2023年数学高考复习真题演练(2021-2022年高考真题)第5讲 数列与不等式(含详解)
高考数学一轮复习 第五章 数列 5.5 数列综合练习(含解析)(1)(2021年最新整理)

高考数学一轮复习第五章数列5.5 数列综合练习(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第五章数列5.5 数列综合练习(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第五章数列5.5 数列综合练习(含解析)(1)的全部内容。
数列综合时间:50分钟总分:70分班级:姓名:一、选择题(共6小题,每题5分,共30分)1.在等比数列{a n}中,各项都是正数,且a1,错误!a3,2a2成等差数列,则错误!=()A.1+ 2 B.1-错误!C.3+2错误!D.3-2错误!【答案】C【解析】设等比数列{a n}的公比为q(q>0),则由题意得a3=a1+2a2,所以a1q2=a1+2a1q,所以q2-2q-1=0,解得q=1±错误!.又q>0,因此有q=1+错误!,故错误!=错误!=q2=(1+错误!)2=3+2错误!。
2.数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}中连续的三项,则数列{b n}的公比为()A.错误!B.4C.2 D.错误!【答案】C【解析】设数列{a n}的公差为d(d≠0),由a错误!=a1a7得(a1+2d)2=a1(a1+6d),解得a1=2d,故数列{b n}的公比q=错误!=错误!=错误!=2。
3.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一月(按30天计),共织390尺布”,则每天比前一天多织布的尺数是()A。
新教材2023年高考数学总复习考案15阶段测试五数列课件

+a11+a12的最小值为( C )
A.10
B.15
C.20
D.25
[解析] 由题意,可得 a9+a10+a11+a12=S12-S8,由 S8-2S4=5, 可得 S8-S4=S4+5.又由等比数列的性质,知 S4,S8-S4,S12-S8 成等比 数列,则 S4(S12-S8)=(S8-S4)2.于是 a9+a10+a11+a12=S12-S8=S4+S4 52 =S4+2S54+10≥2 S4×2S54+10=20,当且仅当 S4=5 时等号成立.所以 a9+a10+a11+a12 的最小值为 20.故选 C.
15.记Sn为数列{an}的前n项和,Sn=1-an,记Tn=a1a3+a3a5+… +a2n-1a2n+1,则Tn= 1151-116n .
[解析] 由题意有 a1=1-a1,得 a1=12.由 Sn=1-an 知当 n≥2 时有 Sn-1=1-an-1,两式作差得aan-n 1=12(n≥2),故数列{an}是以12为首项,12为 公比的等比数列,可得数列{an}的通项公式为 an=21n,Tn=a22+a24+…+ a22n=11611--111616n=1151-116n.
a1+a3=a1+a1q2=54a1=10,解得 a1=8,∴a1a2a3…an=an1·q1+2+3+…+(n-1)
=8n· 1 =23n-nn2-1=2-12n2+72n.∵n∈N*,∴当 nn-1
n=3
或
4
时,-12n2+72n
22
取最大值,为 6,∴(a1a2a3…an)max=26=64.
+2(n≥2),则数列an-1 12的前 2 022 项和为( B )
2 022 A.2 023
B.42
2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)

专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( ) A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2D .3例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na n nb S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 例19.数列,1n =,2,,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ). A .35 2331n n +- B .36 2331n n -+ C .37 2331n n -+ D .38 2331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下: 1 2 34 5 67 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( ) A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[]40,25-- B .[]40,0- C .[]25,25- D .[]25,0-【过关测试】一、单选题 1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =( )2.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是( )A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为( ) A .()9,128 B .()10,128 C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为( ) A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ( )A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n a a n n=+,则“21a a >”是“数列{}n a 单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是( ) A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是( ) A .第2项 B .第3项 C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是( )A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+ B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是( ) A .20212a = B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为( ) A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是( )A .第四行的数是17,18,20,24B .()11232-+=⋅n n n aC .()11221n n a n ++=+ D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是( )A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ).A .{}n a 是递增数列B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则( )A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72 D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>=,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ .27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}n a 中,11a =,1,231,nnn n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++=___.专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-【答案】B 【分析】当0x ≥时,分别令1,2,3,x =,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值;当0x <时,分别令1,2,3,x =---,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值. 【详解】 ①当0x ≥时,若0x =,则数列{}n a 的各项为1,0,1,1,0,1,1,0,1,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若1x =,则数列{}n a 的各项为1,1,0,1,1,0,1,1,0,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若2x =,则数列{}n a 的各项为1,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第3项开始为周期数列,周期为3,由202022018236722=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若3x =,则数列{}n a 的各项为1,3,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第4项开始为周期数列,周期为3,由202032017336721=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若4x =,则数列{}n a 的各项为1,4,3,1,2,1,1,0,1,1,0,1,1,0,, 此时数列{}n a 从第6项开始为周期数列,周期为3,由202052015536712=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 依次类推,可知当()26731001146x =-=,或1147x =时, 数列{}n a 的前2020项中有100项是0;②当0x <时,若1x =-,则数列{}n a 的各项为1,1,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第7项开始为周期数列,周期为3,由202062014636711=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 若2x =-,则数列{}n a 的各项为1,2,3,5,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第9项开始为周期数列,周期为3,由202082012836702=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若3x =-,则数列{}n a 的各项为1,3,4,7,3,4,1,3,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第10项开始为周期数列,周期为3,由202092011936701=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若4x =-,则数列{}n a 的各项为1,4,5,9,4,5,1,4,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第12项开始为周期数列,周期为3,由20201120091136692=+=+⨯+,可知数列{}n a 的前2020项中有669项为0; 依次类推,可知当()26711001142x =--=-,或1143x =-时, 数列{}n a 的前2020项中有100项是0.综上所述,若数列{}n a 的前2020项中有100项是0, 则x 可取的值有1146,1147,1142,1143--. 故选:B . 【点睛】本题考查无穷数列,解题的关键是通过条件()21N n n n a a a x *++=-∈探究数列{}n a 的性质,利用赋值法分别令1,2,3,x =和1,2,3,x =---,可分别求出数列{}n a 的前2020项中0的个数,进而得出规律.考查学生的推理能力与计算求解能力,属于难题.例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可.【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,……. ∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===.故选:B . 【点睛】本题考查周期数列的判断和取整函数的应用. 例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-【答案】D 【分析】依次代入1,2,3,4n =可得{}n a 是以4为周期的周期数列,由1231n n n n a a a a +++=可推导得到结果. 【详解】 当1n =时,121131a a a +==--;当2n =时,2321112a a a +==--;当3n =时,3431113a a a +==-;当4n =时,454121a a a +==-;…,∴数列{}n a 是以4为周期的周期数列, ()()1231123123n n n n a a a a n N *+++⎛⎫∴=⨯-⨯-⨯=∈ ⎪⎝⎭,()10891012236T T a a a a ∴=⋅==⨯-=-. 故选:D .