叶片的空气动力学基础
风力机叶轮设计与叶片空气动力学仿真分析

风力机叶轮设计与叶片空气动力学仿真分析一、概述作用在叶轮上的空气动力是风力机最主要的动力来源,也是造成各个零部件的主要的载荷来源。
要计算风力发电机组的载荷就必须先计算出空气作用在叶片上的作用力。
除了气动载荷,风力机叶片在风机工作中受到的作用力主要还受到惯性力,特别应该考虑重力、离心力和陀螺力等。
风力机的叶片设计分气动设计和结构设计两大部分,气动性能计算为气动设计结果提供评价和反馈,并为叶片的结构设计提供气动载荷等原始数据。
气动性能计算的准确性,直接影响叶片的气动性能和结构安全,从而影响风力机的运行效率和运行安全。
二、风力机叶片几何参数1.风力机叶片翼型几何参数和气流角翼型是组成风力机叶片的基本元素,因此,翼型的气动特性对风力机的性能起着决定性的作用。
以一个静止的翼型为例,其受到气流作用,风速为v,方向与翼型截面平行。
图1 翼型的几何参数和气流角翼型的尖尾(点B)称为后缘。
圆头上的A点称为前缘,距离后缘最远。
l——翼型的弦长,是两端点A、B连线方向上翼型的最大长度;C——翼型最大厚度,即弦长法线方向之翼型最大厚度;C——翼型相对厚度,CCl=,通常为10%~15%;翼型中线—从前缘点开始,与上、下表面相切诸圆之圆心的连线,一般为曲线;f——翼型中线最大弯度;f——翼型相对弯度,ffl =;α——攻角,是来流速度方向与弦线间的夹角;φo——零升力角,它是弦线与零升力线间的夹角;φ——升力角,来流速度方向与零升力线间的夹角。
α=φ+φ0 (2‐1)此处φ0是负值,α和φ是正值。
2..NACA四位数字翼型族NACA四位数字翼型分为对称翼型和有弯度翼型两种。
对称翼型即为基本厚度翼型,有弯度翼型由中弧线与基本厚度翼型迭加而成。
中弧线为两段抛物线,在中弧线最高点二者水平相切。
四位数字翼型的表达形式为NACAXXXX第一个数字表示最大相对弯度的百倍数值;第二个数字表示最大弯度相对位置的十倍数值;最后两个数字表示最大相对厚度t的百倍数值。
第二章-风力机的基本理论及工作原理

4)风杯式阻力差风力机 两个半球面杯对称安装在转轴两 侧,球面方向相反。一个凸面向 风,另一个凹面向风,显然在相 同风力下后者对风的阻力比前者 大。
叶轮由两片垂直的叶片阻成,叶片 截面为流线型的对称翼型,以相反方 向安装在转轴两侧。
17
达里厄风力机在低风速下运转困难, 要在较高的风力下,风轮转速达到 叶尖速比为3.5以上才可能正常运 转,在尖速比为4-6可获较高的功 率输出。下图为达里厄风力机的功 率系数与叶尖速比的关系曲线。
达里厄风力机对叶片截面 形状(翼型)选择与外表光洁 度要求比较高。达里厄风力机 不能单靠风力自起动,必须依 靠外力起动使叶尖速比达到 3.5以上时才能依靠升力运转。 典型的达里厄风力机翼片不是 直的,而是弯成弧形,两翼片 合成一个φ形。
关系到叶片的攻角,是分析
风力机性能的重要参数。
10
实度比
▪ 风力机叶片的总面积与风通过风轮的面积(风轮扫掠面积) 之比称为实度比(容积比),是风力机的一个参考数据。
▪ 左图为水平轴风力机叶轮,S为每个叶片对风的投影面积, B为叶片个数,R为风轮半径,σ为实度比,
▪ σ=BS/πR2
11
▪ 右图为升力型垂直轴风力机叶轮,C为叶片弦长, B为叶片个数,R为风轮半径,L为叶片长度,σ 为实度比。垂直轴风力机叶轮的扫掠面积为直径 与叶片长度的乘积,
32
风轮的轮毂比(Dh/D):风轮轮毂直径Dh
与风轮直径之比。
U(1-a)
空气动力学基础02空气动力学详解

2.4.5 升力系数曲线、阻力系数曲线和升阻比曲线 、极曲线
升阻比和升力系数、阻力系数一样都是无量纲参数, 在飞行马赫数小于一定值时,只与机翼的形状( 机翼翼 型、机翼平面形状) 和迎角的大小有关。 当迎角改变时,气流在机翼表面的流动情况和机翼表 面的压力分布都会随之发生变化,结果导致了机翼升 力和阻力的变化, 压力中心位置的前后移动。
