离散数学第11章课件PPT,高等教育出版社,屈婉玲,耿素云,张立昂主编
离散数学

代数运算
定义: 是三个任意的非空集。 定义:设 A、B、D是三个任意的非空集。 、 、 是三个任意的非空集 一个A 一个 ×B到D 的函数 * , 到 叫做一个A 叫做一个 ×B到D的代数运算。 到 的代数运算。 给了A中的任意一个元素 和B中任意一个元素 ,存 中任意一个元素b, 给了 中的任意一个元素a和 中任意一个元素 中的任意一个元素 在唯一的d∊D, 在唯一的 ∊ ,使得 * ((a,b))=d , 由于代数运算是一种特殊的函数,描写它的符号, 由于代数运算是一种特殊的函数,描写它的符号,也 可以特殊一点。 可以特殊一点。我们记 *((a,b))=d 为 , a*b =d
伽罗瓦
Galois, Evariste
法国数学家。 日生于巴黎附近的小镇。 法国数学家。1811年10月25日生于巴黎附近的小镇。 年 月 日生于巴黎附近的小镇 1827年开始自学勒让德、拉格朗日、高斯和柯西等人的 年开始自学勒让德、 年开始自学勒让德 拉格朗日、 论著。 论著。1828-1830年,得到许多后来称为「伽罗瓦理论」 年 得到许多后来称为「伽罗瓦理论」 的重要结果。 的重要结果。 1830年进入高等师范学校 年进入高等师范学校 (Ecole Normale)学习, 学习, 学习 1832年5月31日,死于一次 年 月 日 决斗中。 决斗中。 直到1846年,伽罗瓦的手稿 年 直到 才公开发表。 才公开发表。1870年,伽罗 年 瓦的工作才被完全理解。 瓦的工作才被完全理解。
例4ቤተ መጻሕፍቲ ባይዱ
Z是整数集,* 是Z上一个二元运算, 是整数集, 上一个二元运算, 是整数集 上一个二元运算 对于任意的m, ∊ , 对于任意的 ,n∊Z,m*n=m+n-5。 。 是可交换的吗? 是可结合的吗? 问:* 是可交换的吗? * 是可结合的吗? 对于任意的m, ∊ , 解:对于任意的 ,n∊Z, , ∵m*n=m+n-5, n*m=n+m-5, 是可交换的。 ∴m*n=n*m,故 * 是可交换的。 , 对于任意的m, , ∊ , 对于任意的 ,n,k∊Z, ∵(m*n)*k =(m+n-5)*k=m+n+k-10, 又 m*(n*k)=m+n+k-10, 是可结合的。 ∴(m*n)*k=m*(n*k),故 * 是可结合的。 ,
《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
最新离散数学耿素云版第十一章 半群与群ppt课件

从而有d|nm.
又由adbd=(ab)d=e可知 ad=b-d ,即|ad|=|b-d|=|bd|.再根据 (ad)n=(an)d=ed=e
得|ad||n。 同理有|bd||m。从而知道|ad|是n和m的公因子。因为n与m互
(2) 由(a-1)r=(ar)-1=e-1=e 可知a-1的阶存在。令|a-1|=t,根据上面的证明有t|r。这说明a的逆 元的阶是a的阶的因子。而a又是a-1的逆元,所以a的阶也是a-1的 阶的因子,故有r|t。从而证明了r=t,即|a|=|a-1|。
例11.7 设G是群,a,b∈G是有限阶元。证明 (1)|b-1ab|=|a| (2)|ab|=|ba|
例11.1 (1)<Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>都是半群,+是普通加 法。这些半群中除<Z+,+>外都是独异点。 (2)设n是大于1的正整数,<Mn(R),+>和<Mn(R),·>都是半群,也都是 独异点,其中+和·分别表示矩阵加法和矩阵乘法。 (3)<P(B), >为半群,也是独异点,其中 为集合的对乘差运算。 (4)<Zn, >为半群,也是独异点,其中Zn={0,1,…,n-1}, 为模n加 法。
1.能够构成群。 2. |0|=1 |1|=|5|=|7|=|11|=13|=|17|=18 |2|=|4|=|8|=|10|=|14|=|16|=9 |3|=|15|=6 |6|=|12|=3 |9|=2 3.设|a|=n, |xax-1|=m。由下式
离散数学_高等教育出版社配套PPT课件_屈婉玲_耿素云_张立昂ch6

AB = AB = A
8ቤተ መጻሕፍቲ ባይዱ
广义运算
