离散数学第11章课件PPT,高等教育出版社,屈婉玲,耿素云,张立昂主编

合集下载

离散数学

离散数学

代数运算
定义: 是三个任意的非空集。 定义:设 A、B、D是三个任意的非空集。 、 、 是三个任意的非空集 一个A 一个 ×B到D 的函数 * , 到 叫做一个A 叫做一个 ×B到D的代数运算。 到 的代数运算。 给了A中的任意一个元素 和B中任意一个元素 ,存 中任意一个元素b, 给了 中的任意一个元素a和 中任意一个元素 中的任意一个元素 在唯一的d∊D, 在唯一的 ∊ ,使得 * ((a,b))=d , 由于代数运算是一种特殊的函数,描写它的符号, 由于代数运算是一种特殊的函数,描写它的符号,也 可以特殊一点。 可以特殊一点。我们记 *((a,b))=d 为 , a*b =d
伽罗瓦
Galois, Evariste
法国数学家。 日生于巴黎附近的小镇。 法国数学家。1811年10月25日生于巴黎附近的小镇。 年 月 日生于巴黎附近的小镇 1827年开始自学勒让德、拉格朗日、高斯和柯西等人的 年开始自学勒让德、 年开始自学勒让德 拉格朗日、 论著。 论著。1828-1830年,得到许多后来称为「伽罗瓦理论」 年 得到许多后来称为「伽罗瓦理论」 的重要结果。 的重要结果。 1830年进入高等师范学校 年进入高等师范学校 (Ecole Normale)学习, 学习, 学习 1832年5月31日,死于一次 年 月 日 决斗中。 决斗中。 直到1846年,伽罗瓦的手稿 年 直到 才公开发表。 才公开发表。1870年,伽罗 年 瓦的工作才被完全理解。 瓦的工作才被完全理解。
例4ቤተ መጻሕፍቲ ባይዱ
Z是整数集,* 是Z上一个二元运算, 是整数集, 上一个二元运算, 是整数集 上一个二元运算 对于任意的m, ∊ , 对于任意的 ,n∊Z,m*n=m+n-5。 。 是可交换的吗? 是可结合的吗? 问:* 是可交换的吗? * 是可结合的吗? 对于任意的m, ∊ , 解:对于任意的 ,n∊Z, , ∵m*n=m+n-5, n*m=n+m-5, 是可交换的。 ∴m*n=n*m,故 * 是可交换的。 , 对于任意的m, , ∊ , 对于任意的 ,n,k∊Z, ∵(m*n)*k =(m+n-5)*k=m+n+k-10, 又 m*(n*k)=m+n+k-10, 是可结合的。 ∴(m*n)*k=m*(n*k),故 * 是可结合的。 ,

《离散数学概述》PPT课件

《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律

交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。

最新离散数学耿素云版第十一章 半群与群ppt课件

最新离散数学耿素云版第十一章 半群与群ppt课件
证 设|ab|=d.由ab=ba可知 (ab)nm=(an)m(bm)n=emen=e
从而有d|nm.
又由adbd=(ab)d=e可知 ad=b-d ,即|ad|=|b-d|=|bd|.再根据 (ad)n=(an)d=ed=e
得|ad||n。 同理有|bd||m。从而知道|ad|是n和m的公因子。因为n与m互
(2) 由(a-1)r=(ar)-1=e-1=e 可知a-1的阶存在。令|a-1|=t,根据上面的证明有t|r。这说明a的逆 元的阶是a的阶的因子。而a又是a-1的逆元,所以a的阶也是a-1的 阶的因子,故有r|t。从而证明了r=t,即|a|=|a-1|。
例11.7 设G是群,a,b∈G是有限阶元。证明 (1)|b-1ab|=|a| (2)|ab|=|ba|
例11.1 (1)<Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>都是半群,+是普通加 法。这些半群中除<Z+,+>外都是独异点。 (2)设n是大于1的正整数,<Mn(R),+>和<Mn(R),·>都是半群,也都是 独异点,其中+和·分别表示矩阵加法和矩阵乘法。 (3)<P(B), >为半群,也是独异点,其中 为集合的对乘差运算。 (4)<Zn, >为半群,也是独异点,其中Zn={0,1,…,n-1}, 为模n加 法。
1.能够构成群。 2. |0|=1 |1|=|5|=|7|=|11|=13|=|17|=18 |2|=|4|=|8|=|10|=|14|=|16|=9 |3|=|15|=6 |6|=|12|=3 |9|=2 3.设|a|=n, |xax-1|=m。由下式

