高速空气动力学基础
空气动力学基础 空气动力学

流管变粗,流体的流速将减小,流体的动压减小,静压将增 加。
飞机机翼气动升力的产生:
当气流流过机翼表面时,由于气流的方向和机翼所采用的翼 型,在机翼表面形成的流管就像图2 - 5 中所示的那样变细或 变粗,流体中的压力能和功能之间发生转变,在机翼表面形 成不同的压力分布,从而产生升力。
叫升力,用L 表示 在平行来流方向上的分量叫阻力,用
D 表示。
2.4.2 升力的产生
飞机的升力主要由机翼来产生。 迎角α
相对气流与机翼弦线之间的夹角 迎角“正负”
当气流以一定的正迎角流过具有一定翼型的机翼时
在机翼上表面流管变细,流线分布较密;在机翼下表面流管 变粗,流线分布较疏。
空气动力学与飞行原理
第2章 空气动力学
知识要求
熟练掌握流体流动的基本规律 熟练掌握机体几何外形参数的表示和概念 能够根据相关知识对飞机所受空气动力进行分析 掌握高速飞行理论
2.1 流体流动的基本概念
研究
作用在飞机上的空气动力
气流
空气的流动称为气流。 空气相对物体的流动,称为相对气流。
2.3 机体几何外形和参数
2. 3.1 机翼的几何外形和参数
机翼翼型 机翼平面形状 机翼相对机身的安装位置
1.机翼翼型
翼型
用平行机身对称面的平面切割机翼所得机翼的切面形状
翼型参数
弦线、弦长b 厚度、相对厚度
最大厚度、相对厚度、最大厚度位置 中弧线、弯度、相对弯度
(d)后掠翼; (e)(f)和(g)为三角
形和双三角形。
参数
机翼面积S 梢根比η 翼展展长L 展弦比λ 后掠角χ 平均空气动力弦长
空气动力学前六章知识要点

空气动力学基础前六章总结第一章 空气动力学一些引述1、 空气动力学涉及到的物理量的定义及相应的单位①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。
0,lim →⎪⎭⎫ ⎝⎛=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa②密度:定义为单位体积内的质量,具有点属性。
0,lim →=dv dvdm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡③温度:反应平均分子动能,在高速空气动力学中有重要作用。
单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。
单位:m/s ⑤剪切应力:dy dv μτ= μ:黏性系数 ⑥动压:212q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法空气动力及力矩的来源只有两个:①物体表面的压力分布 ②物体表面的剪应力分布。
气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。
力矩与所选的点有关系,抬头为正,低头为负。
cos sin L N A αα=- , s i n c o s D N A αα=+3、 气动力系数的定义及其作用气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),cq L c l ∞='(2D )L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C4、 压力中心的定义压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。
如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。
民用机飞行原理——高速空气动力学基础

(一) 弱扰动是怎样传播的?
交替地以弱压缩波和弱膨胀波的形式向外 传播,也可能以单纯的弱压缩波或弱膨胀波的 形式向外传播。总之不论是哪一种弱扰动,都 是以波的形式向远离扰动源的空间传播的。
(二) 弱扰动的传播速度——音速