2.机翼平面形状和参数
机翼平面形状
机翼平面形状是飞机处于 水平状态时,机翼在水平 面上的投影形状 (a)矩形;(b)梯形; (c)椭圆形; (d)后掠翼; (e)(f)和(g)为三角 形和双三角形。
参数
机翼面积S 梢根比η 翼展展长L 展弦比λ 后掠角χ 平均空气动力弦长
飞机机翼气动升力的产生:
当气流流过机翼表面时,由于气流的方向和机翼所采用的翼 型,在机翼表面形成的流管就像图2 - 5 中所示的那样变细或 变粗,流体中的压力能和功能之间发生转变,在机翼表面形 成不同的压力分布,从而产生升力。
2.3 机体几何外形和参数
2. 3.1 机翼的几何外形和参数
2.4.3 阻力
在低速飞行中飞机的阻力
摩擦阻力 压差阻力 干扰阻力 诱导阻力
废阻力
废阻力主要由空气的粘性引起 在介绍飞机的阻力之前,应先了解与空气粘性有关的 一些空气的流动状态。
1. 气流在机体表面的流动状态
(1)附面层 (2)层流附面层和紊流附面层 (3)附面层的分离
非定常流
定常流
2.1.4 流线、流线谱、流管和流量
航空叶片机原理

航空叶片机原理
航空叶片机是一种常见的航空发动机,其工作原理是通过叶片的旋转来产生推力,从而推动飞机前进。
在航空领域,航空叶片机的原理是非常重要的,下面将详细介绍航空叶片机的工作原理。
航空叶片机的工作原理可以分为以下几个方面来解释。
首先,航空叶片机通过
燃烧燃料产生高温高压的气体,然后这些气体被喷射到叶片机的叶片上。
叶片机的叶片被设计成了一种特殊的形状,当高速气流通过叶片时,会产生一个向后的推力,这个推力就是推动飞机前进的动力来源。
其次,航空叶片机的叶片旋转的速度非常快,这样就可以产生足够的推力来推
动飞机前进。
叶片机的叶片通常由轻质但又非常坚固的材料制成,这样可以确保叶片在高速旋转的情况下不会发生损坏,从而保证飞机的安全飞行。
另外,航空叶片机的叶片旋转的方向也是非常重要的,通常来说,叶片的旋转
方向是根据发动机的设计来确定的。
有些航空叶片机的叶片是顺时针旋转的,而有些是逆时针旋转的,这样可以根据飞机的需要来选择最合适的叶片旋转方向,从而达到最佳的推进效果。
最后,航空叶片机的工作原理也与空气动力学有关,当高速气流通过叶片时,
会产生一个向后的推力,这个推力就是推动飞机前进的动力来源。
叶片机的设计和制造都需要考虑到空气动力学的原理,以确保叶片可以产生足够的推力来推动飞机前进。
总的来说,航空叶片机的工作原理是通过叶片的旋转来产生推力,从而推动飞
机前进。
这种工作原理是航空领域的基础知识,对于理解飞机的工作原理和设计飞机都有着非常重要的意义。
航空叶片机的原理是航空工程领域的重要内容,希望通过本文的介绍,可以更加深入地了解航空叶片机的工作原理。
空气动力学技术在风力发电机叶片设计中的应用

空气动力学技术在风力发电机叶片设计中的应用风力发电机是一种非常具有发展潜力的新能源。
而其核心部件——叶片的设计则对于风力发电机的高效性、经济性、可靠性等方面至关重要。
而空气动力学技术对于叶片设计的应用,则能够提高风力发电机的发电效率,从而更好地满足能源需求,节约资源。
1. 空气动力学技术的定义与基本原理空气动力学技术是指研究流体(空气)在单位时间内通过流动的方式对于物体产生的力的规律或现象的技术。
它的基本原理是通过实验手段和数学模型对流体运动的速度和流量进行分析研究,从而更好地理解流体的运动规律,并应用这些规律于风力发电机的叶片设计中。
2. 空气动力学技术在风力发电机中的应用在风力发电机的叶片设计中,空气动力学技术主要应用在以下方面:1. 叶片形状优化空气动力学技术能够帮助设计者分析叶片的流场分布、气动特性及其对风力发电机发电效率的影响,从而通过优化叶片形状,改善风力发电机的发电效率。
2. 叶片材料选择由于叶片在高速运动的情况下需要承受很大的拉力和扭矩,因此选用合适的材料对于风力发电机的可靠性和寿命也至关重要。
