空气动力学英文PPT(Chapter7)

合集下载

Airfoil Aerodynamics:翼型的空气动力学PPT

Airfoil Aerodynamics:翼型的空气动力学PPT
• German Aerospace Center
Purpose
• The purpose of this experiment is to lower the drag and increase the lift as well as delaying the stall angle of a model airfoil by applying vortex generators or ribleting the surface to lower skin friction drag, as well as producing self induced vibrations with a spanwise wire.
• Aerodynamic Forces • How an Airfoil
Drag Equation
Generates Lift
Lift Equation
Benson, 2007
• Stall
Knowledge Base
• Reynold’s Number
Literature Review
• CFD Simulations of Oscillating Sub-Boundary Layer Vortex Generators for Diffuser Flow Separation Control, Amhad 2021
• International Journal of Engineering and Technology
Scott, 2005
Literature Review
• Effects of Surface Roughness and Vortex Generators on a NACA Airfoil, Ruess 1995

航空发动机专业英语之空气动力学

航空发动机专业英语之空气动力学

Introduced how to reduce the impact of emissions on aircraft performance and meet environmental regulations by optimizing exhaust emission design and control technologies.
With the continuous improvement of aircraft performance, the aerodynamic design of aircraft engines is affecting more string requirements, including higher take off and landing speeds, longer flight distances, and more complex flight conditions
Detailed description
Definition and Concepts
Understanding the characteristics and classification of fluids helps to gain a deeper understanding of the working principles of aircraft engines.
Air inlet aerodynamics
Explored the effects of aerodynamic phenomena in combustion chambers on combustion efficiency and emissions, including flame propagation speed, combustion stability, and combustion chamber outlet temperature distribution.

空气动力学英文PPT(Chapter_02)

空气动力学英文PPT(Chapter_02)
Definition of infinitesimal fluid element:
an infinitesimally small fluid element in the flow, with a differential volume.
It contains huge large amount of molecules Fixed and moving infinitesimal fluid element. Focus of our investigation for fluid flow.
Fixed control volume and moving control volume. Focus of our investigation for fluid flow.
中英文日报导航站
中英文日报导航站
2.3.2 Infinitesimal fluid element approach
中英文日报导航站
2.3.3 Molecule approach
Definition of molecule approach:
The fluid properties are defined with the use of suitable statistical averaging in the microscope wherein the fundamental laws of nature are applied directly to atoms and molecules. In summary, although many variations on the theme can be found in different texts for the derivation of the general equations of the fluid flow, the flow model can be usually be categorized under one of the approach described above.

经典汽车空气动力学课件.ppt

经典汽车空气动力学课件.ppt
确定边界类型及边界条件: 入口边界选取远端来流方向为速度入口,速度为X
方向60m/s,出口边界为压力出口,出口相对压力为0。 湍流动能k 和湍流耗散度ε 分别为0.024 和0.01 求解计算
改变车头前缘发动机罩的高度值H,即改变发动机 罩的倾角(图2.3a) ,同时改变发动机罩与挡风玻璃交接 的位置, 从而改变挡风玻璃的倾角γ (图2.3b),对多组 不同参数下的模型进行外流场的数值模拟。
图1.9 1:1模型并加车轮
图1.10 考虑附属空隙设计
.精品课件.
22
1.4 车身整体优化造型概况
2000年我国华南理工大学黄 向东教授所领导的研究小组,也 进行了有关最佳车身气动造型方 面的研究。
在提出相关参数和要求的前 提下,运用CFD(Computational Fluid Dynamics)手段模拟并提出 一个完全数字化的理想基本形体, 如图1.11,并在此基础上制成 1:3模型进行风洞试验,如图 1.12模型实测最小气动阻力系数 为0.122。
图1.7 “鲸状”理论模型
.精品课件.
20
1.4 车身整体优化造型概况
5、Morelli模型
1976年,由意大利科学 院资助,在平宁法力那 (Pininfarina)风洞中进行一 项旨在探求最优化的轿车外形 研究工作,当时的目标是力图 创造出一种具有优异气动性能 的轿车外形。
以A.Morelli教授为首的课 题组在深入研究的基础上首先 获得一个比例为1:2的基本形 体,如图1.8所示,其为阻力 系数0.049。
数值工具的发展取决于对气流复杂流动特性的更深入的了 解和更精确数学模型的建立。因此,数值计算不可完全替 代物理试验,两者是互补的关系。
.精品课件.
29

流体力学_英文课件第1章

流体力学_英文课件第1章

∂T q = −k ∂n
q: heat flux in n direction per unit area
k: coefficient of thermal conductivity T: temperature n: direction of heat transfer
1.3 The Fluid as a Continuum (连续介质 连续介质) 连续介质
Turbulence Famous experiment on transition Reynolds Number
20th century
Ludwig Prandtl (1875-1953)
Boundary layer theory(1904)
To be the single most important tool in modern flow analysis.
Shear stress
y
U U
du τ∝ dy
Velocity gradient
u(y)
x
du τ =µ dy
The velocity gradient is comparable to deformation.
This kind of linear fluid is called Newtonian fluid. (牛顿流体 牛顿流体) 牛顿流体
陆利蓬 李秋实 王洪伟 景晓东 邹正平 李志平 (4-5 班) (1-3班)
Grades:
30% homework + 70% final exam
Contents
Chapter 1………Introduction (6 hours) Chapter 2………Fluid Statics (4 hours) Chapter 3………Integral Relations (12 hours) Chapter 4………Differential Relations (8 hours) Chapter 5………Boundary Layer (6 hours) Chapter 6………Flow Compressibility (2 hours) Chapter 7………Vorticity (4 hours) Summary (2 hours)