• 不论是哪一种弱扰动,其传播速度就是音速, 即音波的传播速度。
• 音速在空气中的快慢也取决于空气是否容易压 缩。
第十四章 高速空气动力 学基础
主要分析高速飞行时气流特性,高速飞行空气动力的 变化规律,高速飞机翼型和机翼的空气动力特性以及 高速飞机安定性和操纵性的特点等问题
第一节、高速气流特性
• 高速飞行中气流特性之所以会出现不同于低速 飞行气流特性的现象,其根本原因是空气具有 压缩性的缘故
一、空气的压缩性
•气流M数或局部M数:在高速气流 中,在飞机周围各点气流速度与当 地音速之比。
(四) 弱扰动在气流中的传播
三、空气的压力、密度和温度 随流速的变化
• 高速气流规律: • 流速加快,压力、密度、温度都同时降低;
流速减慢,压力、密度、温度都同时升高。 • 空气压缩性影响的伯努利方程从能量守恒定律的观点
中表述为:在同一流管的各切面上,空气的压力能、 内能和动能之和保持不变,即总能量为一个常数。
•由此可见,空气沿流管从一个切 面流到另切面,如果动能增加,则 压力能与内能之和必然减少;如果 动能减少,则压力能与内能之和必 然增加 。
四、流管切面面积随流速的变化
• 在亚音速气流中,流管切面面积随着流速的增 大而减小;
• 在超音速气流中,流管切面面积随着流速的增 大而增大。 ρVA=常数 式中ρ—流管某一切面处空气密度; V—流管某一切面处的气流速度; A—流管某一切面处的流管切面积。
高速列车空气动力学研究

高速列车空气动力学研究引言:随着科技的不断进步和人们的出行需求的增加,高速列车成为了现代交通运输的一个重要组成部分。
高速列车的速度越来越快,因此对其空气动力学性能的研究变得越来越重要。
本文将探讨高速列车的空气动力学研究的重要性、研究内容和方法,以及该研究的实际应用。
一、空气动力学研究的重要性高速列车的空气动力学性能对列车的运行效率、能源消耗和安全性都有重要影响。
研究高速列车的空气动力学特性可以帮助设计工程师改进列车的外形,减小空气阻力,提高列车的速度和运行效率。
此外,空气动力学研究还可以帮助评估列车在不同环境下的稳定性和操纵性,为列车的操作和安全提供可靠的基础。
二、高速列车空气动力学研究的内容高速列车的空气动力学研究主要包括以下几个方面:1. 空气阻力和气动特性分析:通过数值模拟和实验测试,研究列车在高速运行时的空气阻力、气动力和流场分布。
这个分析的结果有助于设计工程师优化列车外形,减少空气阻力,提高列车的速度和能效。
2. 空气流动控制技术:通过安装气动装置,如尾部扩散器和侧吹装置,可以调节列车周围的气流,减小空气阻力和横风对列车的影响。
研究空气流动控制技术可以降低列车的能源消耗,增加列车的稳定性和操控性。
3. 高速列车与周围环境的相互作用:研究列车与周围环境的相互作用可以评估列车在不同气候和地形条件下的性能。
例如,研究列车在高山地区和隧道内的空气动力学特性,可以为列车的设计和运行提供必要的信息。
4. 高速运行下的噪声和振动控制:高速列车的运行会产生噪声和振动,对乘客和周围环境造成潜在影响。
研究高速列车的空气动力学可以帮助工程师降低噪声和振动水平,提供更舒适和安静的乘车环境。
三、高速列车空气动力学研究的方法高速列车的空气动力学研究可以使用多种方法,包括数值模拟、实验测试和仿真模型。
数值模拟通常使用计算流体力学(CFD)方法,通过对列车模型的数值计算,预测列车在不同速度和工况下的空气动力学性能。
实验测试可以通过风洞试验或全尺寸试验来获得列车的气动数据。
空气动力学基本理论(1)

我们宏观上关心的物体(如汽车)的任何一个尺寸 L 相比较都是微乎其
微的
•例如海平面条件下,空气分子的平均自由程为 l =10-8 mm,1mm3液体含
3×1021个分子,1mm3气体含 2.6×1016个分子;10-9mm3液体含 3×1012个分 子, 10-9mm3 气体含 2.6×107个分子
剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关
流体的粘性