例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67 B .68 C .134 D .167【答案】B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45【答案】B 【分析】根据数列定义求出数列的前几项后得出数列是周期数列,从而求值. 【详解】 因为12152a =<,所以23454312,,,5555a a a a ====,所以数列具有周期性,周期为4,所以2021125a a ==.故选:B . 【点睛】本题考查数列的周期性,此类问题的解法是由定义求出数列的前几项,然后归纳出周期性.例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029【答案】C 【分析】根据递推公式可逐个代入计算,得出数列{}n a 的周期为4,再根据2019=m S 与前两项的范围可求得52a =,再分组求和求解2019S 即可. 【详解】设1(23)a a a =<<,由()()11112232n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩,*(,1)n N n ∈>,得22(0,1)a a =-∈,3235(2,3)a a a =-=-∈,435423(0,1),3(2,3)a a a a a a =-=-∈=-=∈.故数列{}n a 的周期为4,即可得41234,6n n a a a a a a +=+++=. 12336632019m m S a a a =+++=⨯+=,又1(23)a a a =<<,22(0,1)a a =-∈.(2)3a a ∴+-=,即52a =. 12311201950443,32a a a a =⨯+++=+=, 2019116059504622S ∴=⨯+=. 故选:C . 【点睛】本题考查数列分组求和、分类讨论方法,考查推理能力与计算能力,考查逻辑推理与数学运算核心素养.属于中档题.例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-【答案】B【解析】由题意得:2341231141115,1,154a a a a a a =-==-==-=-,则数列{}n a 的周期为3,则20226743345a a a ⨯===. 故选:B .例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2【答案】D【解析】解:∵12a =,()1112n n n a a a n --=⋅+≥, ∴()1112n n a n a -=-≥, ∴211122a =-=,3121a =-=-,()4112a =--=,511122a =-=,…, ∴数列{}n a 是以3为周期的周期数列,10331=⨯+,∴101a a =, 故选:D .题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( )A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞【答案】B【解析】{}n a 为单调递增数列,10912109m ma a >⎧⎪⎪∴+>⎨⎪>⎪⎩,即12109219219m m m m ⎧⎪>⎪⎪+>⎨⎪⎪⎛⎫>+⨯-⎪⎪⎝⎭⎩,解得:112m <<, 即实数m 的取值范围为()1,12.故选:B .例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3【答案】C【解析】因为数列{}n a 是单调递增数列,则函数()6x f x a -=在()7,+∞上为增函数,可得1a >,函数()()33f x a x =--在[)1,7上为增函数,可得30a ->,可得3a <,且有78a a <,即()86733187a a a ---=-<,即27180a a +->,解得9a <-或2a >.综上所述,23a <<. 故选:C .例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<【答案】C【解析】当2,n n N *≥∈时,121(1)n n a a n ++=+,因此有2123(2)n n a a n +++=+,(2)(1)-得:22n n a a +-=,说明该数列从第2项起,偶数项和奇数项都成等差数列,且它们的公差都是2,由121n n a a n ++=+可得:345,2a a a a =-=+,因为数列{}n a 单调递增,所以有1234a a a a <<<,即152a a a <<-<+,解得:3522a <<,故选:C例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:因为等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),所以1119a S A ==-,221(127)(19)18a S S A A A =-=---=-, 332(181)(127)54a S S A A A =-=---=-,因为等比数列{}n a 中2213a a a ,所以2(18)(19)(54)A A A -=--,解得13A =或0A =(舍去), 所以213n b n Bn =+,因为数列{}n b 是递增的,所以22111(1)(1)033n n b b n B n n Bn +-=+++-->,所以2133B n >--,因为*n N ∈,所以1B >-, 故选:C例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】C【解析】由条件可得011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解出即可.【详解】因为对于任意n *∈N 都有1n n a a +>, 所以011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解得112a <<故选:C例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞ B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【答案】C由数列{}n a 是单调递增数列,可得10n n a a +->,从而有21b n >--恒成立,由n ∈+N ,可求得b 的取值范围. 【详解】由数列{}n a 是单调递增数列,所以10n n a a +->,即22(1)(1)210n b n n bn n b +++--=++>,即21b n >--(n ∈+N )恒成立,又数列{}(21)n -+是单调递减数列,所以当1n =时,(21)n -+取得最大值3-,所以3b >-. 故选:C .【方法技巧与总结】解决数列的单调性问题的3种方法例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2 D .3【答案】B 【分析】 根据()111n n n a a n ++=+得出()11n n n a n a n ++-=,然后通过累加法求出1122n n a n =+-,根据均值不等式及n N +∈,即可求出结果. 【详解】 由()111n n n a a n ++=+得()11n n n a n a n ++-=所以()()()1122111122n n n n n n a n a n a a a na n a a ---=--+---++-+则()()()()()111112111122n n n n n n na n +---=-+-+++=+=+所以()111112222n n n na n-=+=+-≥ 当且仅当n =n N +∈,故取1a 或2a 最小,又121a a ==,所以n a 的最小值为1【点睛】思路点睛:本题通过累加法求数列通项公式,根据均值不等式及n N +∈,求得最值. 例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4【答案】C 【分析】先根据累加法得210n a n n =-+,进而得101n a n n n =+-,再结合函数()101f x x x=+-的单调性即可得当3n =时,na n 的最小值为163. 【详解】 解:由12n na a n+-=得12n n a a n +-=, 所以()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-, ,3222a a -=⨯,2121a a -=⨯,累加上述式子得:()()()()12123211n a a n n n n n -=-+-+-+++=-⎡⎤⎣⎦,所以210n a n n =-+,()2n ≥,检验已知1n =时,210n a n n =-+满足.故210n a n n =-+,101n a n n n=+-,由于函数()101f x x x=+-在区间(上单调递减,在)+∞上单调递增,又因为*x ∈N ,当3n =时,10163133n a n =+-=,当4n =时,10114142n a n =+-=, 所以na n 的最小值为163. 故选:C .例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项【答案】A 【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∵1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈,∴22(1)21n a n n n =--=-.易知0n b >,∵212+1+14422+1n n n n b b n n -==,(),244142(1)n n b n b n +∴==+当11n >+时,1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==,∴当3n =时, n b 有最小值.故选:A 例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【分析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断n T n 的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N *∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=, 当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n=-+,当3n =时,n Tn 的最小值为6;当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,nT n有最小值5; 综上所述,nT n的最小值为5 故答案为:5 【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 例19.数列,1n =,2,,中的最小项的值为__________.【分析】构造函数()ln xf x x=,利用函数单调性分析最大值,得出数列的最大项,即可得解. 【详解】 考虑函数()ln x f x x=,()21ln xf x x -'=,当0x e <<时,()21ln 0x f x x -'=>,当x e >时,()21ln 0x f x x -'=<, 所以()ln xf x x=在()0,e 单调递增,在(),e +∞单调递减, 即()1ln x f x x ==()0,e 单调递增,在(),e +∞单调递减,所以y e ==()0,e 单调递增,在(),e +∞单调递减,116689,89<<.【点睛】此题考查求数列中的最小项,利用函数单调性讨论数列的最大项和最小项,涉及导函数处理单调性问题. 【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ).A .35 2331n n +-B .36 2331n n -+C .37 2331n n -+D .38 2331n n +- 【答案】C 【分析】结合图形中的规律直接求出(4)f 和(5)f ,进而总结出递推公式2n ≥时,()()(1)61f n f n n --=-,利用累加法即可求出结果. 【详解】由图中规律可知:(4)37f =, 所以(2)(1)716f f -=-=,(3)(2)19726f f -=-=⨯,(4)(3)371936f f -=-=⨯, (5)(4)613746f f -=-=⨯,因此当2n ≥时,()()(1)61f n f n n --=-, 所以[][][]()()(1)(1)(2)(2)(1)(1)f n f n f n f n f n f f f =--+---++-+()()612211n n ⎡⎤=⨯-+-++++⎣⎦()1612n n -=⨯+2331n n =-+,经检验当1n =时,符合()2331f n n n =-+,所以()2331f n n n =-+,故选:C .例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位【答案】D 【分析】 先求出,m n 的值,再根据数对的特点推出数对(),m n 的位置 【详解】解:按规律把正整数组成的数对分组:第1组为(1,1),数对中两数的和为2,共1个数对;第2组为(1,2),(2,1),数对中两数和为3,共2个数对;第3组为(1,3),(2,2),(3,1),数对中两数的和为4,共3个数;……,第n 组为(1,),(2,1),,(,1)n n n -⋅⋅⋅,数对中两数的和为1n +,共n 个数,由()22222021m n -⋅-=,得()2222023m n -⋅=,因为20237289=⨯,所以2227289m n ⎧-=⎪⎨=⎪⎩,解得317m n =⎧⎨=⎩,所以20m n +=,在所有数对中,两数之和不超过19的有1918123181712⨯+++⋅⋅⋅+==个, 所以在两数和为20的第1个数(1,19),第2个为(2,18),第3个为(3,17), 所以数对(3,17)排在第174位, 故选:D 【点睛】关键点点睛:此题考查简单的合情推理,考查等差数求和,解题的关键是由()22222021m n -⋅-=,得()2222023mn -⋅=,解出,m n 的值,考查计算能力,属于中档题例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12 B .