PLC实现步进电机地正反转和调整控制系统

合集下载

基于PLC的步进电机控制 (课程设计)

基于PLC的步进电机控制  (课程设计)

本文介绍了本实验旨在完成使用PLC(Programmable Logic Controller)控制步进电机的整步运行、正反转运行、快慢速运行以及定位运行。

文中指出本次使用的编程思想主要为模块化设计即为完成任务可对程序划分为主程序及子程序。

由于步进电机需要脉冲来运行,所以本程序使用PTO高速脉冲输出脉冲。

在定位程序中则应用到中断子程序命令。

另外,本文为更好的阐述实验内容,加入了与之前完全不同的方式的对比实验。

在对比试验中则应用计时器来完成步进电机的脉冲产生,另步进电机的各种功能则使用了一般的设计方式来实现。

二者完成完全相同的功能。

关键词:PLC 步进电机 PTO高速脉冲1 实验内容 (1)1.1实验任务 (1)1.2实验要求 (1)2 实验设备 (2)2.1步进电机简介 (2)2.2 PLC简介 (2)3 设计过程 (3)3.1设计思想 (3)3.2程序设计 (4)4 对比实验 (12)4.1对比程序思想 (12)4.2对比程序 (14)谢辞 (15)参考文献 (16)1实验内容1.1实验任务本次实验要求改变PLC脉冲输出信号的频率,实现步进电机的速度控制。

同时按下K1、K2、K3按钮,步进电机进行整步运行。

按下慢/快按钮,电机慢/快速运行。

用PLC 输出脉冲的个数,实现步进电机的精确定位。

在整步运行状态下,设脉冲数为一固定值,并用计数器进行计数,实现电机的精确定位控制。

按下停止按钮,系统停止工作。

1.2实验要求本设计要求使用步进电机。

选用的步进电机为二项混合式,供电电压24VDC,功率30W,电流1.7A,转矩0.35NM,步矩角1.8º/0.9º,并配有细分驱动器,实现细分运行,减少震荡。

本设计要求选用PLC设计出输出频率可变的控制程序,实现对步进电机的速度、方向、定位、细分等控制功能。

本设计旨在培养综合设计能力、创新能力、分析问题与解决问题的能力。

掌握PLC 控制的步进电机控制系统的构成及设计方法;掌握PLC控制程序设计、调试的方法。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制PLC是专门用于控制工程自动化系统的一种可编程逻辑控制器,其可以通过编程来实现对各种电气设备的控制。

