转向系统概述
转向系统的分类

转向系统的分类转向系统是指汽车、摩托车等车辆在行驶时,通过转动方向盘,驱动某些组件使车轮发生转向,从而改变车辆行驶方向的一种机械装置。
转向系统的分类主要有机械转向系统、液压转向系统、电动转向系统、四轮转向系统等。
一、机械转向系统机械转向系统是指通过机械传动,使车轮转向的一种转向系统。
它主要由转向盘、转向杆、转向机构和齿轮等组成。
机械转向系统的优点是结构简单,易于维护和修理,成本低廉。
但是它的转向力矩大,操作不灵活,转向半径大,不适合高速行驶和紧急转向。
二、液压转向系统液压转向系统是指通过液压传动,使车轮转向的一种转向系统。
它主要由转向泵、液压缸、转向阀和液压油箱等组成。
液压转向系统的优点是转向力矩小,操作灵活,转向半径小,适合高速行驶和紧急转向。
但是它的成本较高,维护和修理较为复杂,需要定期更换液压油。
三、电动转向系统电动转向系统是指通过电动传动,使车轮转向的一种转向系统。
它主要由电机、控制器、转向角传感器和转向齿轮等组成。
电动转向系统的优点是转向力矩小,操作灵活,转向半径小,适合高速行驶和紧急转向。
而且它的能耗低,响应速度快,安全性高。
但是它的成本较高,维护和修理较为复杂,需要定期更换电池。
四、四轮转向系统四轮转向系统是指通过控制车轮的转向角度,使车辆更灵活的一种转向系统。
它主要分为前四轮转向和后四轮转向两种。
四轮转向系统的优点是转向半径小,车辆更灵活,行驶稳定性高,提高了车辆的操控性和安全性。
但是它的成本较高,维护和修理较为复杂,需要定期检查和保养。
综上所述,转向系统的分类主要有机械转向系统、液压转向系统、电动转向系统、四轮转向系统等。
不同的转向系统各有优缺点,车辆的选择需要根据具体使用情况和需求来进行选择。
在使用过程中,需要定期检查和保养,确保转向系统的正常工作,提高行驶的安全性和稳定性。
转向系统

iω2 节相应的转角增量之比; 节相应的转角增量之比; iω
iω = 4.转向系统的力传动比 4.转向系统的力传动比
向 臂 :转向盘转角增量与同侧转向节相应转角增量之比; 转向盘转角增量与同侧转向节相应转角增量之比; iω2 = 转 摇
1. 2.转向中心:所有车轮的轴线的交点O 2.转向中心:所有车轮的轴线的交点O 转向中心 3.理想关系式: 3.理想关系式: 理想关系式
B cotα = cot β + L
4.汽车转弯半径 4.汽车转弯半径R : 汽车转弯半径 由转向中心O到外转向轮与地面接触点的距离 由转向中心 到外转向轮与地面接触点的距离 5.最小转弯半径与外转向轮最大偏转角的关系为: 最小转弯半径与外转向轮最大偏转角的关系为:
∆θ
∆θ转 节 向
∆转盘 θ 向 :两个转向轮所受到的转向阻力与驾驶员作用 iω = iω1iω2 ∆转节 θ 向 在转向盘上的手力之比 ;
iP
5.转向系“ 5.转向系“轻”与“灵”之间的矛盾 : 转向系 转向系统角传动比越大, 转向系统角传动比越大,则为了克服一定的地面转 向阻力矩所需的转向盘上的转向力矩便越小, 向阻力矩所需的转向盘上的转向力矩便越小,在转向 盘直径一定时,驾驶员应加于转向盘的手力也越小— 盘直径一定时,驾驶员应加于转向盘的手力也越小 而所需的转向盘转角过大——不够灵敏。 不够灵敏。 轻。而所需的转向盘转角过大 不够灵敏 解决办法: 解决办法: 1.采用传动比可变的转向器 1.采用传动比可变的转向器 2.采用动力转向系统 2.采用动力转向系统
三.汽车转向系统的类型和组成
2.动力转向系统 2.动力转向系统 定义: ①定义: 兼用驾驶员体力和发动机动力为转向能源的转向 系统。 系统。
汽车转向系统.