空气动力学技术可以对叶片使用的材料进行分析,提供材料的适用性和优缺点,并建议叶片制造商在材料选择上做出合理的抉择。
3. 噪声控制风力发电机叶片在高速旋转时会发出噪音,影响了风力发电机的性能。
空气动力学技术可以针对叶片设计进行优化,提高叶片的气动特性,从而减小发电机的噪音。
4. 非定常气动特性分析除了在静态情况下对叶片进行分析,空气动力学技术还可以通过非定常气动流动分析,探讨叶片在旋转的情况下的动态响应特性,从而优化叶片的设计,提高其适应性和可靠性。
3. 空气动力学技术在风力发电机叶片设计中的局限性虽然空气动力学技术在风力发电机叶片设计中发挥着重要作用,但是其应用也存在局限性。
主要包括以下方面:1. 受限于计算机硬件条件空气动力学技术的应用需要计算大量复杂的流场分布和气动特性数据,因此需要大量的计算机硬件支持,这对于一些软件开发商和设计者来说是一大挑战。
风力机空气动力学知识-64帧课件.ppt

5.风轮转速 当风力机额定功率和风轮直径确定后,增加风轮转速,可 以减小风轮转矩,即减少作用在风力机传动系统上的载荷和 降低齿轮箱的增速比。风轮转速增加后,在额定风速相同 时,叶片的弦长可以减小,使叶片挥舞力矩的脉动值减小, 有利于叶片的疲劳特性和机舱塔架的结构设计。
6.塔架高度 塔架高度是风力机设计时要考虑的一个重要参数。一般, H/D=0.8~1.2。
3.2风力机空气动力设计参数
1.叶片数 水平轴风力发电机组的风轮叶片一般是2片或3片,其中3 片占多数。 当风轮直径和风轮旋转速度相同时,对刚性轮毂来说,作 用在两叶片风轮的脉动载荷要大于三叶片风轮。另外,实际 运行时,两叶片风轮的旋转速度要大于三叶片风轮,因此, 在相同风轮直径时,由于作用在风轮上的脉动载荷引起的风 轮轴向力(推力)的周期变化要大一些。
力特性。当雷诺数较小时,前缘分离气泡的存在、发展 和破裂对雷诺数非常敏感;当雷诺数较大时,翼型最大 升力系数也相应增大。
3.4风力机叶片气动外形设计
风力机叶片气动外形设计的任务是根据风力机总体设计技 术指标,确定风力机叶片的几何外形,包括叶片扭角、弦长 和相对厚度沿展向的分布。对于变桨距叶片还要给出桨距中 心位置和桨距角随风速变化的规律。
在迎角不大时,前缘就发生层流分离,然后转捩为湍流后 再附着于翼型表面,在分离点与再附着点之间形成气泡,随 着迎角的增加,向后缘迅速扩展,到一定迎角时,变成完全 分离。
图3-2给出了翼型在不同分离形式时的升力特性。前缘分 离、后缘分离、薄翼分离如图所示。
需要指出的是:翼型边界层的分离一旦引起翼型失速后, 即使马上回复到失速前的迎角,翼型边界层也不会马山再 附,恢复到分离前的流动状态,这种现象称为流动迟滞现象。
根据风力机性能的需要,风力机翼型一般应要求在分离区 内有稳定的最大升力系数,有很大的升阻比,表面粗糙度对 翼型空气动力特性影响小等特性。
风机叶轮空气动力学

前言
• 风力发电的原理是利用风力带动风机叶轮旋转 (风能转换成机械能),再通过传动轴驱动发电 机产生电能(机械能转换成电能)。因此,风机 叶轮效率的高低直接影响了发电系统产生电能的 多寡。 • 本次课程将对风机叶轮系统涉及的主要空气动力 学理论和技术作一简单介绍,以供参考。 一、 影响风机性能的重要几何参数 二、风机叶片性能分析技术 三、风机叶片上的流场控制装置
它充分考虑了尾迹对自身的作用和叶片与尾迹之间的相互干扰因此它是一种更准确且物理上正确的方法涡流理论风机叶片上的流场控制装置涡流发生器涡流发生器通常安装在叶片的吸力面距离前缘1530弦长处借由延缓分离流的发生而提高最大升力但同时也使得阻力增加
叶轮空气 动力简介
朱雨 2008.02
新疆金风科技股份有限公司
翼型的气动特性
• 边界层的影响 翼型的气动特性和翼型表面的边界层密切相 关。在低雷诺数下,翼型表面从层流边界发展为 完全分离和失速;在中雷诺数下,翼型表面从层 流边界层经过分离气泡,再附着发展为湍流边界 层;在高雷诺数下,翼型表面从层流边界经过转 捩发展为湍流边界层。 不同的边界层发展情况对翼型的气动特性,特 别是阻力特性有较大的影响。尤为显著。