在实际工程中,步进电机广泛应用于自动化设备中,如数控机床、包装机械、印刷设备等。

步进电机具有分辨率高、精度高、响应速度快等优点,因此被广泛应用于各种自动化控制系统中。

在PLC实现步进电机的正反转及调整控制中,需要考虑以下几个方面:1.步进电机驱动模块选型:步进电机需要配合驱动模块进行控制,通常采用的是脉冲信号驱动方式。

在PLC控制系统中,可以选择适合的驱动模块,如常见的2相、4相步进电机驱动模块。

2.步进电机控制程序设计:通过PLC软件编程,编写程序实现步进电机的正转、反转及调整控制功能。

在程序设计中,需要考虑步进电机的控制方式、驱动模块的接口信号、脉冲信号的频率等参数。

3.步进电机正反转控制:在程序设计中,通过PLC输出脉冲信号控制步进电机的正反转运动。

具体步骤包括设置脉冲信号的频率和方向,控制步进电机按设定的脉冲信号实现正反转运动。

4.步进电机调整控制:步进电机的位置调整控制通常通过调整脉冲信号的频率和数目来实现。

通过PLC编程,实现步进电机的位置调整功能,从而实现对步进电机位置的精准控制。

5.总体控制设计:在PLC控制系统中,可以将步进电机的正反转及调整控制与其它控制功能相结合,实现对整个自动化系统的精确控制。

通过PLC编程,可以灵活设计多种控制逻辑,满足不同工程项目的需求。

综上所述,通过PLC实现步进电机的正反转及调整控制主要涉及步进电机驱动模块选型、控制程序设计、正反转控制、调整控制和总体控制设计等方面。

通过精心设计和编程,可以实现对步进电机的精确控制,满足各种自动化控制系统的要求。

PLC技术的应用将有助于提高自动化生产设备的生产效率和稳定性,推动工业自动化技术的发展。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制
一、PLC实现步进电机的控制原理
拿步进电机举例,大家可以把它想象成一个隔著一定距离的圆盘,隔着每一环的距离形成齿轮的节点。

步进电机的正向或反向转动,就是将这一环索引和圆盘一起发动转动。

步进电机的转动,是靠每一步索引圆盘来完成的,每一步都有一个控制信号来告诉电机从哪一环节点开始转动,当接收到控制信号时,电机开始转动,并且每转一圈循环转动几个索引。

1、正向、反向控制
要实现步进电机的正向反向控制,就要在PLC程序中控制信号形式来实现,一般可以使用两个控制信号,一个是正反控制信号,一个是步进电机转动的速度,要求PLC程序根据正反控制信号来实现正向和反向控制。

正反控制信号就是设置一个开关量变量,当这个开关量为ON时,电机运行正转,当开关量为OFF时,电机运行反转,具体可以采用T函数来实现,T11=1,电机正转,T12=0,电机反转。

由于步进电机的转动是一布一射的过程,所以需要用一个电位器来控制步进电机的转动速度,当电位器的旋钮调整到一定位置时,就会给出一定频率的步进信号,PLC程序可以根据此步进信号,来控制步进电机的转动速度。

步进电机正反转实验报告

步进电机正反转实验报告

一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。

三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。

电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。

基于PLC的步进电机调速和正反转控制系统

基于PLC的步进电机调速和正反转控制系统

高 的力 矩转 动惯 量 比 ,步 进频 率较 高 ,频 率 响应快 ,不 通 电时 可 以 时始 终有 一相 通 电 ,可 以使 工作 稳定 ,不 易失 步 。其步 距 角和单 三
自由转 动 、结构简 单 、寿命 长 的特点 。
拍相 同 ,步距 角 系数c=1。
反 应式 步进 电动机 的工作 原理 从 图1a中可 以看 出 ,在 定子 上有
运 动 主 要完 成 切 削任 务 ,其 动 力约 占整 台机 床 动 力 的70~80% 。
齿 距 角 :转 子上 齿 距在 空 间 的角 度 。如转 子 上 有N个 齿 ,齿 距
基本是 步 进 电动机 和伺 服 电机 对主轴 的 正 、反转 和停 止 控制拖 动 , 角 0=360 Ⅳ。
商 业 科 技
基于PLC的步进 电机调速和正 反 转 控 制 系 统
_ 赵俊生 江苏财经职业技术学院
『摘 要 ]本文 阐述 三 相 步进 电动 机 结构 与 步进 过程 原理 ,以
及 对 步进 电动 机 的调 速和 正 反转 研 究 ,采 用PLC基本 逻 辑指 令和 常
用指令 的 方 法对步 进 电动机 的调 速 和正 反 转控 制 ,经过 对步进 电机
动速 度和 轨迹 ,对 被控 制 的对 象进 行 自动操 作 的一种 技术 。从 数 控
拍 数 :电动 机定 子绕 组 每改 变一 次通 电方式 称 为一 拍。
机 床 最终 要完 成 的任务 看 ,主 要有 主轴 运动 。 和普通 车 床一 样 。主
步 距 角 :转 子经 过一 拍 转过 的空 间角 度 用符号 a表 示。
械 角位移 ,并 由传 动丝 杠带 动 工作 台移 动 。由 于该 系统 中 为位 置 和 所 需 的拍 数为 工作 拍数 。 对A、B、C三相 轮流 通 电一次 称 为一个 通