1—轮圈
2—轮辐
3—轮毂
2.转向轴、转向柱管及其吸能装置
转向轴是连接转向盘和转向器的传动件, 转向柱管固定在车身上,转向轴从转向 柱管中穿过,支承在柱管内的轴承和衬 套上。
轿车除要求装有吸能式转向盘外, 还要求转向柱管必须装备能够缓和冲击 的吸能装置。转向轴和转向柱管吸能装 置的基本工作原理是:当转向轴受到巨 大冲击而产生轴向位移时,通过转向柱 管或支架产生塑性变形、转向轴产生错 位等方式,吸收冲击能量。
1.液压助力转向系统 1)常压式 其特点是无论转向盘处于中立位置还是转向 位置,也无论转向盘保持静止还是运动状态,系 统工作管路中总是保持高压。
2)常流式液压 助力转向系统
其特点是 转向油泵始终 处于工作状态, 但液压助力系 统不工作时, 基本处于空转 状态。多数汽 车都采用常流 式液压助力转 向系统。
2.液压助力转向系统的转向控制阀 1)滑阀式转向控制阀
阀体沿轴向移动来控制油液流量的转向控制阀, 称为滑阀式转向控制阀,简称滑阀。
2)转阀式转向控制阀
阀体绕其轴线转动来控制油液流量的转向控制阀, 称为转阀式转向控制阀,简称转阀。
3.常流式液压助力转向系统的结构布置方案
机械转向器和转向动力缸设计成一体,并与转向控制阀组 装在一起,这种三合一的部件称为整体式动力转向器。另一 种方案是只将转向控制阀同机械转向器组合成一个部件,该 部件称为半整体式动力转向器,转向动力缸则做成独立部件。 第三种方案是将机械转向器作为独立部件,而将转向控制阀 和转向动力缸组合成一个部件,称为转向加力器。
4、转向盘自由行程:
转向盘在空转阶段中的角行程。
自由行程过大:转向不灵敏。 自由行程过小:路面冲击大,驾驶员过度紧张。
转向操纵机构
装载机的转向系统

02
装载机转向系统的设计
转向器的设计
转向器的类型
根据工作原理和结构,转向器可 以分为多种类型,如齿轮齿条式、
循环球式、蜗杆滚轮式等。
转向器的设计要求
转向器需要满足强度、刚度、耐 久性和可靠性等要求,以确保装 载机在各种工况下安全可靠地工
作。
转向器的参数选择
转向器的参数选择是关键,包括 齿条的模数、压力角、螺旋角等, 以及齿轮的模数、压力角、螺旋 角等,需要根据装载机的实际需
转向油缸的维护与保养
油缸清洁
油缸润滑
油缸密封性检查
定期清洁油缸表面,去 除油污和杂质。
定期检查油缸的润滑情 况,确保油缸滑动顺畅。
定期检查油缸密封件, 如发现密封件老化或损
坏,应及更换。
油缸拆卸与安装
如需拆卸和安装油缸, 应按照规范操作,避免 损坏油缸或相关部件。
转向传动机构的维护与保养
传动机构清洁
转向控制系统常见故障及排除方法
01
液压控制系统失灵
可能是由于液压泵故障、溢流阀卡滞或油路堵塞等原因造成。排除方法
包括检查并修理液压泵、调整溢流阀或清洗油路。
02
电子控制系统故障
可能是由于传感器故障、线路故障或控制器故障等原因引起。排除方法
包括检查并修理传感器、线路或控制器。
03
转向角度不正确
可能是由于角度传感器故障、安装位置不正确或信号干扰等原因造成。
转向传动机构的设计
转向传动机构的类型
01
转向传动机构可以分为多种类型,如机械式、液压式、电动式
等。
转向传动机构的设计要求
02
转向传动机构需要满足传动效率和可靠性的要求,同时需要保
证机构的紧凑性和轻量化。
14 汽车构造-第十三章 汽车转向系统

2020/11/17
29
第四节 轿车四轮转向系统
二、前轮主动转向系统 为了全面改进汽车在各种使用条件下的转向性能,有的汽车采用前轮主动转 向系,如图13-24所示。
图13-24 前轮主动转向系示意图
2020/11/17
1-转向器 2-电控单元 3-转向电动机 4-转向角度叠加机构
30