CFD方法
涡流理论
• 涡流理论在广义上,包括两个问题: 内部问题:通过叶片模型对叶片涡系的分析; 外部问题:通过尾迹模型对叶轮尾迹的分析。 • 外部问题一直是涡流理论的关注重点。其关键就 在于叶轮尾迹模型的选取。一般地,叶轮尾迹模 型可归纳为: 固定尾迹模型 预定尾迹模型 自由尾迹模型
涡流理论
风机叶轮性能分析技术
尽管作了准二维的假设,但是通过对叶素迎角 的修正,叶素理论考虑了旋翼的非均匀诱导入流 的三维效应。换言之,旋翼诱导速度不再假定是 均匀分布的;从而,能更真实地反映诱导速度沿 半径和方位角的变化。
风力发电机组叶片设计原理研究

风力发电机组叶片设计原理研究随着对可再生能源的需求日益增长,风力发电作为一种清洁、可持续的能源形式受到了广泛关注。
在风力发电机组中,叶片是转换风能为机械能的核心部件。
因此,叶片的设计和性能对于风力发电机组的有效运行和高效能量转换具有至关重要的作用。
一、风力发电机组叶片的基本结构风力发电机组主要由塔架、转子、发电机以及叶片等组成。
而叶片是最为关键的部件,其主要作用是通过捕获风的能量并将其转换为机械能。
叶片通常由复合材料制成,具有一定的柔韧性和刚性。
叶片的设计需要综合考虑气动性能、结构强度、材料特性以及成本等因素。
二、叶片的气动性能设计原理1. 叶片的气动外形设计叶片的气动外形设计是指通过外形的优化来提高叶片的气动性能。
一般情况下,叶片的外形呈现出弯曲的特点,这有利于增加叶片的面积,并提高叶片对风的捕获效果。
此外,叶片的前缘和后缘也需要进行适当的设计,以减小阻力和噪音。
2. 叶片的空气动力学设计叶片的空气动力学设计是指通过几何参数和气动参数的优化,使其在风力荷载下保持较好的稳定性和动态特性。
在设计过程中,需考虑叶片的扭转角度、截面形状、厚度分布等参数,以及流场的响应和控制。
三、叶片的结构强度设计原理1. 叶片的结构形式设计叶片的结构形式设计是指通过选择合适的材料和结构形式来满足叶片在风力荷载下的结构强度要求。
常见的叶片结构形式有直桨叶片和弯曲叶片两种。
直桨叶片适用于小型和中型风力发电机组,而弯曲叶片适用于大型风力发电机组。
2. 叶片的材料选择和布局设计叶片的材料选择需要考虑材料的强度、耐疲劳性能以及可加工性等因素。
常用的叶片材料有玻璃纤维增强塑料(GRP)、碳纤维复合材料(CFRP)等。
此外,叶片的布局设计也是叶片结构强度设计的重要内容,通过合理的布局设计可以提高叶片的整体强度和稳定性。
四、叶片设计的优化方法1. 数值模拟方法数值模拟方法是一种常用的叶片设计优化方法,通过建立叶片的数学模型,利用计算流体力学(CFD)方法对叶片的气动性能和结构强度进行分析和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶片的空气动力学基础 叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型
由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都就是流线型的,即使有一定厚度阻力也很小。图1就是一幅常见翼型的几何参数图,该翼型的中弧线就是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。
图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2就是一个对称翼型,比较典型的对称翼型为美国的NACA0012。 叶片的空气动力学基础 图2--对称翼型的几何参数 图3就是一个性能较好的适合风力机的低阻翼型,就是带弯度翼型,在水平轴风力机中应用较多。
