数列与不等式专题练习[1]
不等式1

不等式1一、单选题1.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m, a n使得=4a1,则+ 的最小值为()A. B.C. D.2.不等式x2﹣4x>2ax+a对一切实数x都成立,则实数a的取值范围是()A. (1,4)B. (﹣4,﹣1)C. (﹣∞,﹣4)∪(﹣1,+∞)D. (﹣∞,1)∪(4,+∞)3.关于x的不等式ax2+bx+2>0的解集为(﹣1,2),则关于x的不等式bx2﹣ax﹣2>0的解集为()A. (﹣2,1)B. (﹣∞,﹣2)∪(1,+∞)C. (﹣∞,﹣1)∪(2,+∞)D. (﹣1,2)4.已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1, x2,且 0<x1<1,x2>1,则的取值范围是()A. B. C.D.5.已知实数m>1,实数x,y满足不等式组,若目标函数z=x+my的最大值等于3,则m的值是()A. 2B. 3C. 4D. 56.已知实数x,y满足,记z=ax﹣y(其中a>0)的最小值为f(a),若f(a)≥﹣,则实数a的最小值为()A. 3B. 4C. 5D. 67.如果实数x,y满足约束条件,则z= 的最大值为()A. B. C. 2 D. 38.设实数x,y满足约束条件,则当z=ax+by(a>0,b>0)取得最小值2时,则的最小值是()A. B.C. D. 29.已知正数x,y满足,则z=()x•()y的最小值为()A. 1B.C.D.10.设x,y满足约束条件则的取值范围是()A. B. [1,12] C. D. [2,12]11.已知实数x,y满足不等式组,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是()A. (﹣1,+∞)B. (﹣∞,﹣1)C. (1,+∞)D. (﹣∞,1)12.已知函数f(x)=ax2﹣bx+1,点(a,b)是平面区域内的任意一点,若f(2)﹣f(1)的最小值为﹣6,则m的值为()A. ﹣1B. 0C. 1D. 213.已知x,y满足,则(x﹣1)2+(y﹣1)2的取值范围是()A. [5,25]B. [1,25]C.D.二、填空题14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+ 的最小值________.15.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则的最小值为:________.16.已知正实数x,y满足x+3y=1,则的最小值为________.17.已知ab= ,a,b∈(0,1),则+ 的最小值为________.18.已知不等式对一切x∈(1,+∞)恒成立,则实数m的取值范围是________.19.已知实数x,y满足,则z=x﹣3y的最大值是________.20.若实数x,y满足,如果目标函数z=x﹣y的最小值为﹣2,则实数m=________.21.已知O是坐标原点,点A(-2,1),若点M(x,y)为平面区域上的一个动点,则•的取值范围是________.22.已知点P(x,y)的坐标满足条件则x2+y2的最大值为________.三、解答题23.解含参数a的一元二次不等式:(a﹣2)x2+(2a﹣1)x+6>0.24.已知a∈R,解关于x的不等式(a﹣1)x2+(2a+3)x+a+2<0.25.若不等式ax2﹣bx+c>0的解集为{x|﹣2<x<3},求不等式cx2﹣bx﹣a<0的解集.26.已知函数f(x)= x2+ax+1(a∈R).(Ⅰ)当a= 时,求不等式f(x)<3的解集;(Ⅱ)当0<x<2时,不等式f(x)>0恒成立,求实数a的取值范围;(Ⅲ)求关于x的不等式f(x)﹣a2﹣1>0的解集.四、综合题27.已知函数f(x)=x2﹣(a+1)x+1(a∈R).(1)若关于x的不等式f(x)≥0的解集为R,求实数a的取值范围;(2)若关于x的不等式f(x)<0的解集是{x|b<x<2},求a,b的值;(3)若关于x的不等式f(x)≤0的解集是P,集合Q={x|0≤x≤1},若P∩Q=∅,求实数a的取值范围.28.已知函数f(x)=(log2x﹣2)(log4x﹣)(1)当x∈[2,4]时.求该函数的值域;(2)若f(x)≥mlog2x对于x∈[4,16]恒成立,求m的取值范围.29.设关于x的不等式|x﹣2|<a(a∈R)的解集为A,且∈A,﹣∉A.(1)对任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.(2)若a+b=1,a,b∈R+,求+ 的最小值,并指出取得最小值时a的值.30.已知函数.(1)求不等式的解集;(2)若且直线与函数的图象可以围成一个三角形,求的取值范围.