• 前轮主动转向系的组成见图13-25,它是在电控动力转向系的基础上 增加可变转向传动比的双排行星齿轮机构。
2020/11/17
11
一、转向操纵机构
1.转向盘
图13-6 转向盘的构造 a)三根辐条 b)四根辐条 c)转向盘外观
1—轮缘 2—轮辐 3—轮毂
2020/11/17
12
一、转向操纵机构
2.安全转向柱 对于轿车,要求转向柱套管必须备有缓和冲击的吸能装置。安全转向柱 和转向柱套管的吸能装置有多种形式。其基本结构原理是,当受到巨大 冲击时,安全转向柱产生轴向位移,使支架或某些支承件产生塑性变形, 从而吸收冲击能量。
3
2.动力转向系统
图13-2所示为液压式动力转向系的结构图。
图13-2 液压式动力转向系结构图
1-转向盘 2-安全转向柱 3-转向传动轴 4-转向万向节 5-护罩 6-转向横拉杆
7-球头销 8-转向器 9-储油罐 10-转向助力泵 11-转向动力缸 12-回油管
2020/11/17
4
2.动力转向系统
传给转向传动机构。 • 汽车上采用许多种结构形式的转向器,如齿轮齿条式、循环球式等。
2020/11/17
14
1.齿轮齿条式转向器
齿轮齿条式转向器的结构与工作原理如图13-8所示。
图13-8 齿轮齿条式转向器工作原理示意图 1-防尘罩 2-转向齿轮 3-转向齿条 4-转向传动轴
汽车构造-第23章汽车转向系统

04
电控助力转向系统
工作原理
传感器监测转向盘力矩和车速
01
传感器监测驾驶员施加在转向盘上的力矩和车速,并将信号发
送给电控单元。
电控单元计算助力大小
02
电控单元根据传感器信号计算出所需的助力大小,并输出控制
信号。
电机驱动助力机构
03
电机根据电控单元的控制信号,驱动助力机构产生助力,帮助
驾驶员完成转向操作。
汽车构造-第23章汽 车转向系统
目 录
• 汽车转向系统概述 • 机械转向系统 • 液压助力转向系统 • 电控助力转向系统 • 汽车转向系统的维护与保养
01
汽车转向系统概述
转向系统的定义与功能
转向系统定义
汽车转向系统是用来改变或保持 汽车行驶方向的机构。
转向系统功能
确保驾驶员能够按照自己的意愿 控制车辆的行驶方向,提高驾驶 安全性。
液压泵
总结词
液压泵是液压助力转向系统的核心部件,负责产生液压动力。
详细描述
液压泵通常由发动机或电动泵驱动,通过旋转或往复运动将油液加压,产生足 够的液压动力。液压泵的种类很多,常见的有齿轮泵、叶片泵和柱塞泵等。
液压缸
总结词
液压缸是液压助力转向系统的执行机构,负责将液压动力转 化为转向力矩。
详细描述
转向轴
转向轴是连接转向器和转向盘的重要 部件,负责将驾驶员的转向操作传递 给转向器。
转向轴的刚度和强度对汽车的操控性 能和安全性有重要影响,因此需要采 用高强度材料和先进的制造工艺。
转向轴通常由轴管和轴头组成,轴管 是轴头的载体,轴头则与转向器连接, 通过轴承和密封件等部件实现转动和 密封功能。
转向器
液压缸由活塞、缸体和密封件等组成,当加压的油液进入液 压缸后,推动活塞杆运动,产生力矩,进而帮助驾驶员完成 转向操作。液压缸的设计和制造要求很高,需要保证密封性 能和耐久性。
转向系统的组成及其分类

转向系统的组成及其分类转向系统是指用于控制车辆运动方向的一组装置和方法。
它通过操纵车辆的前轮或后轮,使车辆能够改变行驶方向。
转向系统的主要组成包括转向装置、转向机构和转向控制系统。
转向装置是指由转向手柄(方向盘)、转向柱、转向齿轮等组成的部件,用于传递驾驶员的操纵力到转向机构。
转向机构是指将驾驶员的操纵力转化为车辆前轮或后轮的转动力矩的装置。
常见的转向机构有齿轮齿条机构、齿轮摆线机构和滚珠丝杠机构等。
转向控制系统是指用于感知和控制车辆行驶方向的一组传感器、执行器和控制器。