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种用于自动化控制系统的可编程电子设备。

在工业领域,PLC被广泛应用于各种自动化设备和机器的控制。

步进电机是一种非塔式电机,其运动是以固定的步长进行的,适用于需要精确定位的应用,如印刷机、数控机床等。

本文将介绍如何使用PLC实现步进电机的正反转和调整控制。

步进电机的正反转控制可以通过改变电机的运行顺序来实现。

一种常见的方法是使用四相步进电机,通过改变电机的相序来实现正反转。

一般来说,步进电机有两种驱动方式:全步进和半步进。

全步进驱动方式是指每次脉冲信号到达时,电机转动一个步进角度。

全步进驱动方式可以通过控制PLC输出的脉冲信号来实现。

例如,当需要电机正转时,在PLC程序中输出连续的脉冲信号,电机将按照一定的步进角度顺时针旋转。

当需要反转时,输出连续的反向脉冲信号,电机将逆时针旋转。

半步进驱动方式是指每次脉冲信号到达时,电机转动半个步进角度。

半步进驱动方式可以通过改变输出的脉冲信号序列来实现。

例如,正转时输出连续的脉冲信号序列:1000、1100、0100、0110、0010、0011、0001、1001,电机将按照半个步进角度顺时针旋转;反转时输出反向脉冲信号序列:1001、0001、0011、0010、0110、0100、1100、1000,电机将逆时针旋转。

调整控制是指通过PLC来调整步进电机的运行速度和位置。

调速控制可以通过改变输出脉冲信号的频率来实现。

例如,可以定义一个计时器来控制输出脉冲信号的频率,通过改变计时器的时间参数来改变电机的速度。

较小的时间参数将导致更快的脉冲频率,从而使电机加快转速。

位置控制可以通过记录步进电机当前的位置来实现。

可以使用PLC的存储和控制功能来记录和更新电机的位置信息。

例如,可以使用一个变量来保存电机当前的位置,并在转动过程中不断更新该变量的值。

通过读取该变量的值,可以获得电机当前的位置信息。

总结起来,使用PLC实现步进电机的正反转和调整控制可以通过控制输出的脉冲信号序列和频率来实现。

PLC控制步进电机的应用案例

PLC控制步进电机的应用案例

P L C控制步进电机的应用案例1(利用P L S Y指令)任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转。

控制要求:利用PLC 控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。

1、系统接线PLC控制旋转步进驱动器,系统选择/转,设置成N细分后,则1000脉冲/转。

Y1输出,Y3[S1.]用来指定脉冲频率(2~20000Hz),[S2.]指定脉冲的个数(16位指令的范围为1~32767,32位指令则为1~2147483647)。

如果指定脉冲数为0,则产生无穷多个脉冲。

指定脉冲输出完成后,完成标志M8029置1。

如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲。

若X10再次变为ON则脉冲从头开始输出。

注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC。

6、控制流程图7、梯形图程序(参考)8、制作触摸屏画面PLC控制步进电机的应用案例2(利用定时器T246产生脉冲)任务:利用步进电机驱动器可以通过PLC端的On和Off就能决定电机的正传或者反转;步进驱动器的其中一个。

Y2;PLC的COM1——GND;B绕组X0X4—频率增加,X5—频率4、制作触摸屏画面PLC控制步进电机的应用案例3(利用FX2N-1PG产生脉冲)任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制。

控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式。

PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个。

VIN端、CP+端、U/D+端——+24VDC; CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GNDA、A-——电机A绕组;B、B-2、I/O分配。

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位PLC控制步进电机实现正反转速度控制定位是自动化生产过程中的一种常见应用。