空气动力学英文PPT(Chapter_05)

空气动力学英文PPT(Chapter_05)

6. As the lift per unit span is proportional to the circulation, so, the circulation is also a function of y 7. The lift distribution goes to zero at the wing tips.
c, α
will be different.
3. Concept of geometric twist. washout and washin.
α has a distribution along the span direction
4. Concept of aerodynamic twist.
α L =0 has a distribution along the span direction
α eff = α − α i
2 The local lift vector is in the direction perpendicular to the local relative wind. As a subsequence, there is a drag created by the presence of downwash.
※ The two vortices tend to drag the surrounding air with them, and this secondary movment induces a small component is called downwash(下洗). ※ The downwash velocity combines with the freestream velocity to produce a local relative wind which is canted downward in the vicinity of each airfoil section of the wing. ※ definition of induced angle of attack

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

直升机空气动力学介绍(英文版)

直升机空气动力学介绍(英文版)

Thrust
Shock Waves
Aeroelastic Response
Unsteady Aerodynamics
0
Main Rotor / Tail Rotor / Fuselage Flow Interference
90
Tip Vortices
Blade-Tip Vortex interactions
Hinges
Only the lifts were transferred to the fuselage, not unwanted moments. In later models, lead-lag hinges were also used to Alleviate root stresses from Coriolis forces
V
180
270
Dynamic Stall on Retreating Blade
© L. Sankar Helicopter Aerodynamics
2
A systematic Approach is necessary
• • A variety of tools are needed to understand, and predict these phenomena. Tools needed include
© L. Sankar Helicopter Aerodynamics 7
Earliest Helicopter.. Chinese Top
© L. Sankar Helicopter Aerodynamics
8
Leonardo da Vinci (1480? 1493?)
© L. Sankar Helicopter Aerodynamics
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ds =
δqrev
T
where s is the entropy of the system, δqrev is an incremental amount of heat added reversibly to the system, and T is the system temperature.
3. Isentropic process: this process is both adiabatic and
reversible
中英文日报导航站
For a reversible process, δw = − pdv , where dv is an incremental change in the volume due to a displacement of the boundary; thus Eq. (7.11) becomes
中英文日报导航站
7.2 A BRIEF REVIEW OF THERMODYNAMICS
7.2.1 PERFECT GAS A gas is a collection of particles that are in more or less random motion. If these particles are far enough apart, the influence of intermolecular forces can be neglected; this gas is defined as a perfect gas for which p, ρ and T are related through the equation of state:
e = cvT
h = c pT
In this case, the gas is called calorically perfect gas. calorically perfect gas : 量热完全气体 Some explanation for the thermodynamic state variables, and specially for specific heats
or
cv R 1− = cp cp
Define γ ≡ c p cv . For air at standard conditions,
γ = 1.4 . Then we get particularly useful equations:
R 1− = γ cp
1
or
γR cp = γ −1
中英文日报导航站
δq − pdv = de
中英文日报导航站
7.2.4 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS Reason for introducing the entropy ???? Let us define a new state variable, the entropy, as follows:
P : pressure
ρ : density
T : temperature e : internal energy
中英文日报导航站 h : enthalpy
For a specific gas, we have the following equations:
c p − cv = R
δq + δw = de
This is the first law of thermodynamics.
பைடு நூலகம்
中英文日报导航站
Hence de is an exact differential, its value depend only on the initial and final states of the system, e is a state variable. In contrast, δq and δw depend on the process in going from the initial to the final states. We consider 3 types of processes:
Similarly, dividing the above equation by
cv
R cv = γ −1
中英文日报导航站
7.2.3 FIRST LAW OF THERMODYNAMICS Consider a fixed mass of gas called system. The region outside the system is called surroundings, the interface is called boundary.
pv = RT
where mass);
v
is the specific volume (volume per unit
v =1 ρ
中英文日报导航站
7.2.2 INTERNAL ENERGY AND ENTHALPY
Consider a molecule:
•its velocity and its rotational motion create kinetic energy •its vibration creates vibrational energy •the motion of electrons around the nuclei creates electronic energy
中英文日报导航站
7.1 Introduction
Giving the main differences between the incompressible and compressible flows with respect to aerodynamic properties . What flow properties should be introduced for the analysis of compressible flow problems. This chapter relates interesting, historical events dating back to the birth of modern aerodynamics; I advice all students to read this chapter carefully.
Chapter 7
Inviscid, Compressible Flow
With the realization of airplane and missile speeds equal to or even surpassing the many times the speed of sound, thermodynamics has entered the scene and will never again leave our consideration.
1. Adiabatic process: no heat is added or taken away
from the system.
2. Reversible process: no dissipative phenomena occur;
effects of viscosity, thermal conductivity, and mass diffusion are absent.
中英文日报导航站
The energy of a given molecule is the sum of these energies.
Consider a finite volume of gas consisting of a large number of molecules. The sum of the energies of all the molecules in this volume is defined as the internal energy of the gas. Per unit of mass, it is denoted as e . A related quantity is the specific enthalpy, denoted by h and defined as:
p = ρRT
中英文日报导航站
where R is the specific gas constant ; for air at standard conditions, R = 287 J/(kg.K). This formula can also be written as:
h
,
dh = c p dT
and c p are the specific heats at constant volume and constant pressure, respectively
中英文日报导航站
For a perfect gas where these specific heats are constants , the above formula become:
中英文日报导航站
e and h are thermodynamic state variables,
they depend only on the state of the gas and are independent of any process. Now, we have the thermodynamic variables as follows:
h = e + pv
中英文日报导航站
For a perfect gas, both temperature only:
e
and
h
are functions of
e = e(T )
de = cv dT
相关文档
最新文档