()3,10C .()2,11D .()3,9【答案】C 【分析】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大,可依次求得总对数,从而可得选项. 【详解】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大.当2m n +=时只有1个()11,;当3m n +=时有2个()()1221,,,; 当4m n +=时有3个()()()132231,,,,,; …;当12m n +=时有11个()()()111210111⋯,,,,,,;其上面共有11(111)12311662⨯+++++==个数对. 所以第67个“整数对”为()112,,第68个“整数对”为()211,, 故选:C . 【点睛】本题考查知识迁移运用:点列整数对,关键在于理解和探索其规律,属于中档题. 例23.将正整数排列如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列 B .第64行4列 C .第65行3列 D .第65行4列【答案】B 【分析】计算每行首个数字的通项公式,再判断2020出现在第几列,得到答案. 【详解】每行的首个数字为:1,2,4,7,11… 111,1n n a a a n -=-=-利用累加法:112211(1)()()...()121112n n n n n n n a a a a a a a a n n ----=-+-++-+=-+-++=+计算知:642017a = 数2020出现在第64行4列 故答案选B 【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键. 题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575 C .D .12【答案】A【解析】()32f x x x=+在(0,上单调递减,在()+∞上单调递增, ∴当()x n n N *=∈时,()()(){}min min 5,6f n f f =,又()32575555f =+=,()32346663f =+=,()min 343f n ∴=,即32n a n n =+的最小值为343. 故选:A .例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a【答案】B【解析】令10t n =-≥,则1n t =+,22,641411tty tt t t 当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B .例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32【答案】C【解析】由题意可得()()()()()211221121122n n n n n n n n na a a a a a a a ---+-+=-+-+⋅⋅⋅+-+=+=,当1n =时,11a =满足上式,则()()212121112121n a n n n n n n +++⎡⎤==++-⎢⎥+++⎣⎦. 因为n ∈+N , 所以12n +≥, 所以()2131n n ++≥+,则()21121n n ++-≥+,故112112n a n +≥⨯=+,当且仅当1n =时,等号成立. 故选:C例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-【答案】B【解析】因为2420,nnn a -=>所以221222log log log log n n T a a a =++⋯+.设22log 4n n b a n n ==-.若n T 有最小值,则2log n T 有最小值, 令0n b ≤,则04,n ≤≤所以当3n =或4n =时﹐n T 的最小值为102-. 故选:B例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13【答案】A【解析】由题意可知,()()121111312(1)13(1)2n n n a a a a a a n n n -=+-++-=++++-=+-,则113122n a n n n =+-,又113122y x x =+-在( 上递减,在)+∞上递增,且56<<,5n =时,11311131235222525n n +-=⨯+-=;6n =时,11311131142362226235n n +-=⨯+-=>,故选:A .例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( )A .134B .5C .6D .132。
2023年高考数学模拟题汇编:数列(附答案解析)

2023年高考数学模拟题汇编:数列一.选择题(共12小题)1.(2021秋•洛阳期中)数列{a n}满足a1=a2=1,且a n=a n﹣1+a n﹣2(n≥3),则a5=()A.1B.2C.5D.82.(2021秋•资阳月考)等差数列{a n}中,a4=3,则S7=()A.B.C.19D.213.(2021秋•三门峡月考)等比数列{a n}中,a2=3,a42=a6+a7,则a5=()A.B.C.12D.244.(2021秋•湖北月考)设{a n)是首项为1的等比数列,且4a1,2a2,a3成等差数列,则数列{a n}的前n项和S n=()A.2n﹣1B.﹣2n+1C.2n﹣1D.﹣2n﹣1 5.(2021秋•玉林月考)已知数列{a n}为等比数列,若a2•a3=2a1,且a4与2a7的等差中项为,则a1•a2•a3•a4的值为()A.5B.512C.1024D.20486.(2021秋•镇海区校级期中)已知数列{a n}满足a n+1=(﹣1)n a n+2n,n∈N*,则S10=()A.32B.50C.72D.907.(2021秋•安徽月考)已知数列{a n}是公比为q的等比数列,则“q>0”是数列{lga n}为等差数列的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2021秋•全州县校级月考)已知数列1,2,2,3,3,3,4,4,4,4,…,n,则该数列的第22项为()A.6B.7C.64D.659.(2021秋•聊城期中)设数列{a n}满足a1+2a2+4a3+…+2n﹣1a n=,则数列{a n}的前n项和S n为()A.B.C.D.10.(2021秋•渝中区校级月考)已知数列{a n}满足,,若对任意的正整数n,(n﹣3)(a n+1)<λ恒成立,则实数λ的取值范围为()A.B.C.D.11.(2021秋•浙江月考)已知正项数列{a n}满足na n2+a n﹣n=0,则下列说法错误的是()A.a2022>a2021B.C.D.12.(2021秋•开福区校级期中)数列{a n}中,a1=2,且(n≥2),则数列前2021项和为()A.B.C.D.二.填空题(共5小题)13.(2021秋•安顺月考)等差数列{a n}的前n项和为S n,S7=21,S9=45,则数列{a n}的公差d=.14.(2021秋•船营区校级月考)在数列{a n}中,a1=﹣1,a3=3,a n+2=2a n+1﹣a n(n∈N*),则a10=.15.(2021秋•凌河区校级月考)设S n是数列{a n}的前n项和,且S n=2a n+n,则{a n}的通项公式为a n=.16.(2021秋•呼和浩特月考)已知{a n}是等比数列,公比大于1,且a2+a4=20,a3=8.记b m为{a n}在区间(0,m](m∈N*)中的项的个数,则数列{b m}的前60项的和S60的值为.17.(2021秋•嘉定区校级月考)已知数列{a n}满足a n=且数列{a n}是单调递增数列,则t的取值范围是.三.解答题(共5小题)18.(2021秋•宜宾月考)记S n为数列{a n}的前n项和,已知a n>0,a2=2a1,且数列{S n+a1}是等比数列,求证:{a n}是等比数列.19.(2021秋•南通期中)已知数列{a n}是公比为正数的等比数列,且a1=2,a3=a2+4.(1)求数列{a n}的通项公式;(2)若b n=log2a n,求数列{a n+b n}的前n项和S n.20.(2021秋•五华区校级月考)已知数列{a n}中,a1=3,a n+1=3a n+2•3n+1,n∈N*.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.21.(2021秋•顺庆区校级期中)数列{a n}的前n项和为S n,且4,a n,S n成等差数列.(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.22.(2021秋•船营区校级月考)已知数列{a n}的前n项和为S n,满足a1=2,且S n=a n+1﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①T3=12,且b4=2b2;②b2是b1和b4的等比中项,T8=72.若公差不为0的等差数列{b n}的前n项和为T n,且_______,求数列{}的前n项和A n.2023年高考数学模拟题汇编:数列参考答案与试题解析一.选择题(共12小题)1.(2021秋•洛阳期中)数列{a n}满足a1=a2=1,且a n=a n﹣1+a n﹣2(n≥3),则a5=()A.1B.2C.5D.8【考点】数列递推式.【专题】计算题;整体思想;演绎法;等差数列与等比数列;逻辑推理;数学运算.【分析】利用递推关系式求解数列的第五项即可.【解答】解:由递推关系式可得:a3=a2+a1=1+1=2,a4=a3+a2=2+1=3,a5=a4+a3=3+2=5,故选:C.【点评】本题主要考查数列的递推关系式,属于基础题.2.(2021秋•资阳月考)等差数列{a n}中,a4=3,则S7=()A.B.C.19D.21【考点】等差数列的前n项和.【专题】函数思想;转化法;等差数列与等比数列;数学运算.【分析】由已知直接利用等差数列的前n项和公式与等差数列的性质求解.【解答】解:在等差数列{a n}中,由a4=3,得S7=.故选:D.【点评】本题考查等差数列的性质与前n项和,是基础题.3.(2021秋•三门峡月考)等比数列{a n}中,a2=3,a42=a6+a7,则a5=()A.B.C.12D.24【考点】等比数列的通项公式.【专题】计算题;方程思想;转化法;等差数列与等比数列;数学运算.【分析】先求出公比,再根据通项公式即可求出a5的值.【解答】解:∵a2=3,a42=a6+a7,∴(3q2)2=3q4+3q5,解得q=2,∴a5=a2q3=3×8=24.故选:D.【点评】本题考查了等比数列的通项公式,属于基础题.4.(2021秋•湖北月考)设{a n)是首项为1的等比数列,且4a1,2a2,a3成等差数列,则数列{a n}的前n项和S n=()A.2n﹣1B.﹣2n+1C.2n﹣1D.﹣2n﹣1【考点】等比数列的前n项和;等差数列与等比数列的综合.【专题】计算题;方程思想;综合法;等差数列与等比数列;数学运算.【分析】根据条件4a1,2a2,a3成等差数列,列出关于q方程求解q,代入等比数列前n 项和计算.【解答】解:设数列{a n}的公比为q,因为4a1,2a2,a3成等差数列,所以4a1+a3=4a2,即4a1+a1q2'=4a1q,将a1=1代入得q2﹣4q+4=0,解得q=2,于是S n==2n﹣1,故选:A.【点评】考查等差数列、等比数列的前n项和,考查数学运算等数学核心素养.5.(2021秋•玉林月考)已知数列{a n}为等比数列,若a2•a3=2a1,且a4与2a7的等差中项为,则a1•a2•a3•a4的值为()A.5B.512C.1024D.2048【考点】等比数列的通项公式;等差数列与等比数列的综合.【专题】计算题;方程思想;定义法;等差数列与等比数列;逻辑推理;数学运算.【分析】设等比数列{a n}的公比为q,由a2•a3=2a1可得a1q•a1q2=2a1,即a4=a1•q3=2,由题意有a4+2a7=2×,从而可求得a7=,进一步利用a7=a4q3求出q值,再利用a1=求出a1,最后利用a1•a2•a3•a4=(a1•a4)2=(16×2)2进行求解即可.【解答】解:设等比数列{a n}的公比为q,由a2•a3=2a1,得a1q•a1q2=2a1,即a4=a1•q3=2,又a4与2a7的等差中项为,得a4+2a7=2×,即2+2a7=,解得a7=,所以a7=a4q3,即=2q3,解得q=,则a1===16,所以a1•a2•a3•a4=(a1•a4)2=(16×2)2=1024.故选:C.【点评】本题考查等比数列的通项公式,涉及等差中项,考查学生的逻辑推理和运算求解的能力,属于基础题.6.(2021秋•镇海区校级期中)已知数列{a n}满足a n+1=(﹣1)n a n+2n,n∈N*,则S10=()A.32B.50C.72D.90【考点】数列的求和;数列递推式.【专题】计算题;整体思想;转化法;点列、递归数列与数学归纳法;数学运算.【分析】本题根据题干已知条件考虑当n为奇数时,n+1为偶数时可得公式a n+a n+1=2n,然后运用分组求和法即可计算出S10的值,从而可得正确选项.【解答】解:由题意,可知当n为奇数时,n+1为偶数,此时由a n+1=﹣a n+2n,即a n+a n+1=2n,故S10=a1+a2+•+a10=(a1+a2)+(a3+a4)+(a5+a6)+(a7+a8)+(a9+a10)=2×1+2×3+2×5+2×7+2×9=2×(1+3+5+7+9)=50.故选:B.【点评】本题主要考查运用分组求和法求前n项和问题.考查了转化与化归思想,整体思想,以及逻辑推理能力和数学运算能力,属基础题.7.