离散数学_高等教育出版社配套PPT课件_屈婉玲_耿素云_张立昂ch6

离散数学_高等教育出版社配套PPT课件_屈婉玲_耿素云_张立昂ch6

AB = AB = A
8ቤተ መጻሕፍቲ ባይዱ
广义运算
1. 集合的广义并与广义交 定义6.10 广义并 A = { x | z ( zA xz )} 广义交 A= { x | z ( zA xz )} 实例 {{1}, {1,2}, {1,2,3}}={1,2,3} {{1}, {1,2}, {1,2,3}}={1} {{a}}={a}, {{a}}={a} {a}=a, {a}=a
| A B C |
= 1000(200+166+125)+(33+25+41)8 = 600
14
6.3 集合恒等式
集合算律 1.只涉及一个运算的算律: 交换律、结合律、幂等律
交换 结合 幂等 AB=BA (AB)C =A(BC) AA=A AB=BA (AB)C= A(BC) AA=A AB=BA (AB)C =A(BC)
25
基本要求
熟练掌握集合的两种表示法 能够判别元素是否属于给定的集合 能够判别两个集合之间是否存在包含、相等、真包含等关 系 熟练掌握集合的基本运算(普通运算和广义运算) 掌握证明集合等式或者包含关系的基本方法
26
练习1
1.判断下列命题是否为真 (1) (2) (3) {} (4) {} (5) { a, b } { a, b, c, {a, b, c}} (6) { a, b } { a, b, c, {a, b}} (7) { a, b} { a, b, {{a, b}}} (8) { a, b} { a, b, {{a,b}}}
注意 和 是不同层次的问题
4
空集、全集和幂集
1.定义6.4 空集 :不含有任何元素的集合 实例: { x | xR x2+1=0 } 定理6.1 空集是任何集合的子集。 证 对于任意集合A, A x (xxA) T (恒真命题) 推论 是惟一的 2. 定义6.5 幂集:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n. 3. 定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集

离散数学第五版 耿素云 屈婉玲 张立昂编著

离散数学第五版 耿素云 屈婉玲 张立昂编著

规定,当p为假时,无论q是真还是假,p q均为真,也
就是说,只有p为真q为假这一种情况,使得复合命题p
q为假。
18
命题与联结词
例6:将下列命题符号化。
(1)只要不下雨,我就骑自行车上班。 (2)只有不下雨,我才骑自行车上班。
p q
qp
(3)若2+2=4,则太阳从东方升起。
(4)若2+2 4,则太阳从东方升起。
2) 其它类型的句子,如疑问句、祈使句、感叹句均没有真假 意义,因为均不是命题。 在数理逻辑中,命题的真值的真和假,有时分别用1和0来 表达,也有时分别用T和F来表达。
7
命题与联结词
如何判断命题:
1) 首先判断其是否为陈述句
2) 其次判断其是否有唯一真值
例1:判断下列句子是否为命题,真值如何?
(1)10是整数。
q:吴颖聪明。 s:王丽是三好学生。
t:张辉与王丽是同学。
14
命题与联结词
3. 析取 符号:
定义1.3:设p,q为二命题,复合命题“p或q” 称为p与q的析取式,
记作p q ,符号称为析取联结词。并规定pq为假当且仅当
p与q同事为假。
真值表:
PQ
00
P Q
0
01
1
10
1
11
1
注意:1)
价式,记作p q ,符号 称为等价联结词。并规定p q为真当且仅当p与q同时为真或同时为假。
真值表: P Q
00 01 10 11
PQ
1 0 0 1
p q 的逻辑关系为q与p的互为充
分必要条件。
20
命题与联结词
例7:将下列命题符号化。

离散数学_屈婉玲_耿素云_张立昂_主编_课后答案解析_[高等教育出版社]

离散数学_屈婉玲_耿素云_张立昂_主编_课后答案解析_[高等教育出版社]

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q 前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学教学图论【共58张PPT】