其中,传感器负责感知车辆的姿态、速度和转向角度等参数,执行器负责控制转向机构的运动,控制器负责处理传感器的信号并发出相应的控制指令。
根据转向机构的位置和控制方式的不同,转向系统可以分为前轮转向系统和后轮转向系统。
前轮转向系统是指通过控制前轮的转动来改变车辆行驶方向的系统。
它是最常见的转向系统类型,广泛应用于各类乘用车和商用车中。
前轮转向系统可以进一步分为机械式转向系统和电动助力转向系统。
机械式转向系统是一种传统的转向系统,它通过机械装置传递驾驶员的操纵力到车辆的前轮,实现转向控制。
机械式转向系统结构简单、可靠性高,但操纵力较大,操作相对较为费力。
现代的机械式转向系统通常采用齿轮齿条机构,通过转向柱和方向盘上的手柄传递操纵力到齿轮,再通过齿轮带动齿条,使车辆的前轮转动。
电动助力转向系统是一种利用电动机辅助转向的系统。
它通过电动助力转向器来感知驾驶员的操纵力,并通过电动机产生适当的辅助力矩,减小驾驶员操纵的力量。
电动助力转向系统具有操纵力较小、操作轻便的特点,提高了驾驶的舒适性和操控性能。
此外,电动助力转向系统还可以通过控制电动机的工作参数来实现不同的转向感觉,如舒适、标准和运动等模式。
后轮转向系统是指通过控制后轮的转动来改变车辆行驶方向的系统。
与前轮转向系统相比,后轮转向系统在车辆转弯时能够提供更好的操控性能和稳定性。
后轮转向系统可以分为机械式后轮转向系统和电动式后轮转向系统。
转向系统概述

一转向系统概述汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
1. 转向系统的基本组成(1)转向操纵机构主要由转向盘、转向轴、转向管柱等组成。
(2)转向器将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。
转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。
(3)转向传动机构将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
2. 转向系统的类型及工作原理按转向能源的不同,转向系统可分为机械转向系统和动力转向系统两大类。
(1)机械转向系统以驾驶员的体力(手力)作为转向能源的转向系统,其中所有传力件都是机械的。
图d-zx-17是一种机械式转向系统。
需要转向时,驾驶员对转向盘1施加一个转向力矩。
该力矩通过转向轴2输入转向器8。
从转向盘到转向传动轴这一系列部件和零件即属于转向操纵机构。
作为减速传动装置的转向器中有1、2级减速传动副(右图所示转向系统中的转向器为单级减速传动副)。
经转向器放大后的力和减速后的运动传到转向横拉杆6,再传给固定于转向节3上的转向节臂5,使转向节和它所支承的转向轮偏转,从而改变了汽车的行驶方向。
这里,转向横拉杆和转向节臂属于转向传动机构。
l.转向盘2.安全转向轴3.转向节4.转向轮5.转向节臂6.转向横拉杆7.转向减振器8.机械转向器2)动力转向系统兼用驾驶员体力和发动机(或电机)的动力为转向能源的转向系统,它是在机械转向系统的基础上加设一套转向加力装置而形成的。
图d-zx-18为一种液压式动力转向系统示意图。
其中属于转向加力装置的部件是:转向油泵5、转向油管4、转向油罐6以及位于整体式转向器10内部的转向控制阀及转向动力缸等。
当驾驶员转动转向盘1时,转向摇臂9摆动,通过转向直拉杆11、横拉杆8、转向节臂7,使转向轮偏转,从而改变汽车的行驶方向。