(2021秋•安徽月考)已知数列{a n}是公比为q的等比数列,则“q>0”是数列{lga n}为等差数列的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件;等差数列与等比数列的综合.【专题】计算题;整体思想;综合法;简易逻辑;逻辑推理.【分析】根据充分必要条件的定义进行判断即可.【解答】解:当q>0时,若a1<0,则a n<0,于是lga n无意义,充分性不成立;反之若数列{lga n}为等差数列,则a n必须大于0,所以公比q>0,必要性成立;故选:B.【点评】本题考查了充分必要条件的判定,等比数列与等差数列的综合,属于中档题.8.(2021秋•全州县校级月考)已知数列1,2,2,3,3,3,4,4,4,4,…,n,则该数列的第22项为()A.6B.7C.64D.65【考点】数列的函数特性.【专题】计算题;转化思想;归纳法;等差数列与等比数列;数学运算.【分析】通过已知数列,利用等差数列求和,求解数列数字个数的和,判断22所在的位置即可.【解答】解:按规律排列的数列1,2,2,3,3,3,4,4,4,4,…,n,可知1是1个;2是2个,3是3个,4是4个,5是5个,6是6个,7是7个,因为1+2+3+4+5+6=21,1+2+3+4+5+6+7=28,所以该数列的第22项为:7.故选:B.【点评】本题考查归纳推理的应用,等差数列求和,考查分析问题解决问题的能力,是中档题.9.(2021秋•聊城期中)设数列{a n}满足a1+2a2+4a3+…+2n﹣1a n=,则数列{a n}的前n项和S n为()A.B.C.D.【考点】数列的求和.【专题】计算题;整体思想;综合法;等差数列与等比数列;数学运算.【分析】由题得两式相减求出,即得解.【解答】解:由题得②﹣①得,∴,适合,所以,所以数列{a n}是以为首项,以的等比数列,所以,故选:C.【点评】本题考查错位相减法求数列的和,属于中档题.10.(2021秋•渝中区校级月考)已知数列{a n}满足,,若对任意的正整数n,(n﹣3)(a n+1)<λ恒成立,则实数λ的取值范围为()A.B.C.D.【考点】数列递推式;数列与不等式的综合.【专题】计算题;转化思想;转化法;等差数列与等比数列;数学运算.【分析】先求出数列的通项公式,由对任意的正整数n,(n﹣3)(a n+1)<λ恒成立,可得(n﹣3)()n<λ恒成立,令b n=(n﹣3)()n,再利用作差法,判断数列{b n}的变化趋势,即可求出.【解答】解:∵,,∴a n+1+1=(a n+1),∵a1+1=,∴数列{a n+1}是以为首项,以为公比的等比数列,∴a n+1=()n,∵对任意的正整数n,(n﹣3)(a n+1)<λ恒成立,∴(n﹣3)()n<λ恒成立,令b n=(n﹣3)()n,则b n+1﹣b n=(n﹣2)()n+1﹣(n﹣3)()n=()n+1(n﹣2﹣2n+6)=()n+1(4﹣n),当n<4时,b n+1<b n,当n>4时,b n+1>b n,当n=4或n=5时,b n最大,最大值为b4=b5=,∴λ>,故选:A.【点评】本题考查了数列的通项公式,数列的函数性质,不等式恒成立,考查了运算求解能力,属于中档题.11.(2021秋•浙江月考)已知正项数列{a n}满足na n2+a n﹣n=0,则下列说法错误的是()A.a2022>a2021B.C.D.【考点】数列递推式.【专题】转化思想;综合法;点列、递归数列与数学归纳法;数学运算.【分析】由求根公式可得a n,由分子有理化可得{a n}的单调性,可判断A;推得a n>,可判断B、C;由a n>,化简计算可判断D.【解答】解:正项数列{a n}满足na n2+a n﹣n=0,可得a n=(负的已舍去),又a n===,可得{a n}是递增数列,则a2022>a2021,故A正确;由a n>,可得a2021>,而﹣=1﹣﹣(1﹣)=﹣>0,即有a2021>,又a2022>,故B错误,C正确;由a n>>,可得a2•a3•a4...•a2022>×××...×=>,故D正确.故选:B.【点评】本题考查数列的递推式的运用,以及数列的单调性和放缩法的运用,考查转化思想和运算能力、推理能力,属于中档题.12.(2021秋•开福区校级期中)数列{a n}中,a1=2,且(n≥2),则数列前2021项和为()A.B.C.D.【考点】数列的求和.【专题】转化思想;转化法;点列、递归数列与数学归纳法;数学运算.【分析】由数列的递推式可得﹣﹣2a n+2a n﹣1=n,利用累加法可得=n(n+1),取倒数后再由裂项相消法求出数列的前2021项和.【解答】解:数列{a n}中,a1=2,且(n≥2),所以(a n+a n﹣1)(a n﹣a n﹣1)=n+2(a n﹣a n﹣1),即﹣﹣2a n+2a n﹣1=n,所以﹣=n(n≥2),则﹣=n﹣1,...,﹣=2,将以上各式累加,可得﹣=n+(n﹣1)+ (2)将a1=2代入,可得=1+2+...+n=n(n+1),所以==2(﹣),所以数列{}的前2021项和为2(1﹣+﹣+...+﹣)=2(1﹣)=.故选:B.【点评】本题考查数列递推式,考查等差数列的前n项和,训练了利用累加法求数列的通项公式及裂项相消法求数列的前n项和,是中档题.二.填空题(共5小题)13.(2021秋•安顺月考)等差数列{a n}的前n项和为S n,S7=21,S9=45,则数列{a n}的公差d=2.【考点】等差数列的通项公式;等差数列的前n项和.【专题】计算题;方程思想;定义法;等差数列与等比数列;逻辑推理;数学运算.【分析】利用S7=(a1+a7)=7a4=21求出a4,再根据S9=(a1+a9)=9a5=45求出a5,进一步利用d=a5﹣a4即可求出{a n}的公差.【解答】解:由{a n}是等差数列,得S7=(a1+a7)=7a4=21,解得a4=3,又S9=(a1+a9)=9a5=45,得a5=5,所以d=a5﹣a4=5﹣3=2.故答案为:2.【点评】本题考查等差数列的通项公式与前n项和公式,考查学生的逻辑推理和运算求解的能力,属于基础题.14.(2021秋•船营区校级月考)在数列{a n}中,a1=﹣1,a3=3,a n+2=2a n+1﹣a n(n∈N*),则a10=17.【考点】数列递推式.【专题】转化思想;综合法;等差数列与等比数列;数学运算.【分析】由已知递推式可得a2,再由等差数列的定义和通项公式,计算可得所求值.【解答】解:在数列{a n}中,a1=﹣1,a3=3,a n+2=2a n+1﹣a n(n∈N*),可得a3=2a2﹣a1,即3=2a2﹣1,解得a2=1,又a n+2﹣a n+1=a n+1﹣a n=a n﹣a n﹣1=...=a3﹣a2=a2﹣a1=1﹣(﹣1)=2,所以{a n}是首项为﹣1,公差为2的等差数列,则a10=﹣1+9×2=17.故答案为:17.【点评】本题考查数列的递推式的运用,以及等差数列的通项公式的运用,考查方程思想和运算能力,属于基础题.15.(2021秋•凌河区校级月考)设S n是数列{a n}的前n项和,且S n=2a n+n,则{a n}的通项公式为a n=1﹣2n(n∈N*).【考点】数列递推式.【专题】转化思想;定义法;等差数列与等比数列;数学运算.【分析】根据数列{a n}的前n项和S n=2a n+n,利用递推公式即可求出数列{a n﹣1}是公比为q=2的等比数列,由此求出{a n}的通项公式.【解答】解:因为S n是数列{a n}的前n项和,且S n=2a n+n,所以S n﹣1=2a n﹣1+(n﹣1),n≥2,所以a n=2a n﹣2a n﹣1+1,n≥2,所以a n=2a n﹣1﹣1,n≥2,即a n﹣1=2(a n﹣1﹣1),n≥2,所以数列{a n﹣1}是公比为q=2的等比数列,又a1=2a1+1,所以a1=﹣1,所以a1﹣1=﹣2,所以a n﹣1=﹣2×2n﹣1=﹣2n,所以{a n}的通项公式为a n=1﹣2n,n∈N*.故答案为:1﹣2n(n∈N*).【点评】本题考查了数列的前n项和与通项公式应用问题,也考查了推理与运算能力,是中档题.16.(2021秋•呼和浩特月考)已知{a n}是等比数列,公比大于1,且a2+a4=20,a3=8.记b m为{a n}在区间(0,m](m∈N*)中的项的个数,则数列{b m}的前60项的和S60的值为243.【考点】数列的求和.【专题】转化思想;综合法;函数的性质及应用;等差数列与等比数列;逻辑推理;数学运算.【分析】首先利用等比数列的性质求出数列的公比,进一步求出数列的通项公式,最后利用对数的运算关系求出数列的和.数列的求和【解答】解:设数列{a n}的公比为q的等比数列,且a2+a4=20,a3=8.所以,整理得:2q2﹣5q+2=0,解得q=2或(q>1),所以q=2.则=8×2n﹣3=2n;记b m为{a n}在区间(0,m](m∈N*)中的项的个数,所以2n≤m,故n≤log2m,故b1=0,b2=b3=1,b4=b5=b6=b7=2,b7=b8=...=b15=3,b16=b17=...=b32=4,b33=b34=...=b65=5;所以=243.故答案为:243.【点评】本题考查的知识要点:数列的递推关系式,数列的通项公式的求法,数列的求和,主要考查学生的运算能力和数学思维能力,属于中档题.17.(2021秋•嘉定区校级月考)已知数列{a n}满足a n=且数列{a n}是单调递增数列,则t的取值范围是(,).【考点】数列的函数特性.【专题】计算题;转化思想;转化法;点列、递归数列与数学归纳法;数学运算.【分析】由题意利用数列的单调性,结合二次函数的性质,解出不等式组,即可求出t 的取值范围.【解答】解:∵数列{a n}满足a n=且数列{a n}是单调递增数列,∴,解得,即t的取值范围是(,),故答案为:(,).【点评】本题主要考查了数列的函数特征,考查了二次函数的性质,是基础题.三.解答题(共5小题)18.(2021秋•宜宾月考)记S n为数列{a n}的前n项和,已知a n>0,a2=2a1,且数列{S n+a1}是等比数列,求证:{a n}是等比数列.【考点】等比数列的性质.【专题】整体思想;定义法;等差数列与等比数列;逻辑推理.【分析】结合已知递推关系先求出等比数列的公比q,然后结合等比数列的求和公式及性质可求a n,进而可证.【解答】证明::设等比数列{S n+a1}的公比为q,则,∴,∴,,对n=1也适合,∴,∴,∴{a n}是等比数列.【点评】本题主要考查了由数列的递推关系求解通项公式,还考查了等比数列的判断,定义法的应用是求解问题的关键,属于中档题.19.(2021秋•南通期中)已知数列{a n}是公比为正数的等比数列,且a1=2,a3=a2+4.(1)求数列{a n}的通项公式;(2)若b n=log2a n,求数列{a n+b n}的前n项和S n.【考点】等比数列的通项公式;数列的求和.【专题】计算题;整体思想;分析法;等差数列与等比数列;数学运算.【分析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出b n,结合组合法求和,即可求解.【解答】解:(1)根据题意,设{a n}公比为q,且q>0,∵a1=2,a3=a2+4,∴2q2=2q+4⇒q2−q−2=0,解得q=2或q=−1(舍去),∴.(2)根据题意,得b n=log22n=n,故,因此=.所以S n==.【点评】本题考查数列的通项公式及数列求和,属于中档题.20.(2021秋•五华区校级月考)已知数列{a n}中,a1=3,a n+1=3a n+2•3n+1,n∈N*.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】数列的求和;数列递推式.【专题】转化思想;综合法;等差数列与等比数列;数学运算.【分析】(1)由已知可得数列是首项为1,公差为2的等差数列,求其通项公式,可得数列{a n}的通项公式;(2)直接利用错位相减法求数列{a n}的前n项和S n.【解答】解:(1)由a n+1=3a n+2•3n+1,得:,∴,即数列是首项为1,公差为2的等差数列,∴,得.(2)由(1)得:,∴,①,②①﹣②得:=,∴.【点评】本题考查数列递推式,考查等差数列的通项公式,训练了利用错位相减法求数列的前n项和,是中档题.21.(2021秋•顺庆区校级期中)数列{a n}的前n项和为S n,且4,a n,S n成等差数列.(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.【考点】数列的求和.【专题】对应思想;综合法;等差数列与等比数列;逻辑推理;数学运算;数据分析.【分析】(1)根据等差数列的性质,结合递推公式和等比数列的定义进行求解即可;(2)利用裂项相消法进行求解即可.【解答】解:(1)由题2a n=S n+4,当n=1时,2a1=a1+4,得a1=4,当n≥2时,S n=2a n﹣4,S n﹣1=2a n﹣1﹣4,两式相减得a n=S n﹣S n﹣1=2a n﹣2a n﹣1,得,∴数列{a n}是以4为首项,2为公比的等比数列,其通项公式为a n=4×2n﹣1=2n+1;(2)由,即(2n+1)2=,得b n=2(n+1),故==,所以T n==.【点评】根据S n求a n,利用a n=S n﹣S n﹣1;常用的数列求和有裂项相消和错位相减,本题考查了裂项相消,属于基础题.22.(2021秋•船营区校级月考)已知数列{a n}的前n项和为S n,满足a1=2,且S n=a n+1﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①T3=12,且b4=2b2;②b2是b1和b4的等比中项,T8=72.若公差不为0的等差数列{b n}的前n项和为T n,且_______,求数列{}的前n项和A n.【考点】数列的求和;数列递推式.【专题】方程思想;综合法;等差数列与等比数列;数学运算.【分析】(1)由数列的递推式:n=1时,a1=S1;n≥2时,a n=S n﹣S n﹣1,结合等比数列的定义和通项公式,可得所求;(2)分别选①②,运用等差数列的通项公式和求和公式,以及等比数列的中项性质,可得首项和公差,可得b n,T n,,再由数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和.【解答】解:(1)a1=2,且S n=a n+1﹣2,可得a1=S1=a2﹣2=2,即有a2=4,当n≥2时,S n﹣1=a n﹣2,又S n=a n+1﹣2,两式相减可得a n=S n﹣S n﹣1=a n+1﹣a n,即为a n+1=2a n,而a2=2a1,所以{a n}是首项和公比均为2的等比数列,则a n=2n,n∈N*;(2)选①T3=12,且b4=2b2;设公差为d(d≠0),由b1+b2+b3=3b2=12,即b2=4,又4+2d=8,解得d=2,则b n=4+2(n﹣2)=2n,n∈N*,T n=n(2+2n)=n(n+1);选②b2是b1和b4的等比中项,T8=72.可得b22=b1b4,即(b1+d)2=b1(b1+3d),化简可得b1=d,又8b1+×8×7d=72,解得b1=d=2,所以b n=2+2(n﹣1)=2n,T n=n(n+1),则==(n+1)•()n,所以A n=2•+3•()2+4•()3+...+(n+1)•()n,A n=2•()2+3•()3+4•()4+...+(n+1)•()n+1,上面两式相减可得A n=1+()2+()3+...+()n﹣(n+1)•()n+1=1+﹣(n+1)•()n+1,化简可得A n=3﹣(n+3)•()n.【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,以及数列的错位相减法求和,考查方程思想和运算能力,属于中档题.。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