离散数学教学图论【共58张PPT】

一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
有界格中的补元及实例
定义11.8 设<L,∧,∨,0,1>是有界格, a∈L, 若存在b∈L 使得 a∧b = 0 和 a∨b = 1 成立, 则称b是a的补元. 注意:若b是a的补元, 那么a也是b的补元. a和b互为补元.
例7 考虑下图中的格. 针对不同的元素,求出所有的补元.12有界分配格的补元惟一性
定理11.7 设<L,∧,∨,0,1>是有界分配格. 若L中元素 a 存在 补元, 则存在惟一的补元. 证 假设 c 是 a 的补元, 则有 a∨c = 1, a∧c = 0, 又知 b 是 a 的补元, 故 a∨b = 1, a∧b = 0 从而得到 a∨c = a∨b, a∧c = a∧b, 由于L是分配格. b=b ∧ (b∨a) = b ∧ (c∨a )= (b ∧ c)∨ (b ∧ a )= (a∨c ) ∧c=c 注意: 在任何有界格中, 全下界0与全上界1互补. 对于一般元素, 可能存在补元, 也可能不存在补元. 如果 存在补元, 可能是惟一的, 也可能是多个补元. 对于有界 分配格, 如果元素存在补元, 一定是惟一的. 13
8
有界格的定义
定义11.6 设L是格, (1) 若存在a∈L使得x∈L有 a ≼ x, 则称a为L的全下界 (2) 若存在b∈L使得x∈L有 x ≼ b, 则称b为L的全上界 说明: 格L若存在全下界或全上界, 一定是惟一的. 一般将格L的全下界记为0, 全上界记为1. 定义11.7 设L是格,若L存在全下界和全上界, 则称L 为有界 格, 一般将有界格L记为<L,∧,∨,0,1>.
9
有界格的性质
定理11.6 设<L,∧,∨,0,1>是有界格, 则a∈L有 a∧0 = 0, a∨0 = a, a∧1 = a, a∨1 = 1
注意: 有限格L={a1,a2,…,an}是有界格, a1∧a2∧…∧an是L的全下 界, a1∨a2∨…∨an是L的全上界. 0是关于∧运算的零元,∨运算的单位元;1是关于∨运算的 零元,∧运算的单位元.
4
格的性质:序与运算的关系
定理11.3 设L是格, 则a,b∈L有 a ≼ b a∧b = a a∨b = b
可以用集合的例子来验证 幂集格
<P(B), >,其中P(B)是集合B的幂集. 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y.
5
格的性质:保序
定理11.4 设L是格, a,b,c,d∈L,若a ≼ b 且 c ≼ d, 则 a∧c ≼ b∧d, a∨c ≼ b∨d 证 a∧c ≼ a ≼ b, a∧c ≼ c ≼ d 因此 a∧c ≼ b∧d. 同理可证 a∨c ≼ b∨d 例4 设L是格, 证明a,b,c∈L有 a∨(b∧c) ≼ (a∨b)∧(a∨c). 证 由 a ≼ a, b∧c ≼ b 得 a∨(b∧c) ≼ a∨b 由 a ≼a, b∧c ≼ c 得 a∨(b∧c) ≼ a∨c 从而得到a∨(b∧c) ≼ (a∨b)∧(a∨c) (注意最大下界)
2
实例
例2 判断下列偏序集是否构成格,并说明理由. (1) <P(B), >,其中P(B)是集合B的幂集. (2) <Z, ≤>,其中Z是整数集,≤为小于或等于关系. (3) 偏序集的哈斯图分别在下图给出.
(1) 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y. (2) 是格. x,y∈Z,x∨y = max(x,y),x∧y = min(x,y), 图2 (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界