答案解析部分一、单选题1.【答案】A【考点】基本不等式,等比数列的通项公式【解析】【解答】解:由各项均为正数的等比数列{a n}满足 a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当= 时,等号成立.故的最小值等于,故选A.【分析】由 a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.2.【答案】B【考点】一元二次不等式的解法【解析】【解答】解:不等式x2﹣4x>2ax+a变形为 x2﹣(4+2a)x﹣a>0,该不等式对一切实数x恒成立,∴△<0,即(4+2a)2﹣4•(﹣a)<0;化简得a2+5a+4<0,解得﹣4<a<﹣1;∴实数a的取值范围是(﹣4,﹣1).故答案为:B.【分析】把不等式x2﹣4x>2ax+a化为x2﹣(4+2a)x﹣a>0,根据不等式恒成立时△<0,求出a的取值范围.3.【答案】B【考点】一元二次不等式的应用【解析】【解答】解:∵关于x的不等式ax2+bx+2>0的解集为(﹣1,2),∴﹣1,2是ax2+bx+2=0(a<0)的两根∴∴a=﹣1,b=1∴不等式bx2﹣ax﹣2>0为x2+x﹣2>0,∴x<﹣2或x>1故答案为:B.【分析】根据不等式的解集可得出﹣1,2是ax2+bx+2=0(a<0)的两根,代入可解得a,b的值,从而得出不等式的解集.4.【答案】D【考点】一元二次方程的根的分布与系数的关系【解析】【解答】解:由程x2+(1+a)x+1+a+b=0的二次项系数为1>0,故函数f(x)=x2+(1+a)x+1+a+b图象开口方向朝上又∵方程x2+(1+a)x+1+a+b=0的两根满足0<x1<1<x2,则即即其对应的平面区域如下图阴影示:∵表示阴影区域上一点与原点边线的斜率由图可知∈故答案为:D.【分析】由题意可得,根据一元二次方程根的分布与系数的关系以及三个二次之间的关系,分析的几何意义利用线性规划在直角坐标系中作出满足条件的可行域求得。
不等式题库100题

不等式题库21.函数,.〔Ⅰ〕解不等式;〔Ⅱ〕假设对,,有,,求证:.2.函数,.(Ⅰ)当,求不等式的解集;(Ⅱ)假设函数满足,且恒成立,求的取值范围.3.选修4-5:不等式选讲函数.〔1〕当时,求不等式的解集;〔2〕设,记,证明:.4..〔1〕假设,求的取值范围;〔2〕假设,的图像与轴围成的封闭图形面积为,求的最小值.5.函数和的图象关于原点对称,且.〔1〕解关于的不等式;〔2〕如果对,不等式恒成立,求实数的取值范围.6.函数.〔1〕求不等式的解集;〔2〕假设不等式有解,求的取值范围.7.函数.〔Ⅰ〕当时,解不等式;〔Ⅱ〕假设,恒成立,求实数的取值范围.8.函数的最小值为.〔1〕求实数的值;〔2〕假设,设,且满足,求证:.9.选修4-5:不等式选讲函数假设,求不等式的解集;假设函数有三个零点,求实数的取值范围.10.均为正数,且,求的最小值,并指出取得最小值时的值.11.函数.〔Ⅰ〕求的值域;〔Ⅱ〕假设关于的不等式有解,求证:.12.函数,.〔1〕当时,解不等式;〔2〕假设的解集包含,求的取值范围.13.〔1〕求不等式的解集;〔2〕两个正数、满足,证明:.14.选修4-5:不等式选讲函数求不等式的解集;设函数的最小值为,当,且时,求的最大值. 15.函数.〔Ⅰ〕当时,求不等式的解集;〔Ⅱ〕假设函数的最小值为3,且,,证明:.16.选修4-5:不等式选讲函数.〔1〕设,求不等式的解集;〔2〕,且的最小值等于,求实数的值.17.函数, .(1)当时,求不等式的解集;〔2〕假设,都有恒成立,求的取值范围.18.设函数.解不等式;假设对一切实数x均成立,求m的取值范围.19.函数,,.〔1〕当时,求不等式的解集;〔2〕假设不等式恒成立,求的取值范围.20.函数,.〔1〕当时,解不等式;〔2〕假设存在满足,求的取值范围.21.f〔x〕=﹣x+|2x+1|,不等式f〔x〕<2的解集是M.〔Ⅰ〕求集合M;〔Ⅱ〕设a,b∈M,证明:|ab|+1>|a|+|b|.22.设函数.〔1〕求不等式的解集;〔2〕假设,恒成立,求的取值范围.23.函数.〔Ⅰ〕在图中作出函数y =的图象,并求出其与直线围成的封闭图形的面积;〔Ⅱ〕假设g(x)=|2x-a|+|x-1|.当+g(x)≥3对一切实数x恒成立,求实数a的范围。
高考数学复习热点08 数列与不等式(原卷版)-2021年高考数学专练(新高考)

热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。
数列与不等式30大题(有答案)

S1 S2
Sn
第 1页(共 23页)
10. 在等比数列 an 和等差数列 bn 中,a1 = b1 > 0,a3 = b3 > 0,a1 ≠ a3,试比较 a5 和 b5 的大 小.