1. 集合的广义并与广义交 定义6.10 广义并 A = { x | z ( zA xz )} 广义交 A= { x | z ( zA xz )} 实例 {{1}, {1,2}, {1,2,3}}={1,2,3} {{1}, {1,2}, {1,2,3}}={1} {{a}}={a}, {{a}}={a} {a}=a, {a}=a
| A B C |
= 1000(200+166+125)+(33+25+41)8 = 600
14
6.3 集合恒等式
集合算律 1.只涉及一个运算的算律: 交换律、结合律、幂等律
交换 结合 幂等 AB=BA (AB)C =A(BC) AA=A AB=BA (AB)C= A(BC) AA=A AB=BA (AB)C =A(BC)
25
基本要求
熟练掌握集合的两种表示法 能够判别元素是否属于给定的集合 能够判别两个集合之间是否存在包含、相等、真包含等关 系 熟练掌握集合的基本运算(普通运算和广义运算) 掌握证明集合等式或者包含关系的基本方法
26
练习1
1.判断下列命题是否为真 (1) (2) (3) {} (4) {} (5) { a, b } { a, b, c, {a, b, c}} (6) { a, b } { a, b, c, {a, b}} (7) { a, b} { a, b, {{a, b}}} (8) { a, b} { a, b, {{a,b}}}
注意 和 是不同层次的问题
4
空集、全集和幂集
1.定义6.4 空集 :不含有任何元素的集合 实例: { x | xR x2+1=0 } 定理6.1 空集是任何集合的子集。 证 对于任意集合A, A x (xxA) T (恒真命题) 推论 是惟一的 2. 定义6.5 幂集:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n. 3. 定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集
离散数学第五版 耿素云 屈婉玲 张立昂编著

规定,当p为假时,无论q是真还是假,p q均为真,也
就是说,只有p为真q为假这一种情况,使得复合命题p
q为假。
18
命题与联结词
例6:将下列命题符号化。
(1)只要不下雨,我就骑自行车上班。 (2)只有不下雨,我才骑自行车上班。
p q
qp
(3)若2+2=4,则太阳从东方升起。
(4)若2+2 4,则太阳从东方升起。
2) 其它类型的句子,如疑问句、祈使句、感叹句均没有真假 意义,因为均不是命题。 在数理逻辑中,命题的真值的真和假,有时分别用1和0来 表达,也有时分别用T和F来表达。
7
命题与联结词
如何判断命题:
1) 首先判断其是否为陈述句
2) 其次判断其是否有唯一真值
例1:判断下列句子是否为命题,真值如何?
(1)10是整数。
q:吴颖聪明。 s:王丽是三好学生。
t:张辉与王丽是同学。
14
命题与联结词
3. 析取 符号:
定义1.3:设p,q为二命题,复合命题“p或q” 称为p与q的析取式,
记作p q ,符号称为析取联结词。并规定pq为假当且仅当
p与q同事为假。
真值表:
PQ
00
P Q
0
01
1
10
1
11
1
注意:1)
价式,记作p q ,符号 称为等价联结词。并规定p q为真当且仅当p与q同时为真或同时为假。
真值表: P Q
00 01 10 11
PQ
1 0 0 1
p q 的逻辑关系为q与p的互为充
分必要条件。
20
命题与联结词
例7:将下列命题符号化。
离散数学_屈婉玲_耿素云_张立昂_主编_课后答案解析_[高等教育出版社]
![离散数学_屈婉玲_耿素云_张立昂_主编_课后答案解析_[高等教育出版社]](https://img.taocdn.com/s3/m/49fde07c2b160b4e767fcfd1.png)
第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q 前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学教学图论【共58张PPT】

一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
有界格中的补元及实例
定义11.8 设<L,∧,∨,0,1>是有界格, a∈L, 若存在b∈L 使得 a∧b = 0 和 a∨b = 1 成立, 则称b是a的补元. 注意:若b是a的补元, 那么a也是b的补元. a和b互为补元.