图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据就是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。 叶片的空气动力学基础 带弯度翼型在攻角为0度时的升力与阻力 图4就是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图就是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面就是凸起的,通道截面减小,气流的流速会加快,另一个原因就是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别就是翼型上表面前端流速较快。翼型下表面较平,多数气流基本就是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。
图4--翼型在攻角为0度时的流线图与压强分布图 图4右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压叶片的空气动力学基础 力值大小与方向,当压力与周围气压相同时值为0,比周围气压低就是负值,比周围气压高就是正值。
由于翼型上方压力比周围气压低,就是负压,故箭头线指向外方。翼型下部分浅蓝色区域内的蓝色箭头线就是下表面的压力分布,由于翼型下表面气体压力比周围气压略高,就是正压,故箭头线指向翼型(此时正压太小,为了清楚显示正压区,有所放大)。由于翼型前方正对气流,翼型前端也受到了一定的压力,就是翼型阻力的主要部分。综合来瞧,翼型上表面的负压产生吸引力,翼型下表面的正压产生压力,两表面的力共同作用在翼型上,这就就是翼型产生升力的原因。
两表面力共同作用的合力点称为压力中心,此时的压力中心靠近翼型的中部。注意:一般图中标示翼型的升力矢量与阻力矢量的起点就是翼型的气动中心(焦点),如左侧流线图,气动中心就是航空学的概念,有兴趣的网友请另找参考资料。 带弯度翼型在攻角为12度时的升力与阻力 图5就是该翼型在攻角为12度时的流线图与压强分布图,此时翼型的升力接近最大状态,左图就是该翼型的流线图,攻角的加大使得气流在翼型上表面绕流加大,中后部气压降低,使得前后压差加大,气流加速。由于上表面前端气流速度增高,前方一些气流被吸向上表面,使翼型下方气流通道加宽,使下方气流速度降低,另外向下方偏转的翼型对气流也会有阻力,该力也会影响气流速度。这样流过上表面的气流速度要比下表面快,翼型下方压力大于上方,压力差对翼型的有一个向上的作用力Fl,就叶片的空气动力学基础 就是升力。从牛顿力学瞧,翼型下表面迫使气流向下方偏转,于就是气流会给翼型作用力,该力也就是翼型产生升力的原因。
图5--翼型在攻角为12度时的流线图与压强分布图 图5右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压力大小与方向,由于翼型上方压力比周围气压低,就是负压,故箭头线指向外方。翼型下部分浅蓝色区域内的蓝色箭头线就是下表面的压力分布,由于翼型下表面气体压力比周围气压高,就是正压,故箭头线指向翼型。翼型上表面的负压产生吸引力,翼型下表面的正压产生压力,两力共同作用在翼型上,作用力为F,其向上的分力Fl就就是升力,升力的主要部分就是翼型上表面负压产生的吸引力。作用力F向后的分力Fd为阻力,正常情况下阻力比升力小很多。
翼型上表面气流在翼型后半部由于通道加宽会减速,与下表面的气流在尾部的尖端会合,两股气流在会合处的流速恢复到周围气流速度,故翼型尾部的压力值接近0。带弯度翼型的升力主要产生于翼型前1/3的叶片的空气动力学基础 部分,在接近最大升力时的压力中心在翼型的前部1/4处。 带弯度翼型在大攻角时的失速状态 当翼型攻角较大时,翼型会进入失速状态,图6就是该翼型在攻角为20度时的流线图与压强分布图,左图就是该翼型的流线图,由于攻角较大,通过翼型上表面的气体将不再附着翼型表面流过,气流会发生分离,从翼型表面脱落,翼型前缘后方会产生涡流,涡流破坏了翼型上表面的高速气流通道,使前端的流速增量降低,在前端的后面的涡流区虽然也能产生负压,但不及高速气流产生的负压值大,使得总体作用力F下降。导致升力下降阻力上升。