11. 设数列 an 的前 n 项和为 Sn,且 a1 = 1,an+1 = 1 + Sn n ∈ ∗ .
(1) 求数列 an 的通项公式;
∗ 成立,
18. 已知常数 p 满足 0 < p < 1,数列 xn 满足 x1 = p + 1p,xn+1 = xn2 − 2.
(1) 求 x2,x3,x4;
(2) 猜想 xn 的通项公式(不用给出证明); (3) 求证:xn+1 > xn 对 n ∈ ∗ 成立.
19. 设 b > 0 ,数列
an
大值.
7. 已知 an 是正整数组成的数列,a1 = 1 ,且点( an,an+1 )( n ∈ ∗ )在函数 y = x2 + 1 的图象上;
(1) 求数列 an 的通项公式;
(2) 若数列 bn 满足 b1 = 1,bn+1 = bn + 2an ,求证:bn ⋅ bn+2 < bn2+1
8. x,y ∈
∈
+ 都成立
的最大正整数 k 的值.
6. 已知数列 an 是等比数列,首项 a1 = 1,公比 q > 0,其前 n 项和为 Sn,且 S1 + a1,S3 + a3,
S2 + a2 成等差数列.
(1) 求数列 an 的通项公式;
(2) 若数列
bn
满足 an+1 =
数列与不等式结合典型题

数列与不等式结合典型题1.已知数列}{n a 中,),3,2,1(0 =>n a n ,其前n 项和为n S ,满足*,)1(N n a p S p n n ∈-=-,10≠>p p 且. 数列}{n b 满足.log 1n p n a b -=(Ⅰ)求数列}{n a 、}{n b 的通项n n b a 与; (Ⅱ)若n nn n T a b c p ,,21==记为数列}{n c 的前n 项和,求证:.40<<n T2.已知定义在(-1,1)上的函数)1,1(,,1)21()(-∈=y x f x f 且对满足时,有).1()()(xyyx f y f x f --=-(I )判断)1,1()(-在x f 的奇偶性,并证明之; (II )令)}({,12,21211n nn n x f x x x x 求数列+==+的通项公式; (III )设T n 为数列})(1{n x f 的前n 项和,问是否存在正整数m ,使得对任意的34,-<∈*m T N n n 有成立?若存在,求出m 的最小值;若不存在,则说明理由.3.(本小题满分14分)设函数)0()(22>-+=a a x x x f(Ⅰ)求)()(1x f x f -的反函数及定义域;(Ⅱ)若数列}{,),(,3}{111n n n n n n n b aa aa b a f a a a a 求设满足+-===-+的通项公式;(Ⅲ)S n 表示{b n }的前n 项和,试比较S n 与87的大小. 4.(本小题满分14分)已知数列.)11(2,2:}{211n n n a na a a +==+满足 (1)求数列}{n a 的通项公式;(2)设n n C Bn An b 2)(2⋅++=,试推断是否存在常数A ,B ,C ,使对一切*∈N n 都有n n n b b a -=+1成立?说明你的理由;(3)求证:.2)22(2221+⋅+-≥+++n n n n a a a5. 设函数f (x )=22-ax x (a ∈N*), 又存在非零自然数m, 使得f (m )= m , f (– m )< –m1成立.(1) 求函数f (x )的表达式;(2) 设{a n }是各项非零的数列, 若)...(41)1(21n n a a a a f +++=对任意n ∈N*成立, 求数 列{a n }的一个通项公式;(3) 在(2)的条件下, 数列{a n }是否惟一确定? 请给出判断, 并予以证明6. 已知函数)3(1)(b ax f x-=的图象过点A (1,2)和B (2,5). (1)求函数)(x f 的反函数)(1x f -的解析式;(2)记*)(,3)(1N n a n f n ∈=-,试推断是否存在正数k ,使得12)11()11)(11(21+≥+++n k a a a n对一切*N n ∈均成立?若存在,求出k 的最大值;若不存在,说明理由.卷二一、选择题:(每小题5分,共50分)1、数列95,74,53,32,1的一个通项公式n a 是( ) A 、12+n n B 、12-n n C 、32-n n D 、32+n n2、已知等比数列{}n a 的公比为正数,且24282a a a =,11=a 则=2a ( )A 、2B 、2C 、22D 、213、已知等差数列{}n a 前n 项和为n S 且0>n a 已知02564=-+a a a 则=9S ( )A 、17B 、18C 、19D 、204、已知)1,0(,21∈a a ,记21a a M =,121-+=a a N 则M 与N 的大小关系( ) A 、M<N B 、M>N C 、M=N D 、不确定5、若011<<b a ,则下列不等式:bc a c c b c a b a ab b a 22)4(,)3(,)2(,)1(<+>+><+中正确的是( )A 、(1)(2)B 、(2)(3)C 、(1)(3)D 、(3)(4)6、不等式1213≥--x x 的解集是 ( ) A 、⎭⎬⎫⎩⎨⎧≤≤243x x B 、⎭⎬⎫⎩⎨⎧<≤243x x C 、⎭⎬⎫⎩⎨⎧≤>432x x x 或 D 、{}2<x x7、设n S 是等差数列{}n a 的前n 项和,若59355,9a Sa S ==则( )A 、 1B 、 1-C 、 2D 、 128、在的条件下,,00>>b a 三个①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a b a a b +≥+22,其中正确的个数是( )A 、0B 、1C 