本文将详细介绍PLC控制步进电机的原理、控制方式以及步进电机的正反转速度控制定位实现方法,并探讨其在实际应用中的优势和注意事项。

一、PLC控制步进电机原理步进电机是一种特殊的电动机,其每次输入一个脉冲信号后,会按照一定的角度旋转。

PLC(可编程逻辑控制器)是一种通用、数字化、专用微处理器,广泛应用于工业控制领域。

PLC控制步进电机可以通过控制脉冲信号的频率、方向和脉冲数来实现电机的正反转、速度控制和定位。

二、PLC控制步进电机的控制方式1.开关控制方式2.脉冲控制方式脉冲控制方式是PLC控制步进电机最常用的方式。

PLC向步进电机发送一系列脉冲信号,脉冲信号的频率和脉冲数决定了电机的转速和转动角度。

脉冲信号的正负决定了电机的正反转方向。

通过改变脉冲信号的频率和脉冲数,可以实现电机的速度控制和定位。

三、步进电机正反转速度控制定位实现方法步进电机的正反转速度控制定位可以通过PLC的程序来实现。

下面以一个简单的例子来说明该实现方法。

假设要实现步进电机顺时针转动2圈、逆时针转动1圈、再顺时针转动3圈的循环。

步进电机的一个转一圈需要200个脉冲信号。

首先,需要定义一个变量n,用来记录电机的圈数。

其次,在PLC的程序中编写一个循环步骤:1.设置脉冲信号的频率和脉冲数,使步进电机顺时针旋转2圈。

2.当步进电机转动2圈后,n=n+23.判断n的值,如果n=2,则设置脉冲信号的频率和脉冲数,使步进电机逆时针旋转1圈。

4.当步进电机转动1圈后,n=n-15.判断n的值,如果n=1,则设置脉冲信号的频率和脉冲数,使步进电机顺时针旋转3圈。

6.当步进电机转动3圈后,n=n+37.返回第一步,继续循环。

通过这样的循环过程,步进电机可以按照预定的顺序和速度进行正反转,并实现定位控制。

四、PLC控制步进电机优势和注意事项1.精确控制:PLC可以精确控制步进电机的转速和转动角度,适用于需要高精度定位的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实训课题三 PLC实现步进电机正反转和调速控制
一、实验目的
1、掌握步进电机的工作原理
2、掌握带驱动电源的步进电机的控制方法
3、掌握DECO指令实现步进电机正反转和调速控制的程序
二、实训仪器和设备
-48MR PLC一台
1、FX
2N
2、两相四拍带驱动电源的步进电机一套
3、正反切换开关、起停开关、增减速开关各一个
三、步进电机工作原理
步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。

从图中可以看出,它分成转子和定子两部分。

定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。

共有3对。

每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。

可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。

反应式步进电动机的动力来自于电磁力。

在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。

对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。

把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。

错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。

本实验的电机采用两相混合式步进电机,其部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。

因为中间
连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片。

这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了。

但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁。

当电磁铁继续转,由于惯性又转过了头,所以电极又相反了。

重复上述过程就步进电机转了。

根据这个原理,如图3-2所示,两相步进电机的转动步骤,以正转为例:
由图可见,现相异步电机正转过程分为四个步骤,即A相正方向电流、B相正方向电流、A向反方向电流和B相反方向电流。

反转工作的顺序与之相反。

A、B两相线圈不是固定的电流方向,这与其它步进电机的控制逻辑有所不同。

因此,控制步进电机转动时,必须考虑用换相的思路设计实验线路。

可以根据模拟驱动电路的功能和plc必须的逻辑关系进行程序设计。

四、采用步进电机驱动器的控制方式
利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态。

其中:步进电机的方向控制,只需要通过控制U/D端的On和Off就能决定电机的正转或反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由状态。