1.方向盘2.转向轴3.转向中间轴4.转向油管5.转向油泵6.转向油罐7.转向节臂8.转向横拉杆9.转向摇臂10.整体式转向器11.转向直拉杆12.转向减振器与此同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操纵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一转向系统概述汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
1. 转向系统的基本组成(1)转向操纵机构主要由转向盘、转向轴、转向管柱等组成。
(2)转向器将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。
转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。
(3)转向传动机构将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
2. 转向系统的类型及工作原理按转向能源的不同,转向系统可分为机械转向系统和动力转向系统两大类。
(1)机械转向系统以驾驶员的体力(手力)作为转向能源的转向系统,其中所有传力件都是机械的。
图d-zx-17是一种机械式转向系统。
需要转向时,驾驶员对转向盘1施加一个转向力矩。
该力矩通过转向轴2输入转向器8。
从转向盘到转向传动轴这一系列部件和零件即属于转向操纵机构。
作为减速传动装置的转向器中有1、2级减速传动副(右图所示转向系统中的转向器为单级减速传动副)。
经转向器放大后的力和减速后的运动传到转向横拉杆6,再传给固定于转向节3上的转向节臂5,使转向节和它所支承的转向轮偏转,从而改变了汽车的行驶方向。
这里,转向横拉杆和转向节臂属于转向传动机构。
l.转向盘2.安全转向轴3.转向节4.转向轮5.转向节臂6.转向横拉杆7.转向减振器8.机械转向器2)动力转向系统兼用驾驶员体力和发动机(或电机)的动力为转向能源的转向系统,它是在机械转向系统的基础上加设一套转向加力装置而形成的。
图d-zx-18为一种液压式动力转向系统示意图。
其中属于转向加力装置的部件是:转向油泵5、转向油管4、转向油罐6以及位于整体式转向器10内部的转向控制阀及转向动力缸等。
当驾驶员转动转向盘1时,转向摇臂9摆动,通过转向直拉杆11、横拉杆8、转向节臂7,使转向轮偏转,从而改变汽车的行驶方向。
1.方向盘2.转向轴3.转向中间轴4.转向油管5.转向油泵6.转向油罐7.转向节臂8.转向横拉杆9.转向摇臂10.整体式转向器11.转向直拉杆12.转向减振器与此同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操纵。
这样,为了克服地面作用于转向轮上的转向阻力矩,驾驶员需要加于转向盘上的转向力矩,比用机械转向系统时所需的转向力矩小得多。
3. 对转向系统的要求(1)要求工作可靠,操纵轻便。
(2)转向机构还应能减小地面传到转向盘上的冲击,并保持适当的"路感"。
(3)当汽车发生碰撞时,转向装置应能减轻或避免对驾驶员的伤害。
在汽车行驶中,转向运动是最基本的运动。
我们通过方向盘来操纵和控制汽车的行驶方向,从而实现自己的行驶意图。
在现代汽车上,转向系统是必不可少的最基本的系统之一,它也是决定汽车主动安全性的关键总成,如何设计汽车的转向特性,使汽车具有良好的操纵性能,始终是各汽车厂家和科研机构的重要课题。
特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同的驾驶人群,汽车的操纵性设计显得尤为重要。
我们主要是通过方向盘和我们的爱车实现交流,除了驾驶室裸露的一部分转向管柱外,在仪表盘下面,一直延伸到汽车前桥,还有转向系统的主要执行机构:转向器及其它附件。