、2D 、39、目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A 、3,12min max ==z zB 、,12max =z z 无最小值C 、z z ,3min =无最大值D 、z 既无最大值,也无最小值10、在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A 、11<<-aB 、20<<aC 、2321<<-a D 、2123<<-a 二、填空题:(每小题5分,共25分)11、等比数列{}n a 公比,0>q 已知n n n a a a a 6,1122=+=++,则{}n a 的前4项和=4S ___________12、等比数列{}n a 的前n 项和n S ,又2132S S S +=,则公比=q ___________ 13、若0>x ,0>y 且12=+y x ,则xy 的最大值为___________14、实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是_____________15、关于x 的不等式211(1)0(0)x a x a a a a-++++<>的解集为 三、解答题:16、(本小题满分12分)等比数列{}n a 中,已知16,241==a a ,(1)求数列{}n a 的通项公式;(2)若53,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S .17、(本小题满分12分)已知数列{}n a 的前n 项和248n S n n =-(1) 求数列{}n a 的通项公式 ; (2) 求n S 的最大或最小值.18、(本小题满分12分)已知向量)sin ,2(cos θθn n a n =,),)(sin 2,1(*N n n b n ∈=θ若n n a C =·n n b 2+,(1)求数列{}n C 的通项公式; (2)求数列{}n C 的前n 项和n S .19、(本小题满分12分)在数列{}n a 中,n n n a a a 22,111+==+(1)设12-=n nn a b ,证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S .20、(本小题满分13分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以 46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?21、(本小题满分14分)已知数列{}n a 满足:1112,2--==n n a a a , ,4,3,2=n ,(1) 求证:数列⎭⎬⎫⎩⎨⎧-11n a 为等差数列; (2) 求数列{}n a 的通项公式; (3)令∑=+=ni i i n a a T 11,求证:43+<n T n.答案卷一1.解:(I )1=n 时,.10.0)1()1(1111=⇒>=-⇒-=-a p a p a p a p 由 1分 当,)1(2n n a p S p n -=-≥ ①,)1(11++-=-n n a p S p ②由②-①,有,)1(11++-=-n n n a a a p 2分从而,.111pa a a pa n n n n =⇒=++∴数列}{n a 是以1为首项,p1为公比的等比数列.∴1)1(-=n n pa .∴.)1(1)1(log 1log 11n n pa b n p n p n =--=-=-=-(II )当21=p 时,.21-==n n n n n a b c 1分 ∵.0.0>∴>n n T c 12102232221-++++=n n n T , ③ n n n nn T 221222121121+-+++=∴- . ④由③-④,得n n n nT 221212121211210-++++=-.22222122211)21(11n n n n nn n n +-=--=---=-.2241-+-=∴n n nT 1分.40.4,0221<<∴<∴>+∴-n n n T T n1分2.解:(I )令0)0(,0===f y x 得。
专题21 数列与不等式结合的问题(解析版)

专题21 数列与不等式结合的问题一、题型选讲题型一 不等式恒成立中的参数的范围,求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数()f x 在定义域为D ,则当x D ∈时,有()f x M ≥恒成立()min f x M ⇔≥;()f x M ≤恒成立()max f x M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.例1、(2019镇江期末)设数列{a n }是各项均为正数的等比数列,a 1=2,a 2a 4=64.数列{b n }满足:对任意的正整数n ,都有a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2.(1) 分别求数列{a n }与{b n }的通项公式.(2) 若不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立,求实数λ的取值范围. (3) 已知k ∈N *,对于数列{b n },若在b k 与b k +1之间插入a k 个2,得到一个新数列{c n }.设数列{c n }的前m 项的和为T m ,试问:是否存在正整数m ,使得T m =2019?如果存在,求出m 的值;如果不存在,请说明理由.规范解答 (1)设等比数列{a n }的公比为q(q>0),因为a 1=2,a 2a 4=a 1q ·a 1q 3=64,解得q =2,则a n =2n .