例7 考虑下图中的格. 针对不同的元素,求出所有的补元.12有界分配格的补元惟一性
定理11.7 设<L,∧,∨,0,1>是有界分配格. 若L中元素 a 存在 补元, 则存在惟一的补元. 证 假设 c 是 a 的补元, 则有 a∨c = 1, a∧c = 0, 又知 b 是 a 的补元, 故 a∨b = 1, a∧b = 0 从而得到 a∨c = a∨b, a∧c = a∧b, 由于L是分配格. b=b ∧ (b∨a) = b ∧ (c∨a )= (b ∧ c)∨ (b ∧ a )= (a∨c ) ∧c=c 注意: 在任何有界格中, 全下界0与全上界1互补. 对于一般元素, 可能存在补元, 也可能不存在补元. 如果 存在补元, 可能是惟一的, 也可能是多个补元. 对于有界 分配格, 如果元素存在补元, 一定是惟一的. 13
8
有界格的定义
定义11.6 设L是格, (1) 若存在a∈L使得x∈L有 a ≼ x, 则称a为L的全下界 (2) 若存在b∈L使得x∈L有 x ≼ b, 则称b为L的全上界 说明: 格L若存在全下界或全上界, 一定是惟一的. 一般将格L的全下界记为0, 全上界记为1. 定义11.7 设L是格,若L存在全下界和全上界, 则称L 为有界 格, 一般将有界格L记为<L,∧,∨,0,1>.
9
有界格的性质
定理11.6 设<L,∧,∨,0,1>是有界格, 则a∈L有 a∧0 = 0, a∨0 = a, a∧1 = a, a∨1 = 1
注意: 有限格L={a1,a2,…,an}是有界格, a1∧a2∧…∧an是L的全下 界, a1∨a2∨…∨an是L的全上界. 0是关于∧运算的零元,∨运算的单位元;1是关于∨运算的 零元,∧运算的单位元.
4
格的性质:序与运算的关系
定理11.3 设L是格, 则a,b∈L有 a ≼ b a∧b = a a∨b = b
可以用集合的例子来验证 幂集格
<P(B), >,其中P(B)是集合B的幂集. 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y.
5
格的性质:保序
定理11.4 设L是格, a,b,c,d∈L,若a ≼ b 且 c ≼ d, 则 a∧c ≼ b∧d, a∨c ≼ b∨d 证 a∧c ≼ a ≼ b, a∧c ≼ c ≼ d 因此 a∧c ≼ b∧d. 同理可证 a∨c ≼ b∨d 例4 设L是格, 证明a,b,c∈L有 a∨(b∧c) ≼ (a∨b)∧(a∨c). 证 由 a ≼ a, b∧c ≼ b 得 a∨(b∧c) ≼ a∨b 由 a ≼a, b∧c ≼ c 得 a∨(b∧c) ≼ a∨c 从而得到a∨(b∧c) ≼ (a∨b)∧(a∨c) (注意最大下界)
2
实例
例2 判断下列偏序集是否构成格,并说明理由. (1) <P(B), >,其中P(B)是集合B的幂集. (2) <Z, ≤>,其中Z是整数集,≤为小于或等于关系. (3) 偏序集的哈斯图分别在下图给出.
(1) 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y. (2) 是格. x,y∈Z,x∨y = max(x,y),x∧y = min(x,y), 图2 (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界
解
e
d b a
19
练习2
2.针对下图,求出每个格的补元并说明它们是否为有补格
L1
L2
L3
L1中, a与h互为补元, 其他元素没补元. L2中, a与g互为补元. b的补元为c, d, f;c的补元为b, d, e, f;d 的补元为b, c, e;e的补元为c, d, f;f的补元为b, c, e. L3中, a与h互为补元, b的补元为d;c的补元为d;d的补元为b, 图12 c, g;g的补元为d. L2与L3是有补格.
18
练习1
1.求图中格的所有子格. 1元子格:{ a },{ b },{ c },{ d },{ e }; 2元子格:{ a, b },{ a, c },{ a, d }, c { a, e },{ b, c },{ b, d }, { b, e },{ c, e },{ d, e }; 3元子格:{ a, b, c },{ a, b, d }, { a, b, e },{ a, c, e }, { a, d, e },{ b, c, e }, { b, d, e }; 4元子格:{ a, b, c, e },{ a, b, d, e }, { b, c, d, e }; 5元子格: { a, b, c, d, e }
3
格的性质:算律
定理11.1 设<L, ≼>是格, 则运算∨和∧适合交换律、结合律、 幂等律和吸收律, 即 (1) a,b∈L 有 a∨b = b∨a, a∧b = b∧a (2) a,b,c∈L 有 (a∨b)∨c = a∨(b∨c), (a∧b)∧c = a∧(b∧c) (3) a∈L 有 a∨a = a, a∧a = a (4) a,b∈L 有 a∨(a∧b) = a, a∧(a∨b) = a
第十一章 格与布尔代数
主要内容 格的定义及性质 子格 分配格、有补格 布尔代数
1
11.1 格的定义与性质
定义11.1 设<S, ≼>是偏序集,如果x,yS,{x,y}都有最小上 界和最大下界,则称S关于偏序≼作成一个格. (偏序关系 P126) 求{x,y} 最小上界和最大下界看成 x 与 y 的二元运算∨和∧, 例1 设n是正整数,Sn是n的正因子的集合. D为整除关系,则 偏序集<Sn,D>构成格. x,y∈Sn,x∨y是lcm(x,y),即x与y的 最小公倍数. x∧y是gcd(x,y),即x与y的最大公约数.