【高考讲坛】高考数学一轮复习 第5章 第5节 数列的综合应用课后限时自测 理 苏教版

【高考讲坛】2023届高考数学一轮复习 第5章 第5节 数列的综合应用课后限时自测 理 苏教版[A 级 根底达标练]一、填空题1.(2023·南通质检)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值________.[解析] 由a 2n +1-a 2n =1(n ∈N *)知,数列{a 2n }是首项为1,公差为1的等差数列,那么a 2n =1+(n -1)×1=n .由a n <5得n <5,∴n <25,那么n 的最大值为24. [答案] 242.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,那么数列{b n }的公比q =________.[解析] 设数列{a n }的公差为d (d ≠0),由a 23=a 1a 7得(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.[答案] 23.(2023·泰州模拟)设数列{a n }是首项大于零的等比数列,那么“a 1<a 2”是“数列{a n }是递增数列”的________条件.[解析] {a n }为等比数列,a 1>0,当a 1<a 2时,q >1.{a n }为递增数列;假设{a n }为递增数列,那么q >1,a 1<a 2成立.[答案] 充要4.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n (n ≥1,n ∈N *),第k 项满足750<a k <900,那么k =________.[解析] 由a n +1=3S n 及a n =3S n -1(n ≥2), 得a n +1-a n =3a n ,即a n +1=4a n (n ≥2), 又a 2=3S 1=3,∴a n =⎩⎪⎨⎪⎧1n =1,3×4n -2n ≥2,又750<a k <900,验证得k =6. [答案] 65.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,那么a 9+a 10a 7+a 8=________.[解析] 设等比数列的公比为q ,由题意知a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q , ∴q 2-2q -1=0,解得q =1+2或q =1-2(舍去).∴a 9+a 10a 7+a 8=a 7+a 8q 2a 7+a 8=q 2=(1+2)2=3+2 2. [答案] 3+2 26.(2023·盐城模拟)已知a ,b ,c (a <b <c )成等差数列,将其中的两个数交换,得到的三个数依次成等比数列,那么a 2+c 22b2的值为________.[解析] ∵a ,b ,c (a <b <c )成等差数列, ∴设a =b -d ,c =b +d (d >0),①假设交换a ,b ,那么b ,b -d ,b +d 成等比数列,得(b -d )2=b (b +d ),解得d =3b ,∴a =-2b ,c =4b .∴a 2+c 22b 2=20b 22b2=10.②假设交换a ,c ,那么d =0(舍去).③假设交换b ,c 也可得a 2+c 22b 2=10,综上,a 2+c 22b2=10.[答案] 107.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,那么至少应倒________次后才能使纯酒精体积与总溶液的体积之比低于10%.[解析] 设倒n 次后纯酒精与总溶液的体积比为a n ,那么a n =⎝ ⎛⎭⎪⎫12n ,由题意知⎝ ⎛⎭⎪⎫12n<10%,∴n ≥4.[答案] 48.已知数列{a n }为等差数列,公差为d ,假设a 11a 10<-1,且它的前n 项和S n 有最大值,那么使得S n <0的n 的最小值为________.[解析] 根据S n 有最大值知,d <0,那么a 10>a 11, 由a 11a 10<-1知,a 10>0>a 11,且a 11<-a 10即a 10+a 11<0,从而S 19=19a 1+a 192=19a 10>0,S 20=20a 1+a 202=10(a 10+a 11)<0,那么使S n <0的n 的最小值为20. [答案] 20 二、解答题9.(2023·天津高考)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).[解] (1)设等比数列{a n }的公比为q . 因为-2S 2,S 3,4S 4成等差数列, 所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又因为a 1=32,所以等比数列{a n }的通项公式为a n =32·⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)证明:S n =1-⎝ ⎛⎭⎪⎫-12n ,S n +1S n =1-⎝ ⎛⎭⎪⎫-12n+11-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧2+12n2n+1,n 为奇数,2+12n2n-1,n 为偶数,当n 为奇数时,S n +1S n随n 的增大而减小.所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n ≤136.10.某企业在第1年初购置一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开场,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式; (2)设A n =a 1+a 2+…+a nn,假设A n 大于80万元,那么M 继续使用,否那么需在第n 年初对M 更新.证明:需在第9年初对M 更新.[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n .当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n=120n -5n (n -1),A n =120-5(n -1)=125-5n ;当n ≥7时,由于S 6=570, 故S n =S 6+(a 7+a 8+…+a n ) =570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6=780-210×⎝ ⎛⎭⎪⎫34n -6.A n =780-210×⎝ ⎛⎭⎪⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×⎝ ⎛⎭⎪⎫3428=824764>80,A 9=780-210×⎝ ⎛⎭⎪⎫3439=767996<80,所以需在第9年初对M 更新.[B 级 能力提升练]一、填空题1.(2023·盐城模拟)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α,β,使得a n =log αb n +β对每一个正整数n 恒成立,那么αβ=________.[解析] 由题意,可设a n =2+(n -1)d ,b n =qn -1,于是由⎩⎪⎨⎪⎧a 2=b 2,2a 4=b 3,得⎩⎪⎨⎪⎧2+d =q ,2×2+3d =q 2,∵d ≠0,∴⎩⎪⎨⎪⎧d =2,q =4,∴a n =2n ,b n =22n -2,代入a n =log αb n +β,即2n =(2n -2)log α2+β, 即2n (1-log α2)=β-2log α2,∴⎩⎪⎨⎪⎧log α2=1,β-2log α2=0,解得⎩⎪⎨⎪⎧α=2,β=2,故αβ=22=4.[答案] 42.(2023·江苏高考)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,那么满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.[解析] 设{a n }的公比为q (q >0), 那么由已知得⎩⎪⎨⎪⎧a 1q 4=12,12q +q2=3,解得⎩⎪⎨⎪⎧a 1=132,q =2.于是a 1+a 2+…+a n =1321-2n1-2=132(2n-1),a 1a 2…a n =a n 1qn n -12=⎝ ⎛⎭⎪⎫132n 2nn -12.由a 1+a 2+…+a n >a 1a 2…a n 得132(2n -1)>⎝ ⎛⎭⎪⎫132n 2n n -12,那么2n-1>212n 2-112n +5 .由2n>212n 2-112n +5,得n >12n 2-112n +5,∴n 2-13n +10<0,解得13-1292<n <13+1292,验证当n =12时,满足a 1+a 2+…+a n >a 1a 2…a n .n ≥13时,不满足a 1+a 2+…+a n >a 1a 2…a n .故n 的最大值为12.[答案] 12 二、解答题3.(2023·江苏高考)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *.(1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b na n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值. [解] (1)证明:由题设知a n +1=a n +b na 2n +b 2n=1+b na n1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1an +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎪⎫b n an2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以a n +b n22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*) 设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1. 假设q >1,那么a 1=a 2q<a 2≤2,故当n >log q2a 1时,a n +1=a 1q n>2,与(*)矛盾;假设0<q <1,那么a 1=a 2q>a 2>1,故当n >log q 1a 1时,a n +1=a 1q n<1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2. 又b n +1=2·b n a n=2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列. 假设a 1≠2,那么2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1,所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.。
2023高考数学数列练习题及答案

2023高考数学数列练习题及答案数列是高中数学中常见的重要概念,也是高考数学考试中的热点内容之一。
在准备2023年高考数学考试时,通过练习数列题目可以帮助我们深入理解数列的性质和应用,提高解题能力。
下面将提供一些2023年高考数学数列练习题及答案,供同学们进行复习和练习,以期取得好成绩。
练习题1:已知数列{an}满足a₁ = 2,an+1 = 2an - 1,(n ≥ 1),求a₅。
解答:根据已知条件可以得到数列的通项公式为an = 2ⁿ⁻¹。
代入n = 5,得到a₅ = 2⁴ = 16。
练习题2:已知等差数列{an}的首项是a₁ = 3,公差是d = 4,求数列的第n项an。
解答:根据等差数列的通项公式an = a₁ + (n - 1)d可以得出:an = 3 + (n - 1) × 4化简后得到an = 4n - 1。
练习题3:已知等比数列{bn}的首项是b₁ = 5,公比是q = 2,求数列的第n项bn。
解答:根据等比数列的通项公式bn = b₁ × qⁿ⁻¹可以得出:bn = 5 × 2ⁿ⁻¹。
练习题4:已知等差数列{cn}的首项是c₁ = 2,公差是d = 3,求数列的前n项和Sn。