(1分)当n =1时,a 1b 1=2,则b 1=1;(2分)当n ≥2时,a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2 ①,a 1b 1+a 2b 2+…+a n -1b n -1=(n -2)·2n +2 ②, ①-②得a n b n =n·2n ,则b n =n. 综上,b n =n.(4分)(2) 不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立,即λ⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n <12n +1恒成立. 因为⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n >0,当λ≤0时,不等式显然成立.(5分) 当λ>0时,不等式等价于⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n 2n +1<1λ. 设f(n)=⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n 2n +1,则f (n +1)f (n )=⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n ⎝⎛⎭⎫1-12n +22n +3⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14—⎝⎛⎭⎫1-12n 2n +1=2n +12n +32n +2=4n 2+8n +34n 2+8n +4<1.(7分)所以f(1)>f(2)>f(3)>…>f(n)>…,所以1λ>f(n)max =f(1)=32,故λ<233,则0<λ<233.综上,λ<233.(8分)例2、(2019南京、盐城二模)已知数列{a n }各项均为正数,且对任意n ∈N *,都有(a 1a 2…a n )2=a n +11a n -1n +1.(1) 若a 1,2a 2,3a 3成等差数列,求a 2a 1的值;(2) ①求证:数列{a n }为等比数列;②若对任意n ∈N *,都有a 1+a 2+…+a n ≤2n -1,求数列{a n }的公比q 的取值范围.规范解答 (1)因为(a 1a 2)2=a 31a 3,所以a 22=a 1a 3,因此a 1,a 2,a 3成等比数列.(2分)设公比为t ,因为a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,即4×a 2a 1=1+3×a 3a 1,于是4t =1+3t 2,解得t =1或13,所以a 2a 1=1或13.(4分)(2)①因为(a 1a 2…a n )2=a n +11a n -1n +1,所以(a 1a 2…a n a n +1)2=a n +21a nn +2,两式相除得a 2n +1=a 1a n n +2a n -1n +1,即a n +1n +1=a 1a n n +2,(*)(6分)由(*),得a n +2n +2=a 1a n +1n +3,(**)(*)(**)两式相除得a n +2n +2a n +1n +1=a n +1n +3a n n +2,即a 2n +2n +2=a n +1n +1a n +1n +3, 所以a 2n +2=a n +1a n +3,即a 2n +1=a n a n +2,n ≥2,n ∈N *,(8分) 由(1)知a 22=a 1a 3,所以a 2n +1=a n a n +2,n ∈N *,因此数列{a n }为等比数列.(10分) ②当0<q ≤2时,由n =1时,可得0<a 1≤1,所以a n =a 1q n -1≤2n -1,因为a 1+a 2+…+a n ≤1+2+…+2n -1=2n -1,所以0<q ≤2满足条件.(12分) 当q >2时,由a 1+a 2+…+a n ≤2n-1,得a 1(1-q n )1-q≤2n -1,整理得a 1q n ≤(q -1)2n +a 1-q +1.(14分)因为q >2,0<a 1≤1,所以a 1-q +1<0, 因为a 1q n<(q -1)2n,即⎝⎛⎭⎫q 2n<q -1a 1,由于q 2>1,因此n <log q 2q -1a 1,与任意n ∈N *恒成立相矛盾,所以q >2不满足条件.综上,公比q 的取值范围为(0,2].(16分)例3、(2019苏州三市、苏北四市二调)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n ∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.思路分析 (1) 对3S 2n -4S n +T n =0,令n =1,2得到方程,解得a 1,a 2的值.(2) 3S 2n -4S n +T n =0中,对n 赋值作差,消去T n ,再对n 赋值作差,消去S n ,从而得到a n +1=-12a n ,证得数列{a n }是等比数列.(3)先求出a n =⎝⎛⎭⎫-12n -1,由(λ-na n )(λ-na n +1)<0恒成立,确定λ=0适合,再运用反证法证明λ>0和λ<0不成立.规范解答 (1)因为3S 2n -4S n +T n =0,n ∈N *.令n =1,得3a 21-4a 1+a 21=0,因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0,因为a 2≠0,所以a 2=-12.