图6--翼型在攻角为20度时的流线图与压强分布图 从图6右图瞧,涡流导致翼型上部的负压值减小,又由于翼型前端负压值降低,翼型的压力中心后移,翼型所受合力F减小,角度向后偏转,导致升力下降;合力角度向后偏转加上翼型攻角增大使得F的阻力分量Fd大增。 路径说解释翼型升力就是不准确的 叶片的空气动力学基础 前面说过翼型升力的解释有多种,特别就是有一种“路径说”在群众科普层面流行较广,认为翼型上表面凸起,上表面路径长下表面路径短,气流通过翼型时,上表面速度就会比下表面快,根据伯努利原理,下表面的压力就大于上表面,于就是就产生了升力。这种解释就是不准确的,因为一般翼型上表面比下表面仅长1、5%至2、5%,按此路径差产生的升力就是微不足道的。而要产生足够的升力,上表面的流速比下表面要快许多,应该说上表面的流速加快主要就是通道变窄与翼型后部压力降低的原因。当今翼型的升力理论上的描述主要依据就是茹可夫斯基的升力定律,就是一个完全由数学建立的环量理论进行计算的方法,有兴趣的网友可另找有关空气动力学的书籍学习。 带弯度翼型的升力阻力曲线 翼型在不同攻角下的升力有多大、阻力有多大、攻角多大时开始失速,这些可通过翼型的升力系数与阻力系数随攻角的变化曲线图来表示,图7就是某种带弯度翼型的升力阻力曲线参考图,图中绿色的就是升力曲线、棕色的就是阻力曲线。在曲线中可瞧出,攻角α在11度以下时升力随α增大而增大,当攻角α大于11度时进入失速状态,升力骤然下降,阻力大幅上升,翼型开始失速的攻角α的值称为失速角。α在45度时附近升力与阻力基本相等(该曲线图未绘,可参见NACA0012全攻角曲线图)。 叶片的空气动力学基础 图7--有弯度翼型的升力阻力曲线 大多数有弯度的薄翼型与该曲线所示特性相近。在曲线图中瞧出翼型在攻角为0时依然有升力,这就是因为即使攻角为0,翼型上方气流速度仍比下方快,故有升力,当攻角为一负值时,升力才为0,此时的攻角称为零升攻角或绝对零攻角。
翼型在失速前阻力就是很小的,在近似计算中可忽略不计。 对于同样翼型在雷诺数不同时的升力曲线与阻力曲线也有变化,一般来说大雷诺数时的失速角比小雷诺数时要大。图8就是NACA 4412 翼型在较大雷诺数时的升力系数与阻力系数图。 叶片的空气动力学基础 图8--NACA 4412升力系数与阻力系数图 下面就是NACA 4412 翼型在较大雷诺数时的气流动画(包括升力系数与阻力系数曲线图)。动画较大较长,请耐心等待下载播放。
对于普通有弯度的翼型当攻角为0时,压力中心靠翼型的中部,随着攻角的增加(不大于失速角)压力中心向前移动到1/4弦长位置,进入失速后压力中心又向中部移动。 对称翼型的升力与阻力
对称翼型的升力与阻力等气动特性与有弯度翼型类似,产生升力与阻力的原理也相同,但对称翼型的上表面与下表面弯曲度相同,在攻角为零时翼型上表面与下表面气流速度相同,产生的负压相同,因此对称翼型在攻角为零时升力为零。 图8就是对称翼型的升力系数与阻力系数随攻角的变化曲线参考图,图中绿色的就是升力曲线、棕色的就是阻力曲叶片的空气动力学基础 线。 在升力型垂直轴风力机中较多使用对称翼型,常用翼型就是NACA0012与NACA0015,有关NACA0012的主要参数见NACA0012翼型的截面与升力曲线图课件。
图9--对称翼型升力阻力曲线 对称翼型的另一个特点就是不失速时压力中心在前方1/4弦长位置,不随攻角变化而移动。
比较有弯度的薄翼与对称翼型两个曲线图,两曲线相似,可近似认为在翼型失速前升力曲线的斜率就是个常数,其值为0、1/度或5、73/弧度。
对称翼型的升力曲线经过0点,如果把这个翼型弯曲,随着弯度增加升力曲线向左方移动。当然这就是近似的,也就是在弯度不大时较准确。