因此PLC的控制程序相当简单,只需通过PLC的输出就能控制步进电机的方向、转速和步数。

不必通过PLC控制电机换相的逻辑关系,也不必另外添加驱动电路。

实训面板见图3-4,梯形图见图3-5。

本程序是利用D0的变化,改变T0的定时间隔,从而改变步进电机的转速。

通过两个触点比较指令使得D0只能在10~50之间变化,从而控制步进间隔是1S~5S之间,I/O分配表见表3-1。

表3-1 I/O分配表
输入点输出点X0 正转/反转方向Y0 电机控制脉冲X1 电机转动Y1 正转/反转运行X2 电机停止
X4 频率增加
X5 频率减少
图3-5 梯形图
五、采用PLC直接控制步进电机方式
对于两相步进电机控制,根据其工作原理,必须考虑其换向的控制方式,因此将其步骤用代号分解,则为:①实现电流方向A+→A-、②实现电流方向B+→B-、③实现电流方向A-→A+、④实现电流方向B-→B+。

如果反转则按照④、③、②、①的顺序控制。

PLC的I/O分配表按照表3-2,分配图按照图3-6,梯形图见图3-7。

输入点输出点X0 正转运行COM1 DC+12V
X1 反转运行Y0 A+
X2 自动/手动Y1 B+
X3 单步运行Y2 A-
X4 频率增加Y3 B-
X5 频率减少COM2 DC+12V GND
Y4 A-
Y5 B-
Y6 A+
Y7 B+
步进电机正反转和调速控制的梯形图如图3-7所示,程序中采用积算定时器T246为脉冲发生器,因系统配置的PLC为继电器输出类型,其通断频率过高有可能损坏PLC,故设定围为K200 ms~1000ms,则步进电机可获得1~10步/秒的变速围,(X0为ON时,正转,X1为ON时;反转)。

X0为ON时,输出正脉冲列,步进电机正转。

当X0为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y0、Y4为ON,步进电机A相通电,且实现电流方向A+→A-;D1加1,然后,T246马上自行复位,重新计时,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为1),指定M11输出,Y1、Y5为ON,步进电机B相通电,且实现电流方向B+→B-;D1加1,T246马上又自行复位,重新计数,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为2),
指定M12输出,Y2、Y6为ON,步进电机A相通电,且实现电流方向A-→A+;D1加1,T246马上又自行复位,重新计时,时间到,T246又导通,再执行DECO命令,根据D1数值(此次为3),指定M13输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。

X1为ON时,输出反脉冲列,步进电机正转。

当X1为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;依此类推,完成实现A相反方向电流、B相正方向电流、A相正方向电流三个脉冲列输出;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。

当X2为ON时,程序由自动转为手动模式,当X0(X1)为ON时,每点动一次X3,对D1数值(首次为0)加1,分别指定M10、M11、M12及M13输出,从而完成一轮正(反)脉冲系列的产生。

第73步中,当X4为ON,M8012为ON,M4为ON,且D0当前值<K1000,则D0即加1。

第88步中,当X5为ON,M8012为ON,M4为ON,且D0>K200,由D0即减1。

六、程序调试及执行
调速时按X4或X5按钮,观察D0的变化,当变化值为所需速度时释放。

如动作情况与控制要求一致表明程序正确,保存程序。

如果发现程序运行与控制要求不符,应仔细分析,找出原因,重新修改,直到程序与控制要求相符为止。

七、实训思考练习题
如果调速需经常进行,可将D0的容显示出来,试设想方案,修改程序,并实验。

图3-7 步进电机正反转和调速控制
程序说明
1、步骤0,指定脉冲序列输出顺序移位值;
2、当X0为ON,输出正脉冲序列,电机正转;当X1为ON,输出负脉冲序列,电机反转;
3、当X2为ON,程序由自动转为手动模式,由X3状态单步触发电机运转;
4、当X4为ON,如D0小于1000,每100ms对D0加1,从而延长每脉冲输出的时间间隔,降低电机的转速;
5、当X5为ON,如D0大于200,每100ms对D0减1,从而缩短每脉冲输出的时间间隔,加快电机的转速;
6、T0为频率调整限制。

相关文档
最新文档