(3分) (2)解法1 因为3S 2n -4S n +T n =0, ① 所以3S 2n +1-4S n +1+T n +1=0, ②②-①得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, ③(5分) 所以3(S n +S n -1)-4+a n =0(n ≥2), ④当n ≥2时,③-④得,3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n ,因为a n ≠0,所以a n +1a n =-12.又因(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)解法2 因为3S 2n -4S n +T n =0,① 所以3S 2n +1-4S n +1+T n +1=0,②②-①得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0, 因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, 所以3(S n +1+S n )-4+(S n +1-S n )=0,(5分) 整理为S n +1-23=-12⎝⎛⎭⎫S n -23,又S 1-23=a 1-23=13, 所以S n -23=13·⎝⎛⎭⎫-12n -1,得S n =13·⎝⎛⎭⎫-12n -1+23,当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n -1,而a 1=1也适合此式,所以a n =⎝⎛⎭⎫-12n -1,所以a n +1a n =-12所以数列{a n }是以-12为公比的等比数列.(8分)(3)解法1 由(2)知,a n =⎝⎛⎭⎫-12n -1.因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n ⎝⎛⎭⎫-12n -1和n ⎝⎛⎭⎫-12n之间. 因为n ⎝⎛⎭⎫-12n -1·n ⎝⎛⎭⎫-12n<0对任意的n ∈N *恒成立,所以λ=0适合.(10分) 若λ>0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有λ<n2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有-λ<n2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0. 解法2 由(2)知,a n =⎝⎛⎭⎫-12n -1,故a n a n +1<0,所以当λ=0时,(λ-na n )(λ-na n +1)<0即n 2a n a n +1<0,对任意的n ∈N *成立,符合题意;(10分)因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立,所以对任意的大于3的偶数n ,(λ-na n )(λ-na n +1)<0即⎝⎛⎭⎫λ+n 2n -1⎝⎛⎭⎫λ-n 2n <0成立,亦即对任意的大于3的偶数n ,|λ|<n 2n -⎝⎛⎭⎫-n 2n -1=3n2n 成立,(13分) 先证,当n ≥4时,n 2n ≤1n,记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n 41,所以n 2n ≤1n (*),所以对任意的大于3的偶数n ,|λ|<3n成立,但若λ≠0,当n >3|λ|时,|λ|>3n ,所以λ≠0不合题意,综上,实数λ的所有值为0.(16分)题型二、运用放缩法证明不等式与常数的关系此类问题往往与数列和有关,通过数列求和的方法研究求和或者通过放缩法研究数列和的不等关系,一般会得出数列的和与常数与一个变量之间的关系,进而得到与常数之间的不等关系。
数列与不等式(有答案)

数列与不等式1. 不等式的解集是B. C. D.2. 已知实数,满足,则的最大值为.3. 已知,,,则的最小值为.4. 若,,且,则的最小值为.5. 记等差数列的前项和为.若,,,则正整数.6. 设是等差数列的前项和,,,则.7. 已知在各项都为正数的等比数列中,若首项,,则的值为.8. 设等比数列的前项和为,若,则.9. 若正实数,满足,则的最小值是.10. 设两个等差数列和的前项和分别为和,且,则.11. 已知为锐角,且.(1)求的值;(2)求的值.12. 在中,内角,,的对边分别为,,.已知.(1)求的值;(2)若,,求的面积.13. 为数列的前项和,已知,.(1)求的通项公式;(2)设,求数列的前项和.14. 设数列的前项和为.已知.(1)求的通项公式;(2)若数列满足,求的前项和.答案第一部分1. D 【解析】由,得,即.所以原不等式等价于即所以所以原不等式的解集是.第二部分4.5.【解析】因为,,所以公差.又因为,所以,所以.6.【解析】由题意得整理得解得所以7.【解析】由,,得由,解得,从而8.【解析】设等比数列的首项为,公比为,由,得,即,所以.9.【解析】根据题意,,满足,则即的最小值是.10.【解析】由题意,可设,,则,,所以.第三部分11. (1)已知为锐角,所以,由得,解得或,由为锐角,得.(2)且为锐角,,.故12. (1)由正弦定理得,,,所以,即,即有,即,所以.(2)由知:,即,又因为,所以由余弦定理得:,即,解得,所以,又因为,所以,故的面积为.13. (1)由题意得,所以.两式相减整理得.又,所以.又由得(负值舍去).所以是首项为,公差为的等差数列,故.(2)由(1)知.于是数列的前项和14. (1)因为,所以,故.当时,,此时,即,所以(2)因为,所以.当时,.所以;当时,,所以,两式相减,得所以.经检验,时也适合.综上可得.。
数列不等式综合练习题