解答:数列的前n项和Sn可以表示为Sn = n/2 × (2a₁ + (n - 1)d)。
代入已知条件得到Sn = n/2 × (2 × 2 + (n - 1) × 3)。
化简后得到Sn = 3n² - 3n。
练习题5:已知等差数列{dn}的前n项和Sn为Sn = 4n² + n,求数列的首项d₁和公差d。
解答:根据数列的前n项和的公式可以得到Sn = n/2 × (2a₁ + (n - 1)d)。
代入已知条件得到4n² + n = n/2 × (2d + (n - 1)d)。
2023届广东省新高考数学复习专项(数列)练习(附答案)

2023届广东省新高考数学复习专项(数列)练习1.(2022ꞏ广东深圳ꞏ深圳市光明区高级中学校考模拟预测)已知各项都为正数的数列{}n a 满足1+32nn n a a +=⋅,11a = .(1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .2.(2022ꞏ广东珠海ꞏ珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P . 3.(2022ꞏ广东韶关ꞏ统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n nb a =-. (1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n . 4.(2022ꞏ广东广州ꞏ华南师大附中校考三模)已知等差数列{}n a 中,33a =,66a =,且1,2,n n n a a n b n +⎧=⎨⎩为奇数为偶数.(1)求数列{}n b 的通项公式及前2n 项和;(2)若212n n n c b b -=⋅,记数列{}n c 的前n 项和为n S ,求n S . 5.(2022ꞏ广东韶关ꞏ统考二模)已知数列{}n a 前n 项和为n S ,()*111041n n n n a a a a S n +=≠⋅=-∈N ,,. (1)证明:24;n n a a +-=(2)设 ()12nn n n c a =-⋅+,求数列{}n c 的前2n 项和2n T . 6.(2022ꞏ广东ꞏ统考模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.7.(2022ꞏ广东ꞏ统考模拟预测)设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤--- 恒成立,求实数λ的最小值.8.(2022ꞏ广东中山ꞏ中山纪念中学校考模拟预测)已知正项数列{}n a ,其前n 项和n S 满足()*2,N n n n a S a n n -=∈.(1)求{}n a 的通项公式;(2)证明:222121112nS S S +++< . 9.(2022ꞏ广东广州ꞏ统考一模)已知等差数列{}n a 的前n 项和为n S ,且()*6324,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T .10.(2023ꞏ广东东莞ꞏ校考模拟预测)已知数列{}n a 满足:112a =,对n N +∀∈,都有1122n n a na +=++. (1)设,n n b a n n N +=-∈,求证:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .11.(2022ꞏ广东ꞏ校联考模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .12.(2022ꞏ广东ꞏ统考模拟预测)已知数列{}n a 中,15a =且()12212,n n n a a n n *-=+-∈N …,11n n a b n -=+ (1)求证:数列{}n b 是等比数列;(2)从条件①{}n n b +,②{}n n b ⋅中任选一个,补充到下面的问题中并给出解答. 求数列______的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.13.(2022ꞏ广东汕头ꞏ统考三模)已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}n c :1b ,1a ,2b ,2a ,3a ,3b ,4a ,5a ,6a ,4b ,……,求数列{}n c 中前50项的和50T .14.(2022ꞏ广东佛山ꞏ统考三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)n n nc na -=,求数列{}n c 的前n 项和n K .15.(2022ꞏ广东茂名ꞏ统考模拟预测)设数列{}n a 的首项11a =,132nn n a a +=⋅-.(1)证明:数列{}2nn a -是等比数列;(2)设()()234nn n b a n =--,求数列{}n b 的前n 项和n T16.(2022ꞏ广东ꞏ统考三模)已知数列{n a }的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{n a }的通项公式;(2)设()11nn n n b a a +=-,求数列{n b }的前n 项和n T .17.(2022ꞏ广东广州ꞏ统考二模)问题:已知*n ∈N ,数列{}n a 的前n 项和为n S ,是否存在数列{}n a ,满足111,1n n S a a +=≥+,__________﹖若存在.求通项公式n a ﹔若不存在,说明理由.在①1n a +=﹔②()12n n a S n n -=+≥;③121n n a a n +=+-这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.18.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1nn n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和nT .19.(2022ꞏ广东韶关ꞏ校考模拟预测)数列{}n a 满足:31232n a n a a a +++=+ 12(1)2n n ++-⋅,*n ∈N . (1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m的取值范围.20.(2022ꞏ广东梅州ꞏ统考二模)已知n S 是数列{}n a 的前n 项和,11a =,___________.①n *∀∈N ,14n n a a n ++=;②数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解: (1)求n a ; (2)设()121n n n n n a a b a a +++=⋅,求数列{}n b 的前n 项和n T .21.(2022ꞏ广东佛山ꞏ统考二模)已知数列{n a }的前n 项和为n S ,且满足()()*1311,N ,5n n nS n S n n n a +-+=+∈= (1)求1a 、2a 的值及数列{n a }的通项公式n a : (2)设1n n n b a a +=,求数列{n b }的前n 项和n T22.(2022ꞏ广东茂名ꞏ统考模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 23.(2022ꞏ广东ꞏ统考一模)已知正项数列{}n a ,其前n 项和n S 满足*(2)1()n n n a S a n -=∈N .(1)求证:数列{}2n S 是等差数列,并求出n S 的表达式;(2)数列{}n a 中是否存在连续三项k a ,1k a +,2k a +,使得1k a ,11k a +,21k a +构成等差数列?请说明理由.24.(2022ꞏ广东肇庆ꞏ校考模拟预测)设数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式n a ;(2)记n b =11n n b b +⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(2022ꞏ广东揭阳ꞏ普宁市华侨中学校考二模)已知数列{}n a 的前n 项和为n S ,在①()1*122n n S n N -⎛⎫+=∈ ⎪⎝⎭②11a =,()*122n n S a n N ++=∈,③()*123111121n nn N a a a a ++++=-∈ 这三个条件中任选一个,解答下列问题: (1)求{}n a 的通项公式:(2)若2log n n b a =,求数列{}n b 的前n 项和n T26.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 的前n 项和为n S ,且()()2*112,210n n n a S a S n +=+-+=∈N .(1)求证:数列11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列21n n S ⎧⎫⎨⎬-⎩⎭的前n 项和n T .27.(2022ꞏ广东韶关ꞏ统考一模)在①112,2n n n a a a +=+=;②22n n S a =-;③122n n S +=-这三个条件中任选一个,补充在下列问题中,并做出解答.设数列{}n a 的前n 项和为n S ,__________,数列{}n b 是等差数列,12461,21o b b b =++=.(1)求数列{}n a 和{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .28.(2022ꞏ广东佛山ꞏ校联考模拟预测)已知数列{}n a 满足11a =,22a =,且对任意*N n ∈,都有2132n n n a a a ++=-.(1)求证:{}1n n a a +-是等比数列,并求{}n a 的通项公式;(2)求使得不等式1212154m m a a a ++⋅⋅⋅+≤成立的最大正整数m . 29.(2023ꞏ广东茂名ꞏ统考一模)已知n S 为数列{}n a 的前n 项和,0n a >,224n n n a a S +=.(1)求数列{}n a 的通项公式: (2)若11n n n b a a +=,n T 为数列{}n b 的前n 项和.求n T ,并证明:1184n T ≤≤. 30.(2022ꞏ广东茂名ꞏ统考一模)已知数列{}n a ,{}n b 满足145n n n a b b ++=,1156n n n a ba +++=,且12a =,11b =(1)求2a ,2b 的值,并证明数列{}n n a b -是等比数列; (2)求数列{}n a ,{}n b 的通项公式.参考答案1.(2022ꞏ广东深圳ꞏ深圳市光明区高级中学校考模拟预测)已知各项都为正数的数列{}n a 满足1+32nn n a a +=⋅,11a = .(1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .2.(2022ꞏ广东珠海ꞏ珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .3.(2022ꞏ广东韶关ꞏ统考一模)已知数列{}n a 的首项145a =,且满足13n n n a a +=+,设11n nb a =-. (1)求证:数列{}n b 为等比数列; (2)若1111140a a a a ++++> ,求满足条件的最小正整数n . ⎫∴n 的最小值为140.4.(2022ꞏ广东广州ꞏ华南师大附中校考三模)已知等差数列{}n a 中,33a =,66a =,且1,2,n n n a a n b n +⎧=⎨⎩为奇数为偶数.(1)求数列{}n b 的通项公式及前2n 项和;(2)若212n n n c b b -=⋅,记数列{}n c 的前n 项和为n S ,求n S .5.(2022ꞏ广东韶关ꞏ统考二模)已知数列{}n a 前n 项和为n S ,()*111041n n n n a a a a S n +=≠⋅=-∈N ,,. (1)证明:24;n n a a +-=(2)设 ()12nn n n c a =-⋅+, 求数列{}n c 的前2n 项和2n T .6.(2022ꞏ广东ꞏ统考模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()1log 3log 33n c S S =--⋅-,求{}n c 的前n 项和n T ,并证明:11n T -<≤-.7.(2022ꞏ广东ꞏ统考模拟预测)设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤--- 恒成立,求实数λ的最小值.8.(2022ꞏ广东中山ꞏ中山纪念中学校考模拟预测)已知正项数列{}n a ,其前n 项和n S 满足()*2,N n n n a S a n n -=∈.(1)求{}n a 的通项公式;(2)证明:2221112S S S +++< . (n 9.(2022ꞏ广东广州ꞏ统考一模)已知等差数列{}n a 的前n 项和为n S ,且()*6324,21n n S S a a n ==+∈N . (1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-10.(2023ꞏ广东东莞ꞏ校考模拟预测)已知数列{}n a 满足:112a =,对n N +∀∈,都有1122n n a na +=++. (1)设,n n b a n n N +=-∈,求证:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .11.(2022ꞏ广东ꞏ校联考模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =. (1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .12.(2022ꞏ广东ꞏ统考模拟预测)已知数列{}n a 中,15a =且()12212,n n n a a n n *-=+-∈N …,11n n a b n -=+ (1)求证:数列{}n b 是等比数列;(2)从条件①{}n n b +,②{}n n b ⋅中任选一个,补充到下面的问题中并给出解答. 