7
11.2 分配格、有补格与布尔代数
定义11.5 设<L,∧,∨>是格, 若a,b,c∈L,有 a∧(b∨c) = (a∧b)∨(a∧c) a∨(b∧c) = (a∨b)∧(a∨c) 则称L为分配格. 注意:可以证明以上两个条件互为充分必要条件 实例
L1 和 L2 是分配格, L3 和 L4不是分配格. 称 L3为钻石格, L4为五角格.
有补格的定义
定义11.9 设<L,∧,∨,0,1>是有界格, 若L中所有元素都有补 元存在, 则称L为有补格. 例如, 图中的L2, L3和L4是有补格, L1不是有补格.
图9
14
布尔代数的定义与实例
定义11.10 如果一个格是有补分配格, 则称它为布尔格或布 尔代数. 布尔代数标记为<B,∧,∨,, 0, 1>, 为求补运算. 例8 设 S110 = {1, 2, 5, 10, 11, 22, 55, 110}是110的正因子集合, gcd表示求最大公约数的运算,lcm表示求最小公倍数的运 算,问<S110, gcd, lcm>是否构成布尔代数?为什么? 解 画出哈斯图? (1) 不难验证S110关于gcd 和 lcm 运算构成格. (略) (2) 验证分配律 x, y, z∈S110 有 gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z)) (3) 验证它是有补格, 1作为S110中的全下界, 110为全上界, 1和110互为补元, 2和55互为补元, 5和22互为补元, 10和 11互为补元, 从而证明了<S110, gcd, lcm>为布尔代数.
16
实例
下图给出了 1 元, 2 元, 4 元和 8 元的布尔代数.
图11
17
第十一章 习题课
主要内容 格的两个等价定义 格的性质 子格 特殊格:分配格、有界格、有补格、布尔代数
基本要求 能够判别给定偏序集或者代数系统是否构成格 能够确定一个命题的对偶命题 能够证明格中的等式和不等式 能判别格L的子集S是否构成子格 能够判别给定的格是否为分配格、有补格 能够判别布尔代数并证明布尔代数中的等式
11
解答
(1) L1中 a 与 c 互为补元, 其中 a 为全下界, c为全上界, b 没有 补元. (2) L2中 a 与 d 互为补元, 其中 a 为全下界, d 为全上界, b与 c 也互为补元. (3) L3中a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b 和 d ; d 的补元是 b 和 c ; b, c, d 每个元素都有两个补元. (4) L4中 a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b ; d 的补元是 b .
注意:一般说来, 格中的∨和∧运算不满足分配律.
6
格作为代数系统的定义
定理11.4 设<S,∗,◦>是具有两个二元运算的代数系统, 若对于 ∗和◦运算适合交换律、结合律、吸收律, 则可以适当定义S中 的偏序 ≼,使得 <S,≼> 构成格, 且a,b∈S 有 a∧b = a∗b, a∨b = a◦b. 证明省略. 根据定理11.4, 可以给出格的另一个等价定义. 定义11.3 设<S, ∗, ◦ >是代数系统, ∗和◦是二元运算, 如果 ∗和◦满足交换律、结合律和吸收律, 则<S, ∗,◦>构成格.
20
15
布尔代数的性质
定理11.8 设<B,∧,∨, , 0, 1>是布尔代数, 则 (1) a∈B, (a) = a . (2) a,b∈B, (a∧b) = a∨b, (a∨b) = a∧b (德摩根律) 证 (1) (a)是a的补元, a也是a的补元. 由补元惟一性得(a)=a. (2) 对任意a, b∈B有 (a∧b)∨(a∨b) = (a∨a∨b)∧(b∨a∨b) = (1∨b)∧(a∨1) = 1∧1 = 1, (a∧b)∧(a∨b) = (a∧b∧a)∨(a∧b∧b) = (0∧b)∨(a∧0) = 0∨0 = 0 a∨b是a∧b的补元, 根据补元惟一性有(a∧b) = a∨b, 同理 可证 (a∨b) = a∧b. 注意:德摩根律对有限个元素也是正确的.