e
d b a
19
练习2
2.针对下图,求出每个格的补元并说明它们是否为有补格
L1
L2
L3
L1中, a与h互为补元, 其他元素没补元. L2中, a与g互为补元. b的补元为c, d, f;c的补元为b, d, e, f;d 的补元为b, c, e;e的补元为c, d, f;f的补元为b, c, e. L3中, a与h互为补元, b的补元为d;c的补元为d;d的补元为b, 图12 c, g;g的补元为d. L2与L3是有补格.
18
练习1
1.求图中格的所有子格. 1元子格:{ a },{ b },{ c },{ d },{ e }; 2元子格:{ a, b },{ a, c },{ a, d }, c { a, e },{ b, c },{ b, d }, { b, e },{ c, e },{ d, e }; 3元子格:{ a, b, c },{ a, b, d }, { a, b, e },{ a, c, e }, { a, d, e },{ b, c, e }, { b, d, e }; 4元子格:{ a, b, c, e },{ a, b, d, e }, { b, c, d, e }; 5元子格: { a, b, c, d, e }
3
格的性质:算律
定理11.1 设<L, ≼>是格, 则运算∨和∧适合交换律、结合律、 幂等律和吸收律, 即 (1) a,b∈L 有 a∨b = b∨a, a∧b = b∧a (2) a,b,c∈L 有 (a∨b)∨c = a∨(b∨c), (a∧b)∧c = a∧(b∧c) (3) a∈L 有 a∨a = a, a∧a = a (4) a,b∈L 有 a∨(a∧b) = a, a∧(a∨b) = a
第十一章 格与布尔代数
主要内容 格的定义及性质 子格 分配格、有补格 布尔代数
1
11.1 格的定义与性质
定义11.1 设<S, ≼>是偏序集,如果x,yS,{x,y}都有最小上 界和最大下界,则称S关于偏序≼作成一个格. (偏序关系 P126) 求{x,y} 最小上界和最大下界看成 x 与 y 的二元运算∨和∧, 例1 设n是正整数,Sn是n的正因子的集合. D为整除关系,则 偏序集<Sn,D>构成格. x,y∈Sn,x∨y是lcm(x,y),即x与y的 最小公倍数. x∧y是gcd(x,y),即x与y的最大公约数.
7
11.2 分配格、有补格与布尔代数
定义11.5 设<L,∧,∨>是格, 若a,b,c∈L,有 a∧(b∨c) = (a∧b)∨(a∧c) a∨(b∧c) = (a∨b)∧(a∨c) 则称L为分配格. 注意:可以证明以上两个条件互为充分必要条件 实例
L1 和 L2 是分配格, L3 和 L4不是分配格. 称 L3为钻石格, L4为五角格.
有补格的定义
定义11.9 设<L,∧,∨,0,1>是有界格, 若L中所有元素都有补 元存在, 则称L为有补格. 例如, 图中的L2, L3和L4是有补格, L1不是有补格.
图9
14
布尔代数的定义与实例
定义11.10 如果一个格是有补分配格, 则称它为布尔格或布 尔代数. 布尔代数标记为<B,∧,∨,, 0, 1>, 为求补运算. 例8 设 S110 = {1, 2, 5, 10, 11, 22, 55, 110}是110的正因子集合, gcd表示求最大公约数的运算,lcm表示求最小公倍数的运 算,问<S110, gcd, lcm>是否构成布尔代数?为什么? 解 画出哈斯图? (1) 不难验证S110关于gcd 和 lcm 运算构成格. (略) (2) 验证分配律 x, y, z∈S110 有 gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z)) (3) 验证它是有补格, 1作为S110中的全下界, 110为全上界, 1和110互为补元, 2和55互为补元, 5和22互为补元, 10和 11互为补元, 从而证明了<S110, gcd, lcm>为布尔代数.
16
实例
下图给出了 1 元, 2 元, 4 元和 8 元的布尔代数.
图11
17
第十一章 习题课
主要内容 格的两个等价定义 格的性质 子格 特殊格:分配格、有界格、有补格、布尔代数
基本要求 能够判别给定偏序集或者代数系统是否构成格 能够确定一个命题的对偶命题 能够证明格中的等式和不等式 能判别格L的子集S是否构成子格 能够判别给定的格是否为分配格、有补格 能够判别布尔代数并证明布尔代数中的等式
11
解答
(1) L1中 a 与 c 互为补元, 其中 a 为全下界, c为全上界, b 没有 补元. (2) L2中 a 与 d 互为补元, 其中 a 为全下界, d 为全上界, b与 c 也互为补元. (3) L3中a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b 和 d ; d 的补元是 b 和 c ; b, c, d 每个元素都有两个补元. (4) L4中 a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b ; d 的补元是 b .
注意:一般说来, 格中的∨和∧运算不满足分配律.
6
格作为代数系统的定义
定理11.4 设<S,∗,◦>是具有两个二元运算的代数系统, 若对于 ∗和◦运算适合交换律、结合律、吸收律, 则可以适当定义S中 的偏序 ≼,使得 <S,≼> 构成格, 且a,b∈S 有 a∧b = a∗b, a∨b = a◦b. 证明省略. 根据定理11.4, 可以给出格的另一个等价定义. 定义11.3 设<S, ∗, ◦ >是代数系统, ∗和◦是二元运算, 如果 ∗和◦满足交换律、结合律和吸收律, 则<S, ∗,◦>构成格.
20
15
布尔代数的性质
定理11.8 设<B,∧,∨, , 0, 1>是布尔代数, 则 (1) a∈B, (a) = a . (2) a,b∈B, (a∧b) = a∨b, (a∨b) = a∧b (德摩根律) 证 (1) (a)是a的补元, a也是a的补元. 由补元惟一性得(a)=a. (2) 对任意a, b∈B有 (a∧b)∨(a∨b) = (a∨a∨b)∧(b∨a∨b) = (1∨b)∧(a∨1) = 1∧1 = 1, (a∧b)∧(a∨b) = (a∧b∧a)∨(a∧b∧b) = (0∧b)∨(a∧0) = 0∨0 = 0 a∨b是a∧b的补元, 根据补元惟一性有(a∧b) = a∨b, 同理 可证 (a∨b) = a∧b. 注意:德摩根律对有限个元素也是正确的.
相关文档
最新文档