求数列______的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.)13.(2022ꞏ广东汕头ꞏ统考三模)已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}n c :1b ,1a ,2b ,2a ,3a ,3b ,4a ,5a ,6a ,4b ,……,求数列{}n c 中前50项的和50T .【答案】(1)21n a n =-,13n n b -=(2)1152214.(2022ꞏ广东佛山ꞏ统考三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)n n nc na -=,求数列{}n c 的前n 项和n K .15.(2022ꞏ广东茂名ꞏ统考模拟预测)设数列{}n a 的首项11a =,132nn n a a +=⋅-.(1)证明:数列{}2nn a -是等比数列;(2)设()()234nn n b a n =--,求数列{}n b 的前n 项和n T()34nn ⨯⨯-()34nn ⨯⨯-()34nn ⨯⨯-16.(2022ꞏ广东ꞏ统考三模)已知数列{n a }的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{n a }的通项公式;(2)设()11nn n n b a a +=-,求数列{n b }的前n 项和n T .17.(2022ꞏ广东广州ꞏ统考二模)问题:已知*n ∈N ,数列{}n a 的前n 项和为n S ,是否存在数列{}n a ,满足111,1n n S a a +=≥+,__________﹖若存在.求通项公式n a ﹔若不存在,说明理由.在①1n a +=﹔②()12n n a S n n -=+≥;③121n n a a n +=+-这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.当2n ≥时,221(21)(23)88n n n a S S n n n -=-=---=-显然,1n =时,上式不成立,所以1,188,2n n a n n =⎧=⎨-≥⎩. 选②:当2n ≥时,1n n a S n -=+,即1n n S a n -=- 所以11(1)()n n n n n a S S a n a n -+=-=-+-- 整理得112(1)n n a a ++=+ 又2123a S =+=,214a +=所以{1}n a +从第二项起,是以2为公比,4为首项的等比数列∴当2n ≥时,211422n n n a -++=⋅=,即121n n a +=-显然,1n =时,上式成立,所以121nn a +=-选③:121n n a a n +=+- 112()n n a n a n +∴++=+又112a +={}n a n ∴+是以2为公比和首项的等比数列 2n n a n ∴+=,即2n n a n ∴=-18.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1nn n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和nT .19.(2022ꞏ广东韶关ꞏ校考模拟预测)数列{}n a 满足:31232n a n a a a +++=+ 12(1)2n n ++-⋅,*n ∈N . (1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m的取值范围.20.(2022ꞏ广东梅州ꞏ统考二模)已知n S 是数列{}n a 的前n 项和,11a =,___________.①n *∀∈N ,14n n a a n ++=;②数列n S n ⎧⎫⎨⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求n a ; (2)设()121n n n n n a a b a a +++=⋅,求数列{}n b 的前n 项和n T .21.(2022ꞏ广东佛山ꞏ统考二模)已知数列{n a }的前n 项和为n S ,且满足()()*1311,N ,5n n nS n S n n n a +-+=+∈=(1)求1a 、2a 的值及数列{n a }的通项公式n a : (2)设1n n n b a a +=,求数列{n b }的前n 项和n T 【答案】(1)121,3a a ==;21n a n =-;22.(2022ꞏ广东茂名ꞏ统考模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式; (2)记sinn n n b a π=⋅,求数列{}n b 的前100项的和100T .23.(2022ꞏ广东ꞏ统考一模)已知正项数列{}n a ,其前n 项和n S 满足*(2)1()n n n a S a n -=∈N .(1)求证:数列{}2n S 是等差数列,并求出n S 的表达式;(2)数列{}n a 中是否存在连续三项k a ,1k a +,2k a +,使得1k a ,11k a +,21k a +构成等差数列?请说明理由.24.(2022ꞏ广东肇庆ꞏ校考模拟预测)设数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式n a ;(2)记n b =11n n b b +⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(2022ꞏ广东揭阳ꞏ普宁市华侨中学校考二模)已知数列{}n a 的前n 项和为n S ,在①()1*122n n S n N -⎛⎫+=∈ ⎪⎝⎭②11a =,()*122n n S a n N ++=∈,③()*123111121n n n N a a a a ++++=-∈ 这三个条件中任选一个,解答下列问题: (1)求{}n a 的通项公式:(2)若2log n n b a =,求数列{}n b 的前n 项和n T26.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 的前n 项和为n S ,且()()2*112,210n n n a S a S n +=+-+=∈N .(1)求证:数列11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列21n n S ⎧⎫⎨⎬-⎩⎭的前n 项和n T .27.(2022ꞏ广东韶关ꞏ统考一模)在①112,2n n n a a a +=+=;②22n n S a =-;③122n n S +=-这三个条件中任选一个,补充在下列问题中,并做出解答.设数列{}n a 的前n 项和为n S ,__________,数列{}n b 是等差数列,12461,21o b b b =++=. (1)求数列{}n a 和{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .28.(2022ꞏ广东佛山ꞏ校联考模拟预测)已知数列{}n a 满足11a =,22a =,且对任意*N n ∈,都有2132n n n a a a ++=-.(1)求证:{}1n n a a +-是等比数列,并求{}n a 的通项公式; (2)求使得不等式12154m a a a ++⋅⋅⋅+≤成立的最大正整数m .29.(2023ꞏ广东茂名ꞏ统考一模)已知n S 为数列{}n a 的前n 项和,0n a >,224n n n a a S +=.(1)求数列{}n a 的通项公式: (2)若1n b a a =,n T 为数列{}n b 的前n 项和.求n T ,并证明:11n T ≤≤.30.(2022ꞏ广东茂名ꞏ统考一模)已知数列{}n a ,{}n b 满足145n nn a b b ++=,116n n n a +++=,且12a =,11b =(1)求2a ,2b 的值,并证明数列{}n n a b -是等比数列; (2)求数列{}n a ,{}n b 的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5讲 数列与不等式一、单选题 1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.92.(2022·全国·高考真题(理))嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <3.(2022·全国·高考真题(文))已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .34.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b = A .64B .96C .128D .1605.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9B .10C .11D .1211.故选:C .6.(2021·全国·高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .107.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022·上海·高考真题)已知a b c d >>>,下列选项中正确的是( ) A .a d b c +>+ B .a c b d +>+ C .ad bc >D .ac bd >9.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+二、多选题10.(2021·全国·高考真题)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( )A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=11.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤ D .221x y +≥三、双空题12.(2021·全国·高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么1nk k S ==∑______2dm .四、填空题13.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.14.(2022·上海·高考真题)不等式10x x-<的解集为_____________. 15.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 五、解答题16.(2022·全国·高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-. (1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.17.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 18.(2022·全国·高考真题(理))记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.19.(2021·全国·高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.20.(2021·全国·高考真题(文))记n S 为数列{}n a 的前n 项和,已知210,3na a a >=,且数列是等差数列,证明:{}n a 是等差数列.21.(2021·全国·高考真题(理))记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.22.(2021·全国·高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分.23.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 24.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.第5讲 数列与不等式一、单选题 1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D2.(2022·全国·高考真题(理))嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)kk α*∈=N .则( )A .15b b <B .38b b <C .62b b <D .47b b <【答案】D【解析】 【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】解:因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b<,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.故选:D.3.(2022·全国·高考真题(文))已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14 B .12C .6D .3【答案】D 【解析】 【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{}n a 的公比为,0q q ≠,若1q =,则250a a -=,与题意矛盾, 所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩, 所以5613a a q ==.故选:D .4.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b = A .64 B .96 C .128 D .160【答案】C 【解析】 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C.5.