数列不等式综合练习题一、等差数列与不等式1. 已知等差数列{an}中,a1=1,a3=3,求满足不等式a_n > 0的最小正整数n。
2. 设等差数列{bn}的前n项和为Sn,若S4=8,S8=24,求满足不等式b_n < 5的最小正整数n。
3. 已知等差数列{cn}的公差为2,首项为1,求满足不等式c_n > 7的所有正整数n的个数。
二、等比数列与不等式1. 已知等比数列{dn}中,d1=2,d3=8,求满足不等式d_n < 64的所有正整数n。
2. 设等比数列{en}的前n项和为Tn,若T3=13,T6=121,求满足不等式e_n > 1的所有正整数n。
3. 已知等比数列{fn}的公比为1/2,首项为16,求满足不等式f_n < 1的所有正整数n的个数。
三、数列与不等式综合1. 已知数列{gn}的通项公式为gn = n^2 n + 1,求满足不等式gn > 10的所有正整数n。
2. 设数列{hn}的通项公式为hn = 3^n 2^n,求满足不等式hn < 100的所有正整数n。
3. 已知数列{kn}的通项公式为kn = 2n + 1,求满足不等式kn > 30的所有正整数n的个数。
四、数列不等式证明1. 证明:对于等差数列{an},若a1 > 0,公差d > 0,则数列中存在正整数n,使得an > 0。
2. 证明:对于等比数列{bn},若b1 > 1,公比q > 1,则数列中存在正整数n,使得bn > 1。
3. 证明:对于数列{cn},若cn = n^2 + n + 1,则数列中存在正整数n,使得cn > 100。
四、数列不等式证明(续)4. 证明:对于数列{dn},若dn = 2^n n^2,则存在正整数N,使得对于所有n > N,不等式dn > 0恒成立。
5. 证明:对于数列{en},若en = n! / 2^n,则存在正整数M,使得对于所有n > M,不等式en < 1恒成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与不等式专题练习一、选择题1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .66B .99C .144D .2972.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .1923.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .21 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .85.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )A .4-B .6-C .8-D .10-7.设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A .1 B .1- C .2 D .21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( )A .1B .0或32C .32D .5log 29.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .15(0,)2+B .15(,1]2-C .15[1,)2+D .)251,251(++- 10.在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( )A .等差数列B .等比数列C .等差数列或等比数列D .都不对12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( )A .12B .10C .31log 5+D .32log 5+13.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98B .99C .96D .9714.在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )A .9B .12C .16D .1715.在等比数列{}n a 中,若62=a ,且0122345=+--a a a 则n a 为( )A .6B .2)1(6--⋅nC .226-⋅nD .6或2)1(6--⋅n 或226-⋅n16.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为( )A .22.5-B .21.5-C .20.5-D .20-17.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) A .23 B .2131n n -- C .2131n n ++ D .2134n n -+ 二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________. 6.等差数列{}n a 中, ,33,562==a a 则35a a +=_________。
7.在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
8.等差数列中,若),(n m S S n m ≠=则n m S +=_______。
9.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且13k a =,则k =_________。
10.等比数列{}n a 前n 项的和为21n -,则数列{}2n a 前n 项的和为______________。
11.已知数列{}n a 中,11a =-,11n n n n a a a a ++⋅=-,则数列通项n a =___________。
