从高处自由下落,在ab 边开始进入匀强磁场到cd 边刚进入磁场这段时间内,线框的速度v 随时间t 变化的图象可能是图中的6.如图所示,水平放置的两平行导轨左侧连接电阻,其它电阻不计.导体MN 放在导轨上,在水平恒力F 的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ 与MN 平行,从MN 进入磁场开始计时,通过MN 的感应电流i 随时间t 的变化可能是下图中的( ) t t ttABCD7.图中两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里.abcd 是位于纸面的梯形线圈,ad 与bc 间的距离也为l . t =0时刻,bc 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿越磁场区域.取沿a d c b a →→→→的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间变化的图线可能是8.(2005年理综②)处在匀强磁场中的矩形线圈abcd ,一恒定的角速度绕ab 边转动,磁场方向平行于纸面并与ab 垂直.在t =0时刻,线圈平面与纸面重合(如图),线圈的cd 边离开纸面向外运动.若规定由a →b →c →d →a 方向的感应电流为正,则能反映线圈中感应电流I 随时间t 变化的图线是cd←─l ─→b c9.(2005年上海物理).如图所示,A 是长直密绕通电螺线管.小线圈B 与电流表连接,并沿A 的轴线Ox 从O 点自左向右匀速穿过螺线管A .能正确反映通过电流表中电流I 随x 变化规律的是( )10.如图(a),圆形线圈P 静止在水平桌面上,其正上方悬挂一相同的线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图(b)所示,P 所受的重力为G ,桌面对P 的支持力为N ,则( )A 、t1时刻 N>GB 、t2时刻 N>GC 、t3时刻 N<GD 、t4时刻 N=G第5课时 参考答案1.C2.B 【解题思路】 E =t∆∆ϕ中,t∆∆ϕ为磁通量的变化率,表示磁通量变化的快慢程度.在Φ-t 图象中,图象上升(Φ增加)或下降(Φ减少)的快慢程度即表示出磁通量变化的快慢程度,也就是图象中越“陡”之处,对应的磁通量变化率越大,感应电动势也越大.由图可以看出10 s~15s 内对应的感应电动势最大.【正确答案】 B3. 解:开始的四分之一周期内,oa 、ob 中的感应电动势方向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。

感应电动势的最大值为E m =BR 2ω,周期为T =2π/ω,图象如右。

4.变式题 5. 【命题意图】 识别和理解物理图象的意义,根据图象信息和题目条件,将电磁感应电路转化为直流电路进行分析和计算的能力.【解题思路】 由题给B —t 图象可知,在0~1 s 内,B 为负值,表示其方向向里,B 在逐渐减小,由楞次定律可知线圈中将产生顺时针方向的感应电动势;在1~2 s 内,B 为正值,表示其方向向外,B 在逐渐增大,同样由楞次定律可知线圈中仍将产生顺时针方向的感应电动势.图乙i在0~2 s 内,线圈A 与电阻R 1、R 2组成闭合回路,回路中有感应电流,此时,电容器C 处于充电状态.2 s 后磁场消失,电容器放电至完毕.【规范解答】 由题给B —t 图象,可知磁感应强度的变化率为02.0=∆∆tB T/s 线圈A 中的感应电动势为 E =tB S n t n ∆∆=∆∆ϕ=0.4 V 通过R 2的电流强度为I =21R R E +=0.04 A 电容器C 上的电压即为R 2两端的电压,所以V 24.02==IR U C2s 后磁场消失(B =0),电容器通过电阻和线圈放电;放电的电量即为充电后电容器上的带电量,所以 Q =CU C =7.2×10-6 C.6.【解题思路】 整个线框穿越磁场的过程可分成线框部分进入磁场、部分移出磁场三个过程,由线框运动特点可以确定三个过程分别持续的时间,同时画出其等效电路,按电路的特点确定I 的大小及方向和U 的大小.【规范解答】 把dc 边刚进入磁场时间计为零时刻,则线框进入磁场区域时,dc 边切割磁感线产生感应电动势,其等效电路如图12—2—5所示,E =Blv =2(V ),I 1=rE 41=2.5(A ), I 1方向为逆时针方向.U ad =I 1·r =2.5×0.2=0.5(V).此过程维持的时间t 1为t 1=101=v l =0.1(s). 当线框部分移出磁场时,ad 边切割磁感线产生电动势.其等效电路如图12—2—6所示,感应电流I 2为I 2=r E 4=2.5 A 感应电流方向为顺时针方向.U ad =E -I 2r =1.5 V此过程维持的时间t 2为图12—2—5 图12—2—6t 3=v l =0.1 s则I -t 和U -t 图象如图12—2—7与图12—2—8所示.图12—2—7 图12—2—8【评点与探究】 通过对矩形线框匀速穿越匀强磁场区过程中感应电动势及电路的分析,考查将电磁感应电路等效转化为恒定直流电路的能力和进行图象描述的能力.7.【解题思路】 (1)感应电流方向的判定 用B 外表示外加的磁场,用B 感表示感应电流产生的磁场.细金属圆环中磁通量的增加或减少,是由外加磁场的变化引起的.由题知,图线oa 和bc 表示外加磁场方向向里,图线cd 表示外加磁场方向向外.当B 外沿图线oa 变化时,外加磁场向里的磁通量增大,则B 感方向与B 外方向相反,B 感方向向外;当B 外沿图线bc 变化时,外加磁场的向里的磁通量减少,则B 感方向与B 外方向相同,B 感方向向里;当B 外沿图线cd 变化时,外加磁场的向外的磁通量增大,则B 感方向与B 外方向相反,B 感方向向里.再由安培定则,得以判断:外加磁场沿oa 变化时,感应电流方向是逆时针方向,磁场沿图线bc 、cd 变化时,感应电流方向是顺时针方向.(2)感应电动势大小判断 根据法拉第电磁感应定律,有E =ΔΦ/Δt ,又本题的ΔΦ=S ΔB ,故E =ΔΦ/Δt =S ΔB /Δt .其中,ΔB /Δt 就表示图线oa 及bc 和cd 段的斜率大小.因oa 段的斜率绝对值小于bd 段斜率的绝对值(bc 、cd 两段斜率相等),故oa 段对应的感应电动势E 1小于bd 对应的感应电动势E 2=E 3,即E 1<E 2=E 3.【正确答案】 BD【评点与探究】 (1)本题考查对图象物理意义的理解及运用楞次定律和法拉第电磁感应定律作出正确的推断的能力.(2)若规定线圈中电流方向为顺时针时电流为正值,试定性画出线圈中感应电流随时间变化的图象.(答案:益智演练1.CD2.3.【命题意图】考查根据图象分析自感现象的能力.【解题思路】S断开前,自感线圈相当于一个电阻与灯并联,通过灯泡的电流恒定不变;S断开瞬间,电源提供给灯泡的电流即刻为零,此时自感线圈产生与原电流同向的自感电动势,使该支路电流瞬间保持不变并与灯组成闭合回路,故此时通过灯的电流为2 A,方向与原电流反向,逐渐减小至零,综上分析,只有D图正确.【正确答案】 D4.C5.ACD6.ACD7.B8.C9.C10.AD。

相关文档
最新文档