汽车发展了一百多年,到今天,转向系统也历经了长时间的演进,很大程度上也促进了汽车的发展。
传统转向系统传统的汽车转向系统是机械系统,汽车的转向运动是由驾驶员操纵方向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。
普通的转向系统建立在机械转向的基础上,通常根据机械式转向器形式可以分为:齿轮齿条式、循环球式、蜗杆滚轮式、蜗杆指销式。
常用的有两种是齿轮齿条式和循环球式(用于需要较大的转向力时)。
这种转向系统是我们最常见的,目前大部分低端轿车采用的就是齿轮齿条式机械转向系统。
从上世纪四十年代起,为减轻驾驶员体力负担,在机械转向系统基础上增加了液压助力系统HPS(hydraulic power steering),它是建立在机械系统的基础之上的,额外增加了一个液压系统,一般有油泵、V形带轮、油管、供油装置、助力装置和控制阀。
由于其工作可靠、技术成熟至今仍被广泛应用。
现在液压助力转向系统在实际中应用的最多,根据控制阀形式有转阀式和滑阀式之分。
这个助力转向系统最重要的新功能是液力支持转向的运动,因此可以减少驾驶员作用在方向盘上的力。
虽然传统转向系统工作最可靠,但是也存在很多固有的缺点,传统转向系统由于方向盘和转向车轮之间的机械连接而产生一些自身无法避免的缺陷:①汽车的转向特性受驾驶员驾驶技术的影响严重;②转向传动比固定,使汽车转向响应特性随车速、侧向加速度等变化而变化,驾驶员必须提前针对汽车转向特性幅值和相位的变化进行一定的操作补偿,从而控制汽车按其意愿行驶。
这就变相地增加了驾驶员的操纵负担,使汽车转向行驶存在很大的不安全隐患;③液压助力转向系统经济性差,一般轿车每行驶一百公里要多消耗0.3~0.4升的燃料;另外,存在液压油泄漏问题,对环境造成污染,在环保性能被日益强调的今天,无疑是一个明显的劣势。
电液动力转向系统近年来,随着电子技术的不断发展,转向系统中愈来愈多的采用电子器件。
相应的就出现了电液助力转向系统。
电液助力转向可以分为两大类:电动液压助力转向系统EHPS(electro-hydraulic power steering)、电控液压助力转向ECHPS(electronically controlled hydraulic power steering)。
EHPS是在液压助力系统基础上发展起来的,其特点是原来有发动机带动的液压助力泵改由电机驱动,取代了由发动机驱动的方式,节省了燃油消耗。
ECHPS 是在传统的液压助力转向系统的基础上增加了电控装置构成的。
电液助力转向系统的助力特性可根据转向速率、车速等参数设计为可变助力特性,使驾驶员能够更轻松便捷的操纵汽车。
现代电液动力转向系统主要通过车速传感器将车速传递给电子元件,或微型计算机系统,控制电液转换装置改变动力转向的助力特性,使驾驶员的转向手力根据车速和行驶条件变化而改变,即在低速行驶或转急弯时能以很小的转向手力进行操作,在高速行驶时能以稍重的转向手力进行稳定操作,使操纵轻便性和稳定性达到最合适的平衡状态。
为了保证转向轻便性,要求增大转向器的传动比。
但是,增大角传动比虽然可以减小转向盘上的手力,但同时也造成汽车对操纵的反应减慢,甚至有可能导致驾驶员没有能力来转动转向盘进行紧急避障等转向操作,即不够“灵”。
机械式转向器的设计目标是保证汽车在各种行驶条件下将转向盘上的手力保持在驾驶员能接受的合理范围内,同时保证适当的转向灵敏度。
但是机械式转向器的结构特点注定“轻”与“灵”矛盾的存在(包括变传动比机械转向器),而电液助力转向系在一定程度上解决了这一矛盾。
EHPS相比传统HPS降低了能源损耗。