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9 B .10C .11D .12【答案】C 【解析】 【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值.【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .6.(2021·全国·高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7 B .8C .9D .10【答案】A 【解析】 【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案. 【详解】∵n S 为等比数列{}n a 的前n 项和, ∵2S ,42S S -,64S S -成等比数列 ∵24S =,42642S S -=-= ∵641S S -=, ∵641167S S =+=+=. 故选:A.7.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【解析】【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B . 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程. 8.(2022·上海·高考真题)已知a b c d >>>,下列选项中正确的是( ) A .a d b c +>+ B .a c b d +>+ C .ad bc > D .ac bd >【答案】B 【解析】 【分析】用不等式的基本性质得解. 【详解】3210>>>,但3021+=+,3021⨯<⨯,A 、C 错 a b c d >>>,,a c b d ∴>>,所以a c b d +>+.B 正确. 30212>>->-,但()()30122⨯-<⨯-,D 错.故选:B.9.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C 【解析】 【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C . 【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出. 二、多选题10.(2021·全国·高考真题)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( )A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=【答案】ACD 【解析】 【分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()01k n a a a ω=+++,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅,所以,()()012k n a a a n ωω=+++=,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=, 而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅,所以,()01852k n a a a ω+=++++,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅,所以,()01432k n a a a ω+=++++,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++,故()21nn ω-=,D 选项正确.故选:ACD.11.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC 【解析】 【分析】根据基本不等式或者取特值即可判断各选项的真假. 【详解】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos sin 2y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当x y ==时满足等式,但是221x y +≥不成立,所以D 错误. 故选:BC . 三、双空题12.(2021·全国·高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么1nk k S ==∑______2dm .【答案】 5 ()41537202n n -+-【解析】【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果. 【详解】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm ); 故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=, 设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑,则121112021203120120(1)22222n nn n S -⨯⨯+=++++, 两式作差得:()211201111124012022222n n n S -+⎛⎫=++++- ⎪⎝⎭()11601120122401212n nn -⎛⎫- ⎪+⎝⎭=+--()()112011203120360360222n n n n n -++=--=-,因此,()()4240315372072022n n n n S -++=-=-. 故答案为:5;()41537202n n -+-. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 四、填空题13.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______. 【答案】2 【解析】 【分析】转化条件为()112+226a d a d =++,即可得解. 【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++,即()112+226a d a d =++,解得2d =. 故答案为:2.14.(2022·上海·高考真题)不等式10x x-<的解集为_____________. 【答案】{}01x x << 【解析】 【分析】根据分式的运算性质分类讨论求出不等式的解集. 【详解】10100x x x x -<⎧-<⇒⎨>⎩或100x x ->⎧⎨<⎩,解第一个不等式组,得01x <<,第二个不等式组的解集为空集.故答案为:{}01x x << 【点睛】本题考查了分式不等式的解集,考查了数学运算能力,属于基础题. 15.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________.【答案】【解析】 【分析】两次利用基本不等式即可求出. 【详解】0 , 0a b >>,212a b b a b b b ∴++≥=+≥21a a b =且2b b=,即a b ==所以21a b ab ++的最小值为故答案为: 五、解答题16.(2022·全国·高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-. (1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得22k m -=,即可解出. (1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.17.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析 【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23nn n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. (1)∵11a =,∵111S a ==,∵111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∵()121133n n S n n a +=+-=,∵()23n n n a S +=,∵当2n ≥时,()1113n n n a S --+=,∵()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∵31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∵{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∵12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 18.(2022·全国·高考真题(理))记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值. 【答案】(1)证明见解析; (2)78-. 【解析】 【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得. (1) 解:因为221nn S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列. (2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时()min 78n S =-.19.(2021·全国·高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【详解】 (1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.20.(2021·全国·高考真题(文))记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析.【解析】 【分析】的公差d,进一步写出的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列是等差数列,设公差为d =(n -()n *∈N∵12n S a n =,()n *∈N∵当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∵{}n a 的通项公式为112n a a n a =-,()n *∈N ∵()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∵{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.21.(2021·全国·高考真题(理))记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n nb b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【详解】(1)[方法一]: 由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈ 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b nS b n+==-+, 当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∵()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式; 22.(2021·全国·高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①②作条件证明③,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②选②③作条件证明①时,an b +,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d =-,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =.选①③作条件证明②: 因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+==,)1n =+=所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,==因为也为等差数列,所以公差1d ==()11n d =-=故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n(0)an b a +>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a两项的差1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.23.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(∵)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='-n n n nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.24.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路. (2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n项和公式和分组的方法进行求和是一种不错的选择.。