液体和气体产生粘性的物理原因不同,前者主要来自于液体分子间的内 聚力,后者主要来自于气体分子的热运动。因此液体与气体动力粘性系数随 温度变化的趋势相反:
液体: 温度升高,μ变小,反之变大 气体: 温度升高,μ变大,反之变小
液体和气体的动力粘性系数随温度变化的关系可查阅相应表格或近似公 式,如气体动力粘性系数的萨特兰公式等。
由于彻体力按质量分布,故一般用单位质量的彻体力表示,并且往
往写为分量形式:
f
lim
0
F
v
fxi
fy j
fzk,
作用在流体微团上力的分类
表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团
块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向
du (帕 N / m2 )
dy
这就是著名的牛顿粘性应力公式,它表明粘性剪切应力与速度梯度有关, 与物性有关。
基本物理特性
从牛顿粘性公式可以看出:
1. 流体的剪应力与压强 p 无关。
2. 当τ≠ 0 时,du 0 ,无论剪应力多小,只要存在剪应力,流体就会发 dy
高速列车空气动力学研究

高速列车空气动力学研究一、引言高速列车的空气动力学研究是基础工程学科领域中一个非常重要的研究方向。
目前,随着我国高速铁路的全面发展,高速列车的空气动力学问题也逐渐成为了学术界关注的热门话题。
本文将从基本概念、研究方法、实验结果等多个方面,对高速列车空气动力学研究进行深入探讨。
二、高速列车空气动力学基本概念高速列车空气动力学研究,是通过对高速列车在移动过程中,空气流动规律和各种影响因素进行计算机模拟和实验测试,来探究高速列车在空气环境中的行驶特性及其相关问题的学科。
在完成空气动力学研究之前,必须了解以下几个基本概念:1. 高速列车:指可以在600-800km/h的时速范围内运行的列车类型,如CRH时速——高速动车组等。
2. 空气动力学:是研究流体(如空气)在物体表面产生的压力、力和运动状态等方面的学科领域,属于流体力学的范畴。
3. 空气动力学力:是指空气在物体表面产生的静压力、动压力及粘性力对物体的作用力。
三、高速列车空气动力学研究方法高速列车空气动力学研究方法可分为两类:数值模拟和实验测试。
1. 数值模拟:数值模拟通常采用CFD(Computational Fluid Dynamics)方法,通过计算机模拟高速列车在空气中行驶时的流场分布和流动状态等参数,从而得出高速列车的空气动力学特性。
数值模拟方法相比实验测试来说,有明显的优势,如操作简单、费用较低、数据分析方便、仿真效果可视化等。
但也有一些缺陷,如假设过于理想与简单,无法考虑到复杂的小尺度压力和紊流效应等。
2. 实验测试:实验测试主要分为两种方式:静态试验和动态试验。
静态试验是通过研究高速列车在静止状态下受到的空气阻力等参数,来推算高速列车在高速行驶状态下的空气动力学情况。
动态试验通常采用风洞实验或者实际铁路线实验,通过数据采集和测量的手段,获得高速列车在不同速度下的气动力特性数据。
四、高速列车空气动力学实验结果高速列车的空气动力学实验结果,主要体现在下列几个方面:1. 高速列车的阻力特性:高速列车在高速行驶过程中,其阻力大小和分布规律将直接影响到列车的牵引功率和能耗。
飞机原理与构造第四讲_高速空气动力学基础(优.选)

2012/9/2
12
高速气流的特性
空气压缩性与音速a的关系
a dp
d
a 39 t 273 海里/小时
a 20.1 t 273 公里/小时
音速与传输介质的可压缩性相关,在空 气中,音速大小唯一取决于空气的温度,温 度越低,空气越易压缩,音速越小。
2012/9/2
13
高速气流的特性
亚音速、等音速和超音速的扰动传播
2012/9/2
4
高速气流的特性
空气的压缩性与飞行速度的关系
在大速度情况下,气流速度变化引起空气密度的变
化显著增大,就会引起空气动力发生额外的变化,甚至 引起空气动力规律的改变,这就是高速气体特性所以区 别于低速气流根本点。