12.已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________。
13.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =_________。
14.在等差数列{}n a 中,公差21=d ,前100项的和45100=S ,则99531...a a a a ++++=_____________。
15.若等差数列{}n a 中,37101148,4,a a a a a +-=-=则13__________.S =三、解答题1.成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2.在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。
3.设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q4.已知数列{}n a 的前n 项和n n S 23+=,求n a不等式一、选择题1.若122+x ≤()142x -,则函数2x y =的值域是( ) A .1[,2)8 B .1[,2]8 C .1(,]8-∞ D .[2,)+∞2.设11a b >>>-,则下列不等式中恒成立的是 ( )A .b a 11<B .b a 11>C .2a b >D .22a b > 3.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1B .最大值1和最小值43C .最小值43而无最大值 D .最大值1而无最小值 4.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是 ( )A .31a -<<B .20a -<<C .10a -<<D .02a <<5.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。
A. 10 B. 10- C. 14 D. 14- 6.设集合等于则B A x x B x x A ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫ ⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21 C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131 D .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,2131 7.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈C .2232x y x +=+ D .21y x x =+- 8.如果221x y +=,则34x y -的最大值是 ( )A .3B .51 C .4 D .59.已知函数2(0)y ax bx c a =++≠的图象经过点(1,3)-和(1,1)两点,若01c <<,则a 的取值范围是 ( )A .(1,3)B .(1,2)C .[)2,3D .[]1,310.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).A .4-≤m 或4≥mB . 45-≤<-mC .45-≤≤-mD . 25-<<-m11.若()a ax x x f ++-=12lg )(2在区间]1,(-∞上递减,则a 范围为( )A .[1,2)B . [1,2]C .[)1,+∞D . [2,)+∞12.不等式22lg lg x x <的解集是 ( ) A .1(,1)100 B .(100,)+∞ C .1(,1)100(100,)+∞ D .(0,1)(100,)+∞13.若不等式2log 0a x x -<在1(0,)2内恒成立,则a 的取值范围是 ( ) A .1116a ≤< B .1116a << C .1016a <≤ D .1016a << 14.若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( )A .0B .2C .4D .6 15.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( ) A .12 B .32 C .52 D .1 二、填空题1.设实数,x y 满足2210x xy +-=,则x y +的取值范围是___________。
3.若121log a x a -≤≤的解集是11[,]42,则a 的值为___________。
4.当02x π<<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是________。
5.设,x y R +∈ 且191x y+=,则x y +的最小值为________. 6.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。
7.设函数23()lg()4f x x x =--,则()f x 的单调递减区间是 。
8.当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________。
9.不等式122log (21)log (22)2x x +-⋅-<的解集是_______________。
10.已知0,0,1a b a b ≥≥+=,则12a ++21+b 的范围是____________。