但电液动力转向系统,不论ECHPS还是EHPS都与传统的HPS一样存在液压油泄漏问题。
电动助力转向系统电动转向系统EPS(Electric Power Steering)把一个机械的系统和一个电控的电动马达结合在一起形成的一个动力转向系统。
与液压系统不同的是,助力改由电机提供,因此,要有一个力矩传感器来测量作用在方向盘上的力矩,由电子控制单元来计算所需要的力矩。
作用在方向盘上的力矩曲线由一个电动马达来分配。
通过电动马达提供转向所必须要的力,它通过一个减速器作用在转向柱上,在循环球式的传动装置中,直接作用在齿扇上的力太大,因此大多选用齿轮齿条转向器。
根据助力位置不同分为三种形式:1、转向柱助力式.2、小齿轮助力式.3、齿条助力式.由于EPS改由电机提供助力,助力大小由电控单元ECU实时调节与控制,可以较好解决汽车操纵时轻与灵的矛盾。
电动助力转向最早应用在微型汽车上,1988年2月日本铃木公司首次在其Cervo车上装备,目前电动助力转向系统主要应用在轿车上,并逐渐从微型轿车向更大型轿车和商务车发展]。
其优点有:1. EPS能在各种行驶工况下提供最佳助力,减小由路面不平所引起的对转向系统的扰动,改善汽车的转向特性,减轻汽车低速行驶时的转向操纵力,提高汽车高速行驶时的转向稳定性,进而提高汽车的主动安全性。
并且可通过设置不同的转向手力特性来满足不同使用对象的需要。
2. EPS只在转向时电动机才提供助力(不像HPS,即使在不转向时,油泵也一直运转),因而能减少燃料消耗。
3. 由于直接由电动机提供助力,电动机由蓄电池供电,因此EPS能否助力与发动机是否起动无关,即使在发动机熄火或出现故障时也能提供助力。
4. EPS取消了油泵、皮带、皮带轮、液压软管、液压油及密封件等,其零件比HPS大大减少,因而其质量更轻、结构更紧凑,在安装位置选择方面也更容易,并且能降低噪声。
5. EPS没有液压回路,比HPS更易调整和检测,装配自动化程度更高,并且可以通过设置不同的程序,快速与不同车型匹配,因而能缩短生产和开发周期。
6. EPS不存在渗油问题,消除了液压助力中液压油泄漏问题,可大大降低保修成本,减小对环境的污染,改善了环保性。
7. EPS比HPS具有更好的低温工作性能。
电动助力转向目前已成为世界汽车技术发展的研究热点之一。
电子转向电子转向系统取消了方向盘与转向轮之间的机械连接,改而由方向盘模块、转向执行模块和主控制器ECU三个主要部分以及自动防故障系统、电源等辅助模块组成。
电子转向系统SBW(Steer-By-Wire)是汽车转向方面最为先进和前沿的技术之一,具有很多优点:1. 取消了方向盘和转向车轮之间的机械连接,通过软件协调它们之间的运动关系,因而取消了它们之间的机械约束和干涉,使之可以相对独立运动,因而可以实现传动比的任意设置,可以根据车速和驾驶员喜好由程序根据汽车的行驶工况实时设置传动比。
同时还可以从信号中提出最能够反映汽车行驶状态的信息,作为方向盘回正力矩的控制变量,使方向盘仅仅提供驾驶员有用信息,以减轻驾驶员的体力脑力负荷,提高“人-车闭环系统”对道路的跟踪特性。
同时由于减少了机构部件数量,而减少了从执行机构到转向车轮之间的传递过程,使系统惯性、系统摩擦和传动部件之间的总间隙都得以降低,从而使系统的响应速度和响应的准确性得以提高。
2、电子转向系统采用了软件控制,因而可以把转向系统与其它主动安全设备如ABS、汽车动力学控制、防碰撞、轨道跟踪、自动导航以及自动驾驶等功能相结合,实现对汽车的整体控制,提高汽车整体稳定性,且实现了ITS中的汽车辅助转向功能。
3、电子转向系统在实现上述操作性能上的突破的同时也带来了可观的经济性和环境效益。
4、电子转向系统是通过一个通用的执行器来调整转向的。