飞行速度
200 400 600 800 1000 1200
空气密度增加的百分比 1.3% 5.3% 12.2% 22.3% 45.8% 56.6%
2012/9/2
激波前后气流参数变化 28
激波与膨胀波 激波实例
2012/9/2
29
激波与膨胀波 激波实例
2012/9/2
30
激波与膨胀波
激波
由于激波前后压力差相当大(例如,飞行速度为每小 时1800公里,激波后面的压力会比激波所压力提高1.39大 气压每平方米,将增大139000牛顿的空气压力)。
压力减小 收缩的流管 流速增大 密度不变
温度不变
压力减小
压力增大
流速增大 密度减 流速减小 密度增大
小
温度降低
温度升高
压力增大 扩张的流管 流速减小 密度不变
温度不变
压力增大
压力减小
流速减小 密度增 流速增大 密度减小
高速行驶汽车的空气动力学分析

高速行驶汽车的空气动力学分析汽车是现代人生活中必不可少的交通工具之一,而在高速公路上行驶的汽车不仅仅需要安全、舒适,还需要具备一定的稳定性和速度。
在高速行驶中,车辆与周围环境之间产生的空气运动将会对车辆的行驶产生影响,因此,对高速行驶汽车的空气动力学分析显得尤为重要。
一、汽车在高速行驶中的气动力学特性在高速行驶中,空气动力学特性是影响汽车行驶的关键因素之一。
当汽车以高速行驶时,空气将会对整个汽车造成一定的阻力,同时也会形成一定的升力。
与此同时,高速气流对轮胎、悬挂系统、动力系统等部件都产生影响。
因此,进行汽车的空气动力学分析是确保汽车行驶安全、稳定的重要步骤之一。
二、汽车在高速行驶中的阻力与升力在高速行驶时,汽车前方所承受的空气阻力是很大的。
阻力会随着行驶速度的增加而增加,但阻力的大小并不是线性增加的,而是随着速度的平方而增加。
当汽车行驶速度超过200km/h时,空气阻力所占比重将会超过汽车本身重量的一半。
因此,降低汽车阻力是一项很重要的工作。
与汽车承受的空气阻力不同,当汽车行驶时,在车身的上表面会形成一定的升力。
升力的大小与汽车的角度、车速、空气密度等因素有关。
升力的对汽车的影响不容忽视,如果升力过大,车轮可能会失去地面的抓力,从而影响整个汽车的稳定性。
三、汽车的气动外形和气动防护汽车的气动外形是影响汽车空气动力学特性的主要因素。
汽车在高速行驶时,较为平整的气动外形会减小汽车承受的空气阻力,从而提高汽车的速度、稳定性和燃油经济性。
此外,气动防护也是汽车空气动力学分析中不可忽视的一方面。
例如,在高速行驶时,汽车侧窗玻璃开启会改变汽车的气动力学特性,从而增加阻力,影响汽车的稳定性。
四、汽车空气动力学分析的应用汽车的空气动力学分析可以帮助改善汽车的流线外形设计、减小汽车承受的空气阻力,提高汽车的燃油经济性和行驶稳定性。
同时,空气动力学分析也可以指导汽车的气动防护设计,实现更加安全的汽车行驶。
总之,汽车的空气动力学分析是汽车安全、舒适和速度的保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●激波实例
第十章 第 26 页
●激波实例
第十章 第 27 页
●激波实例
第十章 第 28 页
③ 翼型的跨音速升力特性
I. 升力系数随飞行M数的变化
临界M数, 机翼上表面
达到音速
1. 考虑空气压缩性,上表面密度
下降更多,产生附加吸力,升力系
数CL增加,且由于出现超音速区, 压力更小,附加吸力更大;
M数越大,空气被压缩得越厉害。
低速飞行(马赫数M<0.4) 可忽略压缩性的影响
高速飞行(马赫数M>0.4) 必须考虑空气压缩性的影响
第十章 第 8 页
③ 气流速度与流管截面积的关系
由连续性定理,在同一流管内
VAconst
速度增加,空气密度减小。 在亚音速时,密度的减小量小于速度的增加量,故加速时要求 截面积减小。流量一定,流速快则截面积减小;流速慢则截面积 增大。
第十章
高速空气动力学基础
飞行原理/CAFUC
本章主要内容
10.1 高速气流特性 10.2 翼型的亚跨音速气动特性 10.3 后掠翼的高速升阻力特性
第十章 第 2 页
10.1 高速气流特性
飞行原理/CAFUC
10.1.1 空气的压缩性
空气的压缩性是空气的压力、温度等条件改变而引 起密度变化的属性。 低速飞行(马赫数M<0.4)
第十章 第 41 页
●亚音速下对称气流流经后掠翼
对称气流经过后掠翼,可 以将气流速度分解到垂直 于机翼前缘和平行于机翼 前缘。
第十章 第 42 页
●后掠翼的翼根效应和翼尖效应
在气流向后的流动过程中, 平行于前缘的气流分速不发 生变化,而垂直于前缘的有 效分速则发生先减速、后加 速、再减速的变化,导致总 的气流方向发生左右偏斜。
后掠翼的升力大小由垂直 于前缘的有效分速所决定。
第十章 第 43 页
翼根效应
亚音速气流条件下,上翼面前段流 管扩张变粗,流速减慢,压强升高,吸 力降低;后段流管收缩变细,流速加快, 压强减小,吸力有所增加。流管最细的 位置后移,最低压力点向后移动。
翼尖效应
亚音速气流条件下,上翼面前段流 管收缩变细,流速加快,压强降低, 吸力变大;在后段,流管扩张,流速 减慢,压强升高,吸力减小。流管最 细位置前移,最低压力点向前移动。
I. 临界马赫数
后掠翼的临界马赫数MCRIT比相同剖面平直 翼的MCRIT大。后掠角越大,MCRIT越大。这是 高亚音速飞机采用后掠翼的主要原因。
后掠翼的速度 分解
第十章 第 60 页
II. 后掠翼的翼尖激波
III. 后掠翼的后激波
第十章 第 61 页
IV. 后掠翼的前激波
V. 后掠翼的外激波
第十章 第 62 页
飞行马赫数大于1后,阻力系数会下降,但阻力会随着 M数的增加而增加。
第十章 第 34 页
⑦ M数对飞机的失速迎角的影响
第十章 第 35 页
⑦ M数对飞机的最大升力系数CLmax的影响
第十章 第 36 页
⑧ 飞机在不同M数下的极曲线
第十章 第 37 页
本章主要内容
10.1 高速气流特性 10.2 翼型的亚跨音速气动特性 10.3 后掠翼的高速升阻力特性
第十章 第 17 页
③ 翼型的亚音速阻力特性
翼型的阻力系数基本不随飞行M数变化。
④ 翼型的压力中心位置的变化
翼型的压力中心位置基本保持不变。
第十章 第 18 页
10.2.2 翼型的跨音速空气动力特性
跨音速是指飞行速度没达到音速,但机翼表面局部已经出现超 音速气流并伴随有激波的产生。
① 临界马赫数MCRIT
第十章 第 10 页
●速度、密度和截面积在不同M数下的变化值
气流M数 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
流速增加的百
分比
1%
1%
1%
1%
1%
1%
1%
1%
V/V
密度变化的百
分比
/
-0.04% -0.16% -0.36% -0.64% -1% -1.44% -1.96% -2.56%
本章主要内容
10.1 高速气流特性 10.2 翼型的亚跨音速气动特性 10.3 后掠翼的高速升阻力特性
第十章 第 14 页
10.2 翼型的亚跨音速气动特性
飞行原理/CAFUC
10.2.1 翼型的亚音速空气动力特性
●亚音速的定义 飞行M数大于0.4,流场内各点的M数都小于1。
① 翼型的亚音速空气动力特性
第十章 第 49 页
●后掠角失速的产生与发展
第十章 第 50 页
●机翼平面形状对失速的影响
椭圆形机翼
矩形机翼
第十章 第 51 页
梯形机翼
后掠翼
II. 后掠翼的临界迎角和最大升力系数比平直翼小
同平直机翼相比,后掠翼 相同迎角下的升力系数 更小,最大升力系数和临 界迎角也较小。根本原 因在于后掠翼的升力特 性是由垂直于前缘的有 效分速决定的。
气流流过后掠翼时,流线左 右偏移的分析
第十章 第 44 页
●后掠翼的翼根和翼尖效应对升力的影响
第十章 第 45 页
翼根效应使翼根部位机翼的吸力峰 减弱,升力降低,翼尖效应使翼尖部 位的吸力峰增强,升力增加。
●后掠翼的翼根和翼尖效应对升力系数的影响
后掠翼各翼面 的升力系数沿 展向的分布
第十章 第 46 页
第十章 第 38 页
10.3 后掠翼的高速升阻力特性
飞行原理/CAFUC
●后掠翼与后掠角 后掠角是机翼¼弦长的连
线与飞机横轴之间的夹角。
第十章 第 40 页
10.3.1 后掠翼的亚音速升阻力特性
① 亚音速下对称气流流经后掠翼
●对称气流经过直机翼时的M数变化
气流经过直机翼后, 马 赫数M会增加。
音速与传输介质的可压缩性相关,在空气 中,音速大小唯一取决于空气的温度,温度 越低,空气越易压缩,音速越小。
●亚音速、等音速和超音速的扰动传播
第十章 第 7 页
② 空气压缩性与马赫数M的关系 M TAS a
马赫数M是真速与音速之比。分为飞行马赫数和局部马赫 数,前者是飞行真速与飞行高度音速之比,后者是局部真速 与局部音速之比(如翼型上表面某点的局部马赫数)。
II. 后掠翼的最大阻力系数 出现得更晚而且更小。
III.阻力系数随M数的变化 比较平缓。
第十章 第 64 页
④ 厚弦比对MCRIT的影响
同平直机翼相比, 后掠翼的MCRIT更大; 厚弦比越小, MCRIT 越大。
第十章 第 65 页
本章小结
流管截面积和气流参数随流速(M数)的变化规律 激波的概念、成因和激波前后气流参数的变化规律 局部激波的形成和发展过程 临界M数的概念和物理意义 后掠翼翼尖失速的特点 后掠翼的升力特性
●局部激波的形成与发展
1. 大于MCRIT后,上表面先产生激波。 2. 随M数增加,上表面超音速区扩展,
激波后移。 3. M数继续增加,下表面产生激波,
并较上表面先移至后缘。 4. M数接1,出现头部激波。
激波的视频
第十章 第 24 页
●激波实例
第十章 第 25 页
在亚音速气流 中,流管截面积 随流速的变化
第十章 第 9 页
③ 气流速度与流管截面积的关系
由连续性定理,在同一流管内
VAconst
速度增加,空气密度减小。 在超音速时,密度的减小量大于速度的增加量,故加速时要求 截面积增大。 因此,M>1时,流管扩张,流速增加,流管收缩,流速减小。
在超音速气流 中,流管截面积 随流速的变化
第十章 第 30 页
④ 翼型的跨音速阻力特性
I. 波阻的产生
波阻就是正迎角时,在跨音速阶段翼型产生的附加吸力向后 倾斜从而在速度方向所附加产生的阻力。
第十章 第 31 页
II. 翼型阻力系数随M数的变化
超过临界马赫数后,波阻急剧增大导致阻力系数急剧增加的 马赫数,称为阻力发散马赫数。
第十章 第 32 页
2. 下翼面出现超音速区,且后移 较上翼面快,下翼面产生较大附 加吸力,CL减小;
3. 下翼面扩大到后缘,而上翼面 超音速区还能后缘,上下翼面的 附加压力差增大,CL增加。
下表面达 到音速
上表面激波 移至后缘
下表面激波 移至后缘
第十章 第 29 页
II. 最大升力系数和临界迎角随飞行M数的变化
当激波增强到一定程度,阻力系数急剧增大,升力系数迅速减 小,这种现象称为激波失速。随着飞行M数的增加,飞机将在更小 的迎角下开始出现激波失速,导致临界迎角和最大升力系数的继 续降低。
I. 局部激波的形成
飞行马赫数大于临界马赫数后,机翼上表面开始出现超音速区。 在超音速区内流管扩张,气流加速,压强进一步降低,与后端的 压强为大气压力的气流相作用,形成一道压力、密度、温度突增 的界面,即激波。
第十章 第 21 页
II. 局部激波的发展
第十章 第 22 页
II. 局部激波的发展
第十章 第 23 页
⑤ 翼型的超音速升力特性
膨胀波
激波
第十章 第 33 页
在超音速阶段,M增 加,上翼面膨胀波后斜, 弱扰动边界与波前气流 的夹角减小,膨胀后的 压力比 不变而M增加 时降低得少;
M增加,下翼面激 波后斜,激波角减小, 下翼面压力比不变而M 增加时增加得少,总的 效果使升力系数减小。
⑥ 翼型的超音速阻力特性
第十章 第 52 页
③ 后掠翼飞机改善翼尖先失速的措施
主要方法: 阻止气流在机翼上表面的展向流动
主要手段: I. 翼上表面翼刀 II. 前缘翼刀 III. 前缘翼下翼刀
IV. 前